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Spatial periodic forcing can entrain a pattern-forming system in the same way as temporal periodic forcing can
entrain an oscillator. The forcing can lock the pattern’s wave number to a fraction of the forcing wave number
within tonguelike domains in the forcing parameter plane, it can increase the pattern’s amplitude, and it can also
create patterns below their onset. We derive these results using a multiple-scale analysis of a spatially forced Swift-
Hohenberg equation in one spatial dimension. In two spatial dimensions the one-dimensional forcing can induce a
symmetry-breaking instability that leads to two-dimensional (2D) patterns, rectangular or oblique. These patterns
resonate with the forcing by locking their wave-vector component in the forcing direction to half the forcing wave
number. The range of this type of 2:1 resonance overlaps with the 1:1 resonance tongue of stripe patterns. Using a
multiple-scale analysis in the overlap region we show that the 2D patterns can destabilize the 1:1 resonant stripes
even at exact resonance. This result sheds new light on the use of spatial periodic forcing for controlling patterns.
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I. INTRODUCTION

In some contexts pattern formation is essential for a system
to function. This is the case with embryonic pattern formation
[1] or with vegetation patterning—a mechanism by which
vegetation copes with water stress [2]. In other contexts pattern
formation is an undesired outcome. This is the case with spiral
waves in the heart muscle [3], dewetting of liquid films [4],
or spatial patterning in the transverse directions of a laser
beam [5]. In order to create, modify, or eliminate patterns,
means of controlling and manipulating them are needed. These
means may consist of basic parameter tuning or may involve
external intervention, such as feedback control [6] or periodic
forcing in time [7] or space [8].

Temporal periodic forcing of an oscillatory system is a
classical problem. An early realization is Kapitza’s pendulum
[9]—a rigid pendulum with a pivot point that is forced to
vibrate in the vertical direction. When the vibration, or forcing
frequency, is sufficiently high the unstable upper vertical
position of the pendulum can be controlled and stabilized.
Another control aspect of this and other examples of forced
oscillations, including spatially extended systems, is frequency
locking. An oscillatory system subjected to time-periodic (spa-
tially uniform) forcing is capable of changing its oscillation
frequency, ω, to lock at a fraction of the forcing frequency,
ωf , provided this fraction is close enough to the natural
frequency ω0 of the unforced system. The frequency-locking,
or entrainment, capability increases with the forcing strength,
at least for relatively weak forcing. As a consequence, in the
parameter plane spanned by the forcing strength and frequency,
the entrainment occurs in a tonguelike domain, often called
an Arnold tongue. Mathematically, if ωf is close to (n/m)ω0,
where n,m ∈ Z, there exists a domain in the forcing parameter
plane—the n : m resonance tongue, within which the actual
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oscillation frequency can be controlled by varying the forcing
frequency according to ω = (m/n)ωf .

Numerous examples of oscillatory systems entrained by
periodic temporal forcing exist. Entrainment of mammalian
circadian rhythms by the day-night periodicity is one class
of examples [10]. Additional physiological examples include
the entrainment of the heart rate [11], of the respiratory phase
[12], and of insulin and glucose oscillations [13]. Many more
examples can be found in areas as varied as chemistry [14–17]
and optics [18,19].

There are two additional signatures of periodically forced
oscillatory systems that relate to frequency locking. The first
is multiplicity of stable oscillation states sharing the same fre-
quency but differing in oscillation phase. Associated with this
multistability are front structures and rich pattern-formation
phenomena, [16,17,20–23], including traveling waves that
restrict the domain of resonant nonuniform oscillations [24].
The second signature is the possible generation of a symmetry-
breaking instability by the periodic forcing. This instability
can lead to 2:1 frequency-locked standing-wave patterns even
outside the 2:1 resonance tongue of uniform oscillations. This
is a reflection of the freedom of a spatially extended oscillatory
system to resonate with a spatially uniform time-periodic
forcing by forming spatial patterns that change the oscillation
frequency through dispersion [25–27].

Spatial forcing of a pattern-forming system is analogous to
temporal forcing of an oscillating system; the system can re-
spond to the forcing by locking its wave number k to the forcing
wave number kf . That is, for any kf close enough to (n/m)k0,
where n,m ∈ Z and k0 is the system’s natural wave number,
the system can respond with a wave number k = (m/n)kf .
In the forcing parameter plane (forcing strength versus
forcing frequency) wave-number-locked or resonant patterns
occupy tonguelike domains—the spatial analogs of Arnold
tongues. Within such tongues the wave numbers of resonant
patterns are controllable by tuning the forcing wave number.
Spatially forced pattern-forming systems have been studied
in various contexts including nematic liquid crystals [8,28],
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light-sensitive chemical reactions [8], Rayleigh-Bénard con-
vection [8,29], liquid-crystal light valve optical systems [30],
and bottom formation in slightly meandering channels [31].

