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We show that spiral vortices in oscillatory systems can lose stability to secondary modes to form dual-mode
spiral vortices. The secondary modes grow at the vortex core where the oscillation amplitude vanishes but are
nonlinearly damped by the oscillatory mode away from the core. Gradients of the oscillation phase, induced by
the hosted secondary mode, can lead to additional hosting events that culminate in periodic core oscillations or
in a novel form of spatiotemporal chaos. The results of this study apply to physical, chemical, and biological
systems that go through cusp-Hopf, fold-Hopf, and Hopf-Turing bifurcations.
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When a spatially extended dissipative system is driven far
enough from equilibrium it generally loses stability to a new
nonequilibrium state. The primary mode that grows at the
instability point can be time dependent or spatially structured
and leads to spatially periodic patterns, uniform oscillations,
or traveling waves. Driving the system farther away from
equilibrium may result in an instability of the nonequilibrium
state that produces an even more structured nonequilibrium
state in space and time. These processes have been thor-
oughly studied in various physical, chemical, and biological
contexts �1�.

In addition to further instabilities of the nonequilibrium
state, the original equilibrium state might become unstable to
the growth of a secondary mode. Such modes are often not
visible because they are nonlinearly damped by the primary
mode. However, if the primary mode develops a localized
structure where the amplitude becomes very small or van-
ishes, it may no longer be effective in damping the secondary
mode there. The single-mode localized structure may then
become unstable to form a dual-mode structure �2,3�.

A well-studied single-mode localized structure is the spi-
ral vortex. Spiral vortices may go through various instabili-
ties and may appear spontaneously in processes that often
designate the onset of spatiotemporal chaos �STC� �4,5�.
They have been found in diverse systems, including chemi-
cal reactions and lasers, where the primary mode is an oscil-
latory Hopf mode �1�, and in thermal convection, where the
primary mode is a roll mode �6�. The zero amplitude of the
primary mode at the spiral-vortex core potentially allows the
localized growth of a secondary mode there while it is still
damped away from the core. An example of such an insta-
bility has been observed and analyzed in the context of ther-
mal convection: the destabilization of a spiral roll pattern to
the growth of an hexagonal mode at its core �7�.

In this Rapid Communication we study dual-mode spiral
vortices where the primary mode is a Hopf mode. We first
demonstrate the appearance of a spatially structured Turing
mode at the core of a Hopf spiral in a class of reaction-
diffusion systems represented by the FitzHugh-Nagumo
�FHN� model. We then consider an apparently simpler situ-
ation in which the secondary mode is uniform �when decou-
pled from the Hopf mode� but study it in a wider context
using the pertinent normal form or amplitude equations. We

show that the generic process by which the primary Hopf
mode hosts a secondary mode is not limited to the core re-
gion of the original spiral; spontaneous hosting processes
away from the core region, induced by phase gradients cre-
ated in earlier hosting events, can lead to localized periodic
oscillations and to global STC of a novel form.

The FHN model consists of two real-valued fields,
u�x ,y , t� and v�x ,y , t�, which may be thought of as represent-
ing the concentrations of activator and inhibitor types of
chemical reagents. The two fields satisfy the equations

ut = u − u3 − v + �2u , �1a�

vt = ��u − a1v − a0� + ��2v . �1b�

The parameter � is the ratio of the characteristic time scales
of u and v and � is the ratio of the diffusion rates of u and v.
When a0=0 the model is symmetric under the transformation
�u ,v�→ �−u ,−v� and has an equilibrium solution �u ,v�
= �0,0�. This solution goes through a Hopf bifurcation to
uniform oscillations as � is decreased below a critical value
�H=1 /a1. For a given � value it also goes through a Turing
bifurcation to stationary periodic patterns as � is decreased
below �T=� / �2−a1+2�1−a1�. A codimension-two Hopf-
Turing bifurcation is obtained by choosing �=�H and in-
creasing � to a critical value �c where the two bifurcations
coincide, �H=�T��c�. For a nearly symmetric model,
�a0��1, the above forms for �H and �T still provide good
approximations of the Hopf and Turing instability thresholds.

