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Parametric excitation of multimode dissipative systems
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A general approach to the study of parametric excitation of multimode dissipative systems is
proposed. It is based on the derivation of normal form equations and on the reduction of these
equations to a Aow of lower dimensionality. General results for single- and double-mode systems
are presented. The implications for the system of parametrically excited surface waves are dis-
cussed; it is predicted that the onset of waves can be either smooth or hysteretic depending on the
excitation frequency, and an explanation is given for the experimentally observed mode-
suppression eA'ect, occurring in double-mode systems.

Parametrically driven systems are very common in

physics; they arise when a parameter in the equations of
motion is allowed to vary periodically in time and thereby
to act as an energy feed source. ' Examples are available
from mechanics, ' hydrodynamics, ' and electronics,
as well as from many other fields. Considerable amount
of work has been devoted to the study of nonlinear phe-
nomena in parametrically excited single-mode systems.
Much less is known, however, on the dynamics of several
interacting modes even in weakly forced systems. The
motivation to study multimode systems derives from re-
cent experimental studies which reveal rich nonlinear be-
havior in such systems. ' Since the complexity of the
system increases rapidly with the number of modes, it be-
comes desirable to have a simple and general approach for
the analysis of multimode systems. The aim of this Rapid
Communication is to propose such an approach for the
case of weakly forced systems.

We shall consider the set of equations

g;+2k;(;+ [0 ;ti+fa;(t)]g +g;(g ig ,2. . . , (tv) =0,

where N is the number of excited modes, f;(t) is a 2tr-
periodic function, and g; is strictly nonlinear. Our
analysis will be general in the sense that we shall not be
concerned with the specific forms of f; and g;. This gen-
erality is achieved by considering the normal form of Eqs.
(1).' ' It then appears that one can factor out the periodic
time-dependent terms without resorting to any method of
approximation (such as multiple time scales, averaging,
etc. ). The resulting autonomous equations can be easily
analyzed to obtain "static" information about the system
(steady-state solutions). It will be shown, however, that in
the regime where all modes are excited one can reduce the
number of active degrees of freedom by a half, and there-
by obtain useful "dynamic" information. I will demon-
strate this approach for single- and double-mode systems
and discuss the implications for the system of parametri-
cally excited surface waves. In particular, I will explain
the experimentally observed mode-suppression effect be-
tween a pair of interacting modes, and predict that the on-
set of surface waves can be either supercritical (smooth)
or subcritical (hysteretic) depending on the excitation fre-
quency.

It is instructive to first consider the damped Mathieu
equation

g+2Xg+ (Go+@cost) /=0 . (2)

FIG. 1. The e-0 plane for the damped Mathieu equation.
Shaded regions (tongues) correspond to unstable solutions.
Higher tongues are narrower and lie higher above the 0 axis
(the third tongue above —', is already not seen).

The e-0 plane, where 0= JQti —X, contains "tongue"-
like domains as shown in Fig. 1. Outside the tongues the
equilibrium solution, (=0, prevails. On the boundaries of
the tongues periodic motion sets in, while inside them the
solutions are unstable. The tongues lie above (and ap-
proach, as )j, 0) an infinite sequence of points, [Qk
=k/2; k =1,2, . . . ] on the A axis. The period of the
motion on the boundaries is 2tt (4tr) if the tongue lies
above an integer (half an integer) number. We note that
0 can be interpreted as the ratio between the natural fre-
quency, co;, of the mode and the forcing frequency co

(0 =ra;/to). In the case of multimode systems it is useful
to consider the e-co plane, since it contains information
about all modes; the infinite sequence of tongues in the e-
A plane pertaining to each mode falls now in a finite in-
terval, [0,2to;], on the to axis. It is well known from the
theory of the Mathieu equation " that higher tongues
(higher k) are narrower and lie higher above the co (or i) )
axis (see also Fig. 1). Therefore for small e values (weak-
ly forced systems) one should not worry about the accu-
mulation of tongues at small co values. Moreover, only the
first few ones are easily observable and therefore of practi-
cal interest.
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For the sake of simplicity the approach presented here
will be illustrated using the example of a single-mode sys-
tem [% 1 in Eq. (I)]. We assume that both e and X are
much smaller than A. For the purpose of finding the nor-
mal form it is convenient to consider the periodic force as
an additional degree of freedom, af =exp(it). We can
now expand the forcing term, f(t), in Fourier series and
write it as