The analogy to temporally forced oscillations extends
also to the two additional signatures of periodic forcing,
multistability of phase states and fronts [32], and a symmetry-
breaking instability induced by a one-dimensional (1D) spa-
tially periodic forcing. In this case, the instability breaks
the remaining symmetry in the direction orthogonal to the
spatial forcing and leads to resonant two-dimensional (2D)
rectangular or oblique patterns [29,33,34]. The patterns are
wave-number locked to the forcing in a 2:1 resonance and
extend far beyond the boundaries of the 2:1 resonant tongue
of stripe patterns to a range that includes the 1:1 resonance
(kf ≈ k0). The wide resonance range of the 2D patterns is a
consequence of the development of a wave-vector component
in the direction orthogonal to the forcing that compensates for
the unfavorable wave number kf /2 in the forcing direction.

The basic 1:1 resonance of stripe patterns is generally
the first choice for inducing, stabilizing, or controlling stripe
patterns. This is the case, for example, in restoring degraded
vegetation in water-limited landscapes by periodic arrays of
microcatchments that concentrate runoff and form favorable
conditions for vegetation growth in a fluctuating environment
[2]. However, the influence of 2D patterns on 1:1 stripe patterns
has not yet been studied. In this paper we use a simple
pattern-formation model to study the interaction between 1:1
resonant stripes and 2:1 resonant rectangular and oblique
patterns and the extent to which the 2D patterns interfere
with the control of the resonant stripe patterns. We show that,
although in one spatial dimension the forcing acts to reinforce
the patterns, in two dimensions it acts to destabilize them by
inducing these 2D patterns. The analysis and results to be
described here extend earlier results reported in Ref. [35].

II. THE MODEL EQUATION

We consider systems that go through a stationary finite-
wave-number instability to stripe patterns and are subjected
to time-independent, 1D spatial periodic forcing. A minimal
model for such systems is the widely used Swift-Hohenberg
(SH) equation for a single scalar field [36–38]. The equation
is gradient, i.e., it has a Lyapunov functional, and therefore
does not have oscillatory solutions. The instability results in
a stationary stripe pattern with a characteristic wave number
that minimizes the Lyapunov functional.

To study the effect of periodic spatial forcing we add to
the SH equation a parametric forcing term. The forced SH
equation then reads

ut = εu − (∇2 + k2
0

)2
u − u3 + γ u cos (kf x), (1)

where ε is the distance from the pattern-forming instability
of the uniform stationary state, u = 0, of the unforced system
and k0 ∼ O(1) is the wave number of the first mode to grow at
the instability point and also the wave number of the resulting
stationary pattern. The parametric forcing is generated with
wave number kf and strength γ . Since Eq. (1) is invariant
under the transformation γ → −γ and x → x + π/kf we
will choose to consider only positive values of the forcing
γ . Note the inversion symmetry u → −u of Eq. (1), which

excludes hexagonal patterns [38]. Note also that the forced SH
equation is gradient as well [35].

We first study Eq. (1) in one dimension in order to identify
the resonance tongues of stripe patterns (Sec. III). The general
analysis is valid for any resonance n : 1, n ∈ Z, assuming
the vicinity to the instability of the zero solution to stripes,
weak forcing, and small detuning. We then focus on the 1:1
resonance and study the interaction between the 1:1 stripe
mode, exp(ik0x), and two oblique modes, exp(ikxx ± ikyy),
that resonate with the forcing, kx = kf /2, and have the
favorable wave number k0 = (k2

x + k2
y)1/2 (Sec. IV). In both

analyses we use the method of multiple scales using ε as the
small parameter.

III. RESONANT STRIPE PATTERNS

The zero solution of the unforced SH equation loses
stability at ε = 0. Beyond the instability point (ε > 0) a
family of periodic stripe solutions exists with wave numbers k

spanning the range

k0 −
√

ε

2k0
< k < k0 +

√
ε

2k0
. (2)

Assume now that the forcing wave number, kf , is close to a
multiple of k0, that is,

kf ≈ nk0, n ∈ Z, (3)

and let ν be the deviation or detuning from exact resonance:

ν = k0 − kf /n . (4)

The solution family of the unforced system that spans the
wave-number range in Eq. (2) can increase the freedom of the
system to resonate with the forcing. This is because for any
forcing wave number kf , such that kf /n is within the range
in Eq. (2), there exists a solution of the unforced system with
that particular wave number. The forcing can further increase
the resonance range by creating stripe solutions with wave
numbers outside the range in Eq. (2). The manner in which
it does it for various resonances kf /k = n is the problem we
now address.