Fixing � at a value smaller than �H �i.e., beyond the
Hopf bifurcation� and initiating a spiral-vortex solution,
we now increase � above the Turing bifurcation,
�T=��2−a1+2�1−a1�. As Fig. 1 shows the single-mode
Hopf spiral can persist even beyond the onset of the Turing
instability �Fig. 1�a��. However, as the distance from the Tur-
ing instability, �−�T, is increased beyond a second threshold,
the single-mode spiral-vortex solution loses stability to a
dual-mode vortex solution that contains a Turing spot at the
vortex core �Figs. 1�b� and 1�c��. Away from the core region
the Turing mode is damped by the Hopf mode. Dual-mode
spiral waves of this kind have been observed in the chlorite-
iodide-malonic acid �CIMA� reaction �8�.
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Canonical reaction-diffusion models, such as the FHN
model, are often too restricted for exploring the wealth of
possible behaviors near instability points. Amplitude equa-
tions provide a powerful alternative approach which is uni-
versal in the sense that they capture the dynamics of all sys-
tems which are near a given instability point. For this reason,
results obtained with amplitude equations are generally ap-
plicable to a wide range of systems. We use this approach to
study dual-mode spiral vortices involving secondary modes
that are stationary and uniform when decoupled from the
primary Hopf mode.

We conceive an equilibrium state that loses stability in a
Hopf bifurcation to uniform oscillations as a control
parameter R is increased past a threshold value R1. Further
increase of R passes a second threshold R2�R1 at which a
stationary uniform mode begins to grow from the already
unstable equilibrium state. We additionally assume that an-
other system control parameter S has a critical value Sc
where the two instabilities merge in a codimension-two
point. That is, at S=Sc, R1�Sc�=R2�Sc�, and both the Hopf
mode and the stationary uniform mode grow simultaneously.
In the vicinity of this codimension-two point we can
approximate a typical dynamical variable of the system as
u=c1Aei�t+c2v+c.c.+¯, where c1 and c2 are constants, � is
the oscillation frequency, c.c. stands for the complex conju-
gate, and the dots denote higher order terms. The amplitudes
A and v satisfy the following equations �after rescaling time,
space, and the amplitudes A and v, including appropriate
phase rotation in A and using the same notations for the
transformed quantities� �9�:

At = A − �1 + i���A�2A + �1 + i���2A − 	Av − 
Av2,

�2a�

vt = f�v� + d�2v + ��A�2 − ��A�2v , �2b�

f�v� =  + �v + �v2 − v3. �2c�

Equations �2� capture the fold-Hopf and cusp-Hopf bifur-
cations �10,11�. Most of the results reported here, however,
are for f�v� with =0 and �=0 corresponding to a super-

critical pitchfork bifurcation in the stationary uniform mode
v at �=0. We briefly discuss other cases toward the end of
this paper. In Eqs. �2� all coefficients are real valued except
for 	 and 
.

Setting =�=0 in Eqs. �2� we first identify a parameter
regime where the stationary uniform mode v is
nonlinearly damped by the Hopf mode A. Equations �2� have
four types of stationary uniform solutions: equilibrium
�A=0,v=0�, single-mode pitchfork �A=0,v=v0�, single-
mode Hopf �A=A0 ,v=0�, and dual mode �A=Am ,v=vm�. For
	r�Re�	�=0 the solutions are given by v0= ���,
A0=exp�−i�t+ i��, Am=��
r�−1� / �
r�−1� exp�i��t+ i��,
��=−��Am�2−	ivm+
ivm

2 , and vm= ����−�� / �
r�−1�,
where � is an arbitrary constant phase and the subscripts r
and i on 	 and 
 denote the real and imaginary parts, respec-
tively. The existence and stability ranges of these solutions
for the case 
r��1 are shown in Fig. 2. In this case the
dual-mode uniform solutions are stable. When 
r��1 the
dual-mode solutions are unstable and there is a bistability
range of the single-mode Hopf solution and the single-mode
pitchfork solution.

We focus in this study on the monostability range of the
single-mode Hopf solution, denoted as the unshaded range in
the bifurcation diagram of Fig. 2. Note that the system is
beyond the pitchfork bifurcation ���0� and the reason for
the stability of the single-mode Hopf solution is the nonlin-
ear damping of the pitchfork mode by the Hopf mode �due to
the term −��A�2v in Eq. �2b��.