Q~

0
/

~G(
-Qp

f(t) =af+ af+ g (d„af+ d af )
n~2

where the bars denote complex conjugates. It is also use-
ful to introduce the dynamical complex variable
a =(2Q) '[(0 —iA)g , ij]—. In terms of a and af Eq. (1)
(for%=1) reads

a = ( X+—i 0 )a+i y(af +af ) (a+ a) + h (a), (4a)
.5

~'+(n-'i~) '
~ =~1-V~)

0 —Stable

af =iaf, (4b)

in Eq. (5) we obtain the autonomous equation
a =( X+ip)—a+iya+ia(a

~
a+h. o.t. , (7)

where p—=0 ——,
' .

The stability of the equilibrium solution of Eq. (7) is
determined by the eigenvalues

s —= —
A, +D,

where D= Jy —
p . Equation (7) has in addition the

steady-state solutions

, =+ 4( —
y

—~)/, 2e, = o (a/y),
and

r2= ~ v ( —p+6)/cr, 282 =arccos( —4/y),
where r and 8 are the modulus and phase of a,
5=Jy —k and we have assumed that cr is real. The
stability of these solutions is determined by the eigenval-
ues pi—= —X+ dA. —4h(&+5) and p2

—= —)t
+ JX +45(p —6), respectively. The phase diagram in
the e-0 plane corresponding to the solutions for o positive
is shown in Fig. 2. For Q & —,

' the equilibrium-steady-
state transition is continuous (second order) and described
by a supercritical pitchfork bifurcation. For 0 & 2 the
transition is discontinuous (first order) and occurs via a
subcritical pitchfork bifurcation. ' A similar phase dia-

where y=e/(4Q) and h is a nonlinear function of the set
of variables a=(a, a, af, af). We now apply a nonlinear
transformation to the variables a, of the form
a =A+ y(A) [where y is strictly nonlinear and
A=(A, A, af, af)], such that the equations for A are in
normal form. For the case 0 = —,

' (first tongue) we get'

A =(—).+i 0)A+iye"2+icr~A
~

2+h.o.t. , (5)

where the coeScient a is a complex constant with small
imaginary part (of order A, ) whose specific form depends
on that of h [we have neglected in Eq. (5) a small contri-
bution of O(e ) to X] and h.o.t. stands for higher-order
terms. Substituting now the transformation

A(t) =a(t)e"

FIG. 2. Supercritical vs subcritical excitation. The symbols 0
and ~a; (i 1,2) refer to the equilibrium solution and the
steady-state solutions ( ~ r;, 8;), re'spectively. The shaded region
corresponds to a case of tristability. The top figures are bifurca-
tion diagrams for constant ri: ti & —,

' (right) and ti ( —,
' (left).

gram is obtained for a negative except that it is now
reflected about the Q =

& line. The inclusion of a small
[O(X)] imaginary part in cr as well as higher order terms
in Eq. (7) may slightly shift the middle point (at 0 = —,

' )
which separates the line of smooth excitation from that of
hysteretic excitation (see below). It may also deform the
line e=4XQ. We note that the significance of Eq. (6),
where a represents a steady state, is that everywhere in-
side the tongue the motion is locked to the external fre-
quency.

Equation (7) represents a two-dimensional liow. It is
evident from Eq. (8) that on the boundary of the tongue,
defined by D=X, one degree of freedom is marginal while
the other one is stable. We can therefore reduce the dy-
namics on the boundary (and inside the tongue as well) to
a one-dimensional flow. The reduction is done here in the
spirit of Refs. 4 and 14. The reduced equation reads'

x =s+x —qx +h.o.t., rt= +Recr+Ima
2D D

For o real (and say positive) we recover the result of the
"static" analysis, namely, for 0 & —,

'
(p & 0) the bifurca-

tion to a steady state is supercritical (rt & 0) while for
it is subcritical (r) & 0). The inclusion of a small

imaginary part in o. shifts the border point from 0 = —,
' to

0 = —,
' +D Imcr/Reer.