We use multiple-scale analysis [36], in which the state
variable u and the parameters γ and kf are expanded as power
series in |ε| � 1. The specific choice of scaling used below can
be justified by balancing different terms in Eq. (1). Consider
the case of weak forcing (γ � 1) near the instability of the zero
solution (|ε| � 1). The stripe solutions that appear beyond the
instability point have small amplitudes that vary slowly in time
and space. We thus expand solutions of Eq. (1) as

u =
∞∑
i=1

|ε|i/2ui(x0,x1,t1), (5)

where xi = |ε|i/2x (i = 0,1) and t1 = |ε| t are the slow space
and time variables. We further assume the scaling ν ∼ |ε|1/2

for the small detuning and expand the forcing strength as power
series in |ε|1/2:

γ =
∞∑
i=1

|ε|i/2γi, γi ∼ O(1) . (6)
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This allows handling all resonances using a single analysis.
With these choices of the slow space and time variables the
derivatives in Eq. (1) transform according to

∂x = ∂x0 + |ε|1/2∂x1 , ∂t = |ε|∂t1 . (7)

Substituting Eqs. (5)–(7) into Eq. (1) we find at order |ε|1/2

L 2u1 = 0, (8)

where L = (∂2
x0

+ k2
0). The solution of this equation can be

written as

u1 = a(x1,t1) eik0x0 + c.c., (9)

where the amplitude a depends on the slow variables x1 and t1
and c.c. stands for the complex conjugate.

At order |ε| we find

L 2u2 = γ1

2
(eikf x0 + e−ikf x0 )u1

= γ1

2
(a ei(kf +k0)x0 + a	 ei(kf −k0)x0 ) + c.c. (10)

Solvability of Eq. (10) requires the elimination of secular
terms from the right-hand side of the equation. The secular
terms are those in which the fast spatial dependence is
described by the harmonic factor e±ik0x0 . For all resonances
n 
= 2 the right-hand side does not contain secular terms
and no solvability condition has to be imposed. For n = 2,
however, there are secular terms, e±i(kf −k0)x0 , since kf � 2k0

(see below). To eliminate the secular terms we must set
γ1 = 0 for the 2:1 resonance. We accomplish this condition
by multiplying γ1 by 1 − δn,2, where δi,j is the Kronecker
delta. The general solution of Eq. (10) is a superposition of a
particular solution and a general solution of the homogeneous
problem:

u2 = (1 − δn,2)
γ1

2
[d+ a ei(kf +k0)x0 + d− a	 ei(kf −k0)x0 ]

+ c(x1,x2,t1,t2, . . .) eik0x0 + c.c., (11)

where

d± = 1

k2
f (kf ± 2k0)2

. (12)

Finally, at order |ε|3/2 we find

L 2u3 = u1 − u3
1 − ∂t1u1 − M 2u1 − 2M L u2

+ 1
2 (eikf x0 + e−ikf x0 )(γ2u1 + γ1u2), (13)

where M = 2∂x0∂x1 . In order to identify the secular terms we
insert the solutions Eqs. (9) and (11) for u1 and u2 into the
right-hand side of Eq. (13) and note that since the detuning
is of order |ε|1/2 we can write kf x0 = n(k0x0 − ν1x1), where
ν1 = |ε|−1/2ν ∼ O(1). Summing up all contributions to the
secular terms and setting their coefficients to zero gives

at1 = a − 3|a|2a + (2k0)2∂2
x1

a + δn,2
γ2

2
a	

+ (1 − δn,2)

(
γ1

2

)2

[η1a + δn,1d− e−2iν1x1a	], (14)

where η1 = d+ + d−.

Introducing the amplitude variable A = |ε|1/2eiν1x1a, and
going back to the fast time and space variables, we obtain the
amplitude equation:

At = εA − 3|A|2A − (2k0)2(i∂x + ν)2A + δn,2
|ε|γ2

2
A	

+ (1 − δn,2)

( |ε|1/2γ1

2

)2

[η1A + δn,1d− A	]. (15)

In terms of the amplitude A the leading-order form of the
solution is

u � Aei
kf

n
x . (16)

Constant solutions of the amplitude equation (15) represent
n:1 wave-number-locked, or resonant, stationary stripe pat-
terns. To find these solutions we consider the cases n 
= 2 and
n = 2 separately. For n 
= 2 Eq. (15) becomes