Initiating a vortex at a sufficiently small distance � from
the pitchfork bifurcation, we find, by numerical solution of
Eqs. �2�, a stable single-mode spiral vortex. The pitchfork
mode remains everywhere damped, including at the vortex
core where the Hopf amplitude vanishes �Fig. 3�a��. How-
ever, as � exceeds a threshold value the pitchfork mode is no
longer damped at the vortex core; a pair of dual-mode spiral
vortices �Figs. 3�b� and 3�c�� appears in a supercritical pitch-
forklike vortex bifurcation. The two vortex solutions differ in
the sign of the time-independent v field at the vortex core.
We refer to these solutions as static dual-mode spiral vorti-
ces. Because of our choice of the amplitude A and the zero
value for �, the single-mode vortex solution does not rotate

(a) (b) (c)

FIG. 1. �Color online� Single- and dual-mode spiral vortices in
the FHN system �1� beyond the Hopf and Turing bifurcations. �a�
Close to the Turing bifurcation the Turing mode is damped every-
where, �=4.5. �b� Farther from the Turing bifurcation the Turing
mode is hosted at the spiral core, �=5.75. �c� The difference be-
tween �a� and �b� showing the Turing mode at the core. The frames
show the u field variable of Eqs. �1� with ranges of �−0.5,0.5� in �a�
and �b� and �−0.1,0.1� in �c�. Lighter colors are lower values and
darker colors are higher values. The initial condition is a spiral
wave. Parameters: �=1.5, a1=0.5, a0=0.05, and x=y= �0,256�,
with no-flux boundary conditions.
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FIG. 2. �Color online� Bifurcation diagram for �= �A� and v
showing the nonzero uniform solutions of Eqs. �2�: single-mode
Hopf �thick black line�, single-mode pitchfork �thin blue line�, and
dual-mode pitchfork-Hopf �vertical-ticked green line�. Solid
�dashed� lines represent stable �unstable� solutions. The unshaded
range denotes the stability range of the single-mode Hopf solution.
Parameters: �=0.8, =0, �=0, 
=0.8, 	=−i, and �=0.

MAU, HAGBERG, AND MERON PHYSICAL REVIEW E 80, 065203�R� �2009�

RAPID COMMUNICATIONS

065203-2



and is characterized by linear equiphase lines emanating
from the core in radial directions �Fig. 3�a��. This choice
emphasizes the effects of the v field that builds up at the
vortex core—it twists the phase and creates a phase gradient
in the radial direction �Figs. 3�b� and 3�c��.

The phase-twist effect has important implications for the
stability of dual-mode vortex solutions which can be seen by
rewriting the amplitude equations in terms of the modulus of
the Hopf amplitude, �= �A�, and its phase gradient or local
wave vector K=��, where �=arg A,

�t = ��1 − �2 − 
rv
2 − K2� + �2� , �3a�

Kt = − 	i � v + G��,K;�� , �3b�

vt = v�� − v2 − ��2� + d�2v , �3c�

where K= �K� and G is independent of v, and we excluded
terms that have been set to zero in Fig. 3. According to Eq.
�3b� the axisymmetric localized form of v at the vortex core
creates a phase gradient K pointing in the radial direction.
This phase gradient reduces the Hopf amplitude, �, in a ring
around the vortex core and, if steep enough, can drive spon-
taneous hosting of v along that circle as Fig. 4�b� shows.
This leads to the destabilization of the static dual-mode vor-
tices shown in Fig. 3. The spontaneous hosting of v creates
new phase gradients which, if strong enough, can induce new
hosting events.

Depending on the steepness of the phase gradients regular
or chaotic dynamics are found. Moderate phase gradients,
obtained close to the instability point of the static dual-mode
vortices, may reduce � to values that enable hosting of v but
are bounded away from zero. This can result in periodic
oscillations as Fig. 4 shows. Farther away from the instabil-
ity point zeros of � can form, resulting in vortex-pair nucle-
ation and the onset of STC, as Fig. 5 shows. Note that there
are two symmetric states of STC, corresponding to positive
and negative v values at the vortex cores. This bistability of
STC states allows for spatial coexistence of the two states as

(a) (b) (c)