Let us consider now a nondegenerate double-mode sys-
tem, by which we mean a system which satisfies Eq. (1)
with %=2 and nian2 (where 0;=JOq; —k; ). We
shall consider the case Ai & —,

' & A2 which corresponds to
an excitation of two modes, having natural frequencies co]
and m2, in their first tongues. The corresponding phase di-
agram in the e-co plane is shown in Fig. 3. We consider
first the case where the equations of motion are invariant
under the transformations (g~, g2) ~ ( —gi, g2), (gi, —g2),
( —

g~,
—g2). The normal form [after making the equa-
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tions autonomous by applying the transformation A~(t).
=ai(t)exp(it/2)] is

aj =( —Aj+ipj)ai+iyjaj+icri I aj I aj+ipj I a2I aj,
(ioa)

a2 =(—)j2+i&2)a2+iy2a2+ia'2 I a2 I a2+tp2 I « I
'a2,

(lob)

where p; = II; ——,
' and y; =s/(40;). We note that in the

degenerate case (0 j
= 02) additional terms are reso-

nant" and should be included in the normal form [i.e.,
a2aj and aja2 in Eqs. (10a) and (10b), respectively]. For
the sake of simplicity we shall assume that the coefficients
o;,p; are all real. At the intersection point of the two
tongues (see Fig. 3) the modes are excited simultaneously.
The two eigenvalues, s;+ = —k;+D;, i =1,2, at this point
are marginal while the remaining two, s; = —k; —D;, are
negative. Equations (10) are therefore reducible to a
two-dimensional Aow which takes the form'

x1 =$1 x1 g1x1 p1x2x1+ h.o.t.

x2 $2 x2 g2x2 p2x 1 x2+ h. o t.~ + 3 2

where

2D D
i=i 2

72P l 41 )'1P242

2D1D
' "'

2D1D2

(i ia)

(i2a)

(12b)

We expect Eqs. (11) to provide a good approximation in

the region where the two tongues overlap each other and
in a small neighborhood around the region. We assume
now that the coefficients pj and p2 in Eqs. (10) have the
same sign. This is a reasonable assumption since simul-

i I

2QJ I 2jd
Excitation
Frequency

FIG. 3. Schematic phase diagram (in the e-co plane) for a
double-mode system with 0& & —,

' & A2. Only one mode pre-
vails in the region where the two tongues overlap.

taneously excited modes have natural frequencies which
do not difrer much. In that case the main observation here
is that the coefficients p j and p2 in Eqs. (11) have opposite
signs. This stems from the fact that, by the nature of the
problem, pj and p2 have opposite signs. The significance is
that one mode acts to suppress the other, while the later
acts to enhance the former. The obvious result is that in
the region of two overlapping tongues only one mode pre-
vails. Mixed-mode states exist only in a single-tongue
domain (see Fig. 3).

A classical physical example of multimode parametric
excitation is the system of surface waves; ' basically, a
cell containing a Auid layer is oscillated in the vertical
direction and the wave modes which develop at the free
surface of the fIuid are detected. The spatial wave pattern
of each mode is characterized by two "quantum" numbers
which determine the number of nodes along two indepen-
dent directions. The time dependence of each mode is de-
scribed, at the linear level, by a damped Mathieu equa-
tion. The symmetry requirements which led to Eqs. (10)
are met by any pair of modes of the form (2n, 2m+1)
and (2m+1, 2n) in rectangular cell, or of the form (2n, i)
and (2m+1, j) in cylindrical geometry. The peculiar na-
ture of a single-mode excitation (i.e., the occurrence of
different types of excitations on the left and right sides of
the II =

z line) has not been observed yet in surface-wave
experiments. The mode-suppression eAect in double-
mode systems, however, has been observed by Ciliberto
and Gollub in a cylindrical cell. We note that there
might be pairs of modes for which only the
(gj, (2) ( —gj, —g2) symmetry requirement should be
satisfied [for example, the pair (2n, 2m) and (2m, 2n) in

rectangular geometry]. In this case new terms might ap-
pear in Eqs. (10), the significance of which will be dis-
cussed elsewhere. '

The extension of our analysis to higher mode systems,
as well as to systems where the interaction involves
diff'erent kinds of tongues, is straightforward. We stress
that the normal form can be easily inferred from the
linear problem by inspecting the spectrum of eigenvalues.
In three and higher mode systems the reduced equations
may prove to be particularly useful, since they are simpler
in structure and contain apparent information (through
the coefficients) which is not readily available from the
original equations. Finally we note that in regimes other
than that treated here (where all modes are excited) the
equations are not always reducible to a fIow of lower
dimensionality. An example of such regime is analyzed in
Ref. 15.
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