At = εA − 3|A|2A − [2k0(i∂x + ν)]2A

+
(

γ

2

)2

[η1A + δn,1d− A	], (17)

where γ = |ε|1/2γ1, and solutions are of the form

A = ρn eiφ, ρn =
√

ε − (2k0ν)2 + (η1 + δn,1d−) γ 2

4

3
, (18)

with ν = k0 − kf /n. The phase φ is constant with φ = {0,π}
for n = 1 but undetermined for higher resonances for the order
|ε|3/2 of our calculation. The resonant stripe solutions exist for

γ > 2

√
(2k0ν)2 − ε

η1 + δn,1d−
. (19)

For n = 2 Eq. (15) becomes

At = εA − 3|A|2A − [2k0(i∂x + ν)]2A + γ

2
A	, (20)

where γ = |ε|γ2, and the solutions are of the form

A = ρ2 eiφ, ρ2 =
√

ε − (2k0ν)2 + γ /2

3
, (21)

with φ = {0,π} [34]. These solutions exist for

γ > 2[(2k0ν)2 − ε]. (22)

Figure 1 shows the tongue-shaped existence ranges of
n:1 resonant stripe patterns with n = 1, . . . ,4, for parameters
above, ε > 0, and below, ε < 0, the pattern-forming instability.
The solid lines in the figure are the results of the analysis from
Eqs. (18) and (21) and the shaded regions are numerical results
from solving for stationary solutions of the forced SH equation
Eq. (1) using a continuation method [39].

Note that for ε > 0 the tongues have finite width even
at γ = 0 [Fig. 1(a)]. This width corresponds to the band of
stripe solutions of the unforced system that appears beyond
the pattern-forming instability. The effect of a weak forcing
with a detuning ν can be interpreted as follows. If the detuning
is small enough the forcing selects the stripe solution within the
band that resonates with kf /n. If the detuning lies outside the
band the system can still yield to the forcing by changing the
stripes wave number so as to resonate with kf /n. This behavior
is analogous to the frequency adjustment that a periodically
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FIG. 1. Existence domains of resonant stripe solutions of Eq. (1),
(a) above (ε > 0) and (b) below (ε < 0) the pattern-forming insta-
bility. The shaded regions indicate the range of resonant solutions
computed from stationary solutions of Eq. (1), and the solid curves
show the region boundary approximations [Eqs. (19) and (22)]
based on the amplitude equation approach. The agreement for the
lower resonances is very good for sufficiently small γ values,
and for the higher resonances it remains surprisingly good even
for large γ values. Parameters: k0 = 1 and (a) ε = 0.001 and
(b) ε = −0.001.

forced oscillator makes when it locks to a fraction of the
forcing frequency. Note also that for ε < 0, i.e., below the
pattern-forming instability, resonant stripe solutions are still
possible provided the forcing is strong enough [Fig. 1(b)]. The
minimum forcing strength can be evaluated from Eqs. (19)
and (22); e.g., the smallest γ value that enables locking for
the 2:1 resonance is −2ε. The forcing has the additional effect
of increasing the amplitude of the stripe pattern. This effect,
however, becomes diminishingly small as the forcing wave
number increases.

The 2:1 resonance tongue stands out in being wider and, for
ε < 0, in extending to lower forcing strength γ . The distinct
character of the 2:1 resonance is already seen in the amplitude
equation Eq. (20) for the 2:1 resonance, as compared with the
amplitude equations Eqs. (17) for all other resonances. In the
former the forcing strength appears to linear order, whereas
in the latter it only appears at the second quadratic order,
and therefore has a weaker effect. The different forms of the
amplitude equations with respect to the forcing follow from
the type of parametric forcing; forcing the cubic term in the
forced SH equation Eq. (1), rather than the linear term, will
result in a prominent 4:1 resonance.

IV. INTERFERENCE OF 2D PATTERNS

In 2D domains, solutions of Eq. (1) can lock to the forcing
wave vector kf = kf x̂, where x̂ is a unit vector in the x

direction, in a much wider range of forcing wave numbers
kf . This is achieved by locking their wave-vector component
in the forcing direction in a 2:1 resonance, kx = kf /2, and
compensating for a big mismatch by building a wave-vector

FIG. 2. (Color online) Two stable solutions of Eq. (1) at the same
parameter values. The panel on the upper left side shows a 2:1 locked
rectangular solution, and the panel below it shows a 1:1 locked stripe
solution. The short panel on the lower left side shows the forcing
γ cos(kf x). The panels on the right show the amplitude of the Fourier
transform of the respective solutions in the two-dimensional wave-
number space Qx,Qy . The circle in light blue has radius k0 = 1,
the most unstable wave number. Parameters: ε = 0.1, γ = 0.2, and
kf = 1.08.

component in the y direction, ky = (k2
0 − k2

x)1/2, so that the
total wave number is the favorable one, k = k0 [33,34]. The
resonance range then is only limited by the requirement that
ky is real valued, that is, 0 � kf � 2k0. The 2D patterns
that form are described, to leading order, by a superposition
of two oblique modes, exp(ikxx ± ikyy). For sufficiently
strong forcing (γ > ε) the two modes have equal amplitudes
in absolute value, and the superposition forms rectangular
patterns. For weaker forcing the amplitudes are not equal and
the superposition forms oblique patterns.

The resonance range of rectangular and oblique patterns
overlaps with the much narrower 1:1 resonance tongue of stripe
patterns. Within the overlap range we numerically find points
of bistability of resonant 1:1 stripes and 2:1 2D patterns, as
Fig. 2 demonstrates, but we also find points where the 2D
patterns dominate. To study the dynamics within the overlap
range we let the two types of patterns interact by approximating
a solution of Eq. (1) as a superposition of a stripe mode with
amplitude A and two oblique modes with amplitudes a and b:

u � Aeik0x + a ei(kxx+kyy) + b ei(kxx−kyy) + c.c., (23)

where the amplitudes A, a, and b are small in absolute value
and vary weakly in time and space. In the Appendix we
describe a derivation of coupled partial differential equations
for these amplitudes using a multiple-scale analysis, and the
results are in Eqs. (A20).
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Constant solutions of the amplitude equations Eqs. (A20) of
the form (A,0,0) represent 1:1 resonant stripe patterns, while
constant solutions of the form (0,a,b) represent rectangular or
oblique patterns locked in a 2:1 resonance in the x̂ direction.
The resonant stripe solutions are given by

As = ρs±eiφs , (24)

where

ρs± = 2
√

8k4
0 ± (

k2
0

/√
3
)√

εs, φs = m
π

2
. (25)

Here

εs = −4ε + 16k2
0

(
ν2 + 12k2

0

) − γ 2
1 {d+ + [(−1)m + 1]d−},

and m is an integer.
Resonant rectangular solutions are given by

a = ρre
iφa b = ρre

iφb , (26)

where

ρr± =
√

9 ± √
81 − 4cεr

2c
, φa + φb = mπ. (27)

Here

εr = ε + (−1)m
γ2

2
, c = 27

4

[
k−4
f + (

k2
f − 4

)−2]
, (28)

and we assumed weak forcing strength (γ1 = 0).
To study the impact of the 2D rectangular patterns on 1:1

resonant stripes we use Eqs. (A20) to study the linear stability
of the latter. The stability analysis to phase perturbations can
be performed independently of that of amplitude perturbations
and gives the result that solutions with odd values of m are un-
stable. We thus restrict our further consideration to even m and
consider the stability of (A,a,b) = (±ρs±,0,0) to nonuniform
perturbations of the form (δA0,δa0,δb0)exp(iqxx + iqyy). The
Jacobian matrix for the solutions (±ρs±,0,0) has a block-
diagonal form, with one block representing the stripe mode and
the other block representing the oblique modes. Accordingly,
one pair of eigenvalues, σs±, describes the dynamics of
perturbations along the stripe mode, and another eigenvalue
pair of multiplicity two, σr±, describes the dynamics of
perturbations along the oblique modes. Of these only the
eigenvalues σs+ and σr+ are potentially positive or have
positive real parts.

For the stripe solutions A = ±ρs+, both σs+ and σr+ are
positive in the whole parameter range studied, and thus these
solutions are always unstable and will not be considered any
further. For the stripe solutions A = ±ρs−, the analysis of
the eigenvalue σr+ shows that there exists a domain in the
existence overlap region of 1:1 stripes and rectangular patterns
where the resonant stripes are stable, but the size of this domain
is reduced by the growth of oblique modes. Furthermore, the
reduced stability domain has two distinct shapes depending
on the value of ε. For relatively large values, ε > εc � 0.036
(with k0 = 1), there is a continuous γ range in which stripe
solutions are stable, while for ε < εc, the stability range is split
into two regions, as Fig. 3 shows. The light-gray shades show
the existence range of stripe solutions, A = ±ρs−, while the
dark-gray shades show their stability ranges (where both σs+
and σr+ are negative) for (a) ε > εc and (b) ε < εc.

FIG. 3. Existence and stability domains of 1:1 resonant stripe
solutions of Eqs. (A20). The light gray shaded areas indicate the
existence domains, and the dark gray shaded areas are the stability
regions. (a) Above the critical value, ε > εc, where the stable region
is contiguous. (b) Below the critical point, ε < εc, where the solution
is not stable in a range of forcing strength γ even at exact resonance
kf = k0. The hollow circles demarcate the borders of the numerically
computed stability region. Parameters: k0 = 1 and (a) ε = 0.035 and
(b) ε = 0.045.

The surprising result is that for ε < εc there is an intermedi-
ate range of forcing strength γ where the forcing destabilizes
the stripe patterns even at exact resonance kf = k0. In 1D
systems the forcing acts to stabilize the stripe patterns [34], but
in 2D systems it induces the growth of rectangular and oblique
patterns that can resonate with the forcing without paying
any energy (Lyapunov functional) cost for off-resonance
conditions, like in 1D systems [35]. This “advantage” of the
resonant 2D patterns over stripes translates into lower stability
or even instability of the latter.

The asymmetry in the stability region for low γ values is due
to two different kinds of instabilities related to the eigenvalue
σs+. In the lower part of Fig. 3 (for values of γ between 0
and approximately 0.1), the left border of the stable stripes
region (dark gray) indicates a zigzag instability, associated
with the growth of perturbations of the form eiqyy . On the
border on the right side, for very low values of γ (between
0 and approximately 0.02), an Eckhaus instability, associated
with the growth of perturbations of the form eiqxx , occurs.
These results are qualitatively similar to the effects of the
zigzag and Eckhaus instabilities found in the 2:1 resonance of
stripe patterns [34].

Numerical solutions of Eq. (1) confirm the predictions of
the mathematical analysis. The hollow circles in Fig. 3 show
the borders of the stability region, and the agreement between
simulation and analysis is very good for low values of γ .
Because of the choice of weak forcing strength (γ1 = 0), the
analysis is expected to better describe the simulations for small
values of γ , in line with the results shown in Fig. 3. The
numerical integration performed was the explicit Euler method
to advance time and a semispectral method to calculate the
space derivatives, with a 1:1 stripe pattern as initial condition,
with a small random noise added to it. The critical value
we found was εc � 0.043, which is about 15% from our
theoretically calculated value of ε = 0.036.
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V. CONCLUSION

We have seen that spatial periodic forcing reinforces 1D
stripe solutions by increasing the amplitude and widening the
wave-number range. The stripe solutions are also stable below
threshold (ε < 0), provided that a minimal forcing strength is
applied.

In 2D domains, oblique and rectangular patterns exist and
are stable for a very wide range of forcing wave numbers [34].
These 2D patterns dramatically change the stability range of
stripe patterns, determining a critical value εc below which
the stripe solution is unstable in a range of forcing strength
γ , even when kf = k0. This seems counterintuitive because
naively we would expect the 1:1 forcing to reinforce the stripe
pattern, as in the 1D case. In 2D, though, the system can yield
more easily to the forcing by responding in the orthogonal
direction through the growth of oblique modes that destabilize
stripe patterns.

We have studied the SH equation as a simple model of
pattern formation, which raises the question: to what extent
are the results reported here applicable to real systems? One
strong constraint in the SH equation is the inversion symmetry
u → −u, which rules out hexagonal patterns. Real systems
often do not have this symmetry and do show hexagonal
patterns. Adding a quadratic term, λu2, to the SH equation
indeed induces an instability of the zero state to hexagonal
patterns, which is a subcritical bifurcation [38]. The effects
of parametric forcing in this nonsymmetric case will be the
subject of a future study.

We have also focused on parametric forcing rather than
additive forcing. The latter case has been studied in the contexts
of optical patterns in photorefractive feedback systems [40],
Rayleigh-Bénard convection [29], and Turing patterns in
chemical reactions [8]. Parametric forcing is relevant to the
restoration of banded vegetation on hill slopes by water
harvesting [2,41,42]. Water-harvesting methods consist of
periodic arrays of microcatchments, e.g., parallel dikes, that
intercept runoff and form favorable conditions for vegetation
growth. The periodic modulation of the vegetation growth
rate by the modulated soil-water distribution exerts parametric
forcing.
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APPENDIX: DERIVATION OF AMPLITUDE EQUATIONS

We study the interaction between stripes and rectangular or
oblique patterns by deriving equations for the amplitudes of a
stripe mode and of two oblique modes using the leading-order
approximation

u � Aeik0x + a ei(kxx+kyy) + b ei(kxx−kyy) + c.c., (A1)

for the solutions of Eq. (1), where the amplitudes are assumed
to vary slowly in space and time. Specifically, we define the

slow variables

xi = εi/4x, yi = εi/4y, ti = εi/4t, i = 1,2, . . . , (A2)

and assume the following amplitude dependence:

A = A(y1,x2,y2,t1,t2, . . .),
(A3)

a = a(x2,y2,t1,t2, . . .), b = b(x2,y2,t1,t2, . . .).

We included a dependence of A on y1 in order to capture
a possible zigzag instability of stripe solutions. We further
assume the following scaling forms for the forcing parameters:

γ = |ε|1/2γ1, ν = |ε|1/2ν1, (A4)

where γ1 and ν1 are of order unity.
In deriving the amplitude equation (17) for stripes we

used the scaling γ ∼ |ε|1/2, whereas in the derivation of the
amplitude equations for the two oblique modes the scaling
γ ∼ |ε| has been used [33,34]. Because we are interested
in deriving coupled equations for stripe and oblique modes
we need to use the same scaling for γ . Choosing γ ∼ |ε|1/2

and slow time scales ti = εi/2t , as in Ref. [35], leads to
the undesired result that the forcing terms in the amplitude
equations for the oblique modes are the largest with no other
terms of the same order of magnitude to balance them. We
therefore choose the slow time scales as in Eq. (A2) and expand
the solution in powers of |ε|1/4:

u =
∞∑
i=1

εi/4ui. (A5)

Substituting Eqs. (A2), (A4), and (A5) into Eq. (1) we find at
order |ε|1/4

L 2u1 = 0, (A6)

where L = M00 + k2
0 and Mij = ∂xi

∂xj
+ ∂yi

∂yj
. Equa-

tion (A6) has a solution of the form

u1 = Aeik0x0 + aei(kxx0+kyy0) + bei(kxx0−kyy0) + c.c., (A7)

where k2
x + k2

y = k2
0, which justifies the leading order approx-

imation Eq. (A1).
At order |ε|1/2 we find

L 2u2 = −∂t1u1 + L M01u1. (A8)

Note that the term LM01u1 that appears on the right side
of Eq. (A8) equals to zero because the operators L and Mij

commute and L u1 = 0. Therefore, from now on we will omit
terms of the kind L Mij u1 from the analysis. Applying the
solvability condition to secular terms on the right-hand side of
Eq. (A8) we find that neither mode depends on t1:

∂t1A = 0, ∂t1a = 0, ∂t1b = 0. (A9)

Hence, u2 satisfies the same equation as u1 and we can choose
the trivial zero solution, u2 = 0.

At order |ε|3/4 we have

L 2u3 = −∂t2u1 − 4M 2
01u1 − u3

1 + u1γ1 cos(kf x0). (A10)

We recall that we focus on the overlap range of the
1:1 resonance tongue, where kf = k0 − ν = k0 − |ε|1/2ν1,
with 2:1 resonant rectangular or oblique patterns for which
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kf = 2kx . Substituting Eq. (A7) into Eq. (A10), and demand-
ing solvability, we find

∂t2A = F (A), ∂t2a = F (a) + γ1

2
b	,

(A11)
∂t2b = F (b) + γ1

2
a	,

where F (ζ ) = −3(2|A|2 + 2|a|2 + 2|b|2 − |ζ |2)ζ . If we were
to stop the analysis here, the amplitude equation for the stripe
pattern would not include any forcing term. Therefore, we
continue the analysis to higher orders in |ε| until a forcing

term in achieved for the stripe equation. We will simplify
the calculations from this point on by using the following
symmetry argument. Since the forced SH equation is invariant
under the reflection symmetry y → −y, u(x,−y) must also
be a solution. The solution form Eq. (A1) then implies that
b should satisfy the same amplitude equation as a once a

and b are exchanged and y is replaced by −y. Thus from
now on we do not present the solvability conditions associated
with b.

A particular solution to Eq. (A10) is given by

u3 = − 1

64k4
0

(
E3

1 + E3
2 + E3

3

) − 3d2(E2 + E3)E2E3 − 3p+
[
E1

(
E2

2 + E2
3

) + E2
1(E2 + E3)

] − 6d+E1E2E3

− 3p−
[
E	

1

(
E2

2 + E2
3

) + E2
1(E	

2 + E	
3)

] − 6d−E	
1E2E3 − 3d1

[(
E	

3E
2
2 + E	

2E
2
3

) + 8(E2E
	
3 + E	

2E3)E1
]

+ γ1

2
eikf x0 [d+E1 + d2(E2 + E3) + d−E	

1] + c.c., (A12)

where E1 = Aeik0x0 , E2 = a ei(kxx0+kyy0), E3 = b ei(kxx0−kyy0), d± is as given in Eq. (12), and the coefficients are

d1 = 1

64k4
y

, d2 = 1

4k4
f

, p± = k2
f

4k2
0

d±. (A13)

At order |ε|4/4 we obtain

L 2u4 = −∂t3u1 − 4M01[(M11 + 2M02)u1 + Lu3]. (A14)

Requiring solvability we find that neither mode depends on t3:

∂t3A = 0, ∂t3a = 0, ∂t3b = 0. (A15)

There is no need to solve Eq. (A14) explicitly, because in the next and last order we consider the term that contains u4 and
(LM01u4) is not secular and will not contribute to the amplitude equations up to the order |ε|5/4 considered here. The final order
|ε|5/4 gives

L 2u5 = −∂t4u1 − ∂t2u3 − 4L M01u4 − 2
[
2M2

01 + L (2M02 + M11)
]
u3 − [(2M02 + M11)2 + 8M01M12]u1

− 3u2
1u3 + u1 + γ1u3 cos kf x0. (A16)

Applying the solvability condition, we find

∂t4A = A + G + (
2k0∂x2 − i∂2

y1

)2
A + 3γ1η1

(
γ1

12
− ab − a	b	

)
A + e−2iν1x2

(
d−γ1a

2

4
− γ1

2
abη2 + 6a2b2η4

)
A	,

∂t4a = a + H (a,b) + 4
(
kx∂x2 + ky∂y2

)2
a + 3γ1d2

2

(
γ1

6
− ab

)
a (A17)

+
[
−3γ1

(
|a|2d2 + |b|2 d2

2
+ |A|2η1

)
+ e2iν1x2

(
−γ1

2
η3 + 3a	b	η5

)
A2

]
b	,

where

η1 = d+ + d−, η2 = 12(d2 + d−), η4 = 3d2 + η3, η3 = 3d2 + 3p− + 6d−, η5 = 3d2 + 15p− + 12d−, (A18)

and

G = 3

[ |A|4
64k4

0

+ 3(p+ + p−)(2|A|2|a|2 + 2|A|2|b|2 + |a|4 + |b|4) + 12(η1 + 8d1)|a|2|b|2
]
A,

(A19)

H (ζ1,ζ2) = 3

[ |ζ1|4
64k4

0

+ 3|A|2(|A|2 + 2|ζ1|2)(p+ + p−) + 3|ζ2|2(2|ζ1|2 + |ζ2|2)(d1 + d2) + 12|A|2|ζ2|2(η1 + 8d1)

]
ζ1.

The amplitude equations can now be obtained by combining Eqs. (A9), (A11), (A15), and (A17) (using the chain rule). Rescaling
back to the “fast” space and time variables and rescaling the amplitudes A → ε−1/4e−iν1x2A, a → ε−1/4a, b → ε−1/4b, the
detuning ν1 = ε−1/2ν, and the forcing strength as γ1 = ε−1/2γ gives the final form of the amplitude equations (we have also
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added the symmetric equation for b):

∂tA = εA − 3(|A|2 + 2|a|2 + 2|b|2)A − [
2k0(i∂x + ν) + ∂2

y

]2
A +

(
γ

2

)2

(η1A + d−A	) + Ĝ,

∂ta = εa − 3(|a|2 + 2|b|2 + 2|A|2)a + 4(kx∂x + ky∂y)2a + γ

2
b	 + Ĥ (a,b), (A20)

∂tb = εb − 3(|b|2 + 2|a|2 + 2|A|2)b + 4(kx∂x − ky∂y)2b + γ

2
a	 + Ĥ (b,a),

with

Ĝ = −3γ η1(ab + a	b	)A +
[
−γ

2
abη2 + 6a2b2η4

]
A	 + G,

(A21)

Ĥ (a,b) = 3γ d2

2

(
γ

6
− ab

)
a +

(
−γ

2
η3 + 3a	b	η5

)
A2b	 − 3γ

[
|a|2d2 + |b|2 d2

2
+ |A|2η1

]
b	 + H (a,b).

In the derivation of Eq. (A20) we have considered particular solutions of the equations for ui instead of general solutions
with free fields for the different modes. In principle, these fields can be determined by demanding commutativity between time
derivatives for each mode, e.g., ∂t4 (∂t2A) = ∂t2 (∂t4A) [43]. Implementing these conditions, however, turned out to be too hard.
Nevertheless, the amplitude equations Eqs. (A20) capture the essential physics and provide good quantitative approximations, at
least for sufficiently small γ , as Fig. 3 indicates.

We note that Eqs. (A20) reduce to known equations for either stripe patterns or 2D patterns when the appropriate limits
are considered. For stripe solutions (A,0,0) they coincide with Eq. (15) when n = 1 and disregarding Ĝ, which contains
higher-order (fifth-order) contributions. For rectangular and oblique solutions they reduce to the equations reported in Ref. [33]
when disregarding the fifth-order contributions in Ĥ .
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