−20 0 20
x

ρ

v

−20 0 20
x

ρ

v

−20 0 20
x

0.0

0.5

1.0
ρ

v

FIG. 3. �Color online� Vortex solutions of the Hopf-Pitchfork
system. �a� A single-mode vortex with v=0 at the core, �=0.62. �b�
and �c� Dual-mode vortices with �b� v�0 and �c� v�0 at the core,
�=0.635. The top frames show the phase �=arg A in the x-y plane
�colored or shaded from �0,2�� in a circle around the origin� and
the bottom frames show the amplitude �= �A� and v at cross section
at y=0. The initial condition is A=exp�i��, �=arctan�y /x�, and
v= �0.1 exp�−�x2+y2� /5�. Parameters: �=0.8, =0, �=0, 
=0.8,
	=−i, �=0, �=0, d=1, and x=y= �−32,32�, with no-flux boundary
conditions.
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FIG. 4. �Color online� Vortex oscillations induced by spontane-
ous hosting around the core. Shown are the phase � �top� and cross
sections of �= �A� and v �center� at three different times. �a� Phase
gradients induced by the hosted v field reduce the oscillation am-
plitude near the core. �b� The oscillation amplitude decreases and
leads to spontaneous hosting. �c� The low amplitude regions dimin-
ish as the phase gradients travel outward setting the stage for a new
cycle of hosting. �d� The resulting core oscillations produce a time-
periodic change of v at the core center. The initial conditions and
parameters are the same as in Fig. 3 with �=0.638.

(a) (b)

(c) (d)

0 2000 4000 6000 8000 10000
t

0

20

40

60 number of vortices(e)

FIG. 5. �Color online� STC induced by spontaneous hosting far
from the pitchfork bifurcation, shown in snapshots of the phase �a�
and �c� � and �b� and �d� v. �e� Strong hosting events induce zeros
of the oscillation amplitude and spontaneous vortex-pair nucleation
with a fluctuating number of vortices. �c� and �d� Bistability of STC
states with v positive �blue, right half� and negative �red, left half�
allows for spatial mixture of the two chaotic states and for fronts
separating them �c� and �d�. The parameters are the same as Fig. 3
with �=0.75 and x=y= �−64,64�.
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Figs. 5�c� and 5�d� show. We emphasize that this form of
STC has been obtained with �=�=0 in Eq. �2a�. Without the
coupling to the v mode, this choice amounts to the varia-
tional Ginzburg-Landau equation that does not support STC
�4�. Hosting events of the uniform mode therefore play a
crucial role in inducing this new form of STC, which extends
to nonzero � and � values as well.

So far we discussed the case in which the stationary uni-
form mode v appears in a pitchfork bifurcation �=�=0�.
Similar behavior is found for =0, ��0 and an initial con-
dition consisting of 0�v�1 at the vortex core and v→0
away from the core �this case amounts to a transcritical bi-
furcation�. As � is increased a single-mode vortex first loses
stability to a static dual-mode vortex, then to an oscillatory
vortex, and, at sufficiently large � values, to a global state of
STC. The situation is different for =0 and ��0 starting
with the same initial condition for v for now the instability of
the single-mode spiral vortex is subcritical. In particular, the
value of v that develops at the core can be large enough to
directly induce STC with no intermediate states of static and
oscillatory dual-mode spiral vortices. Below the instability
point there is a range of � where stable single-mode spiral
vortices coexist with STC. This range corresponds, in fact, to
tristability as the state of single-mode Hopf oscillations
�A ,v�= �A0 ,0� �with no vortices� is linearly stable too �12�.
The general behaviors discussed above also apply to the case
�0.

An experimental candidate system for testing our predic-

tions is the thiourea-iodate-sulfite reaction, recently studied
by Horváth et al. �13�. In that reaction, dynamical regimes of
oscillatory behavior and bistability of uniform states have
been identified, suggesting the possible existence of a cusp-
Hopf bifurcation. Oscillatory systems with additional station-
ary uniform modes have been studied in the context of bi-
rhythmicity �14�, focusing on the stable dual-mode regime
which is contiguous to the Hopf monostability regime con-
sidered here �see Fig. 2�. This suggests that systems with
birhythmicity �15� may also show dual-mode spiral vortices
and spontaneous hosting events leading to spatiotemporal
chaos. The secondary mode is, by definition, slower than the
primary Hopf mode. Oscillatory systems with an additional
slow mode have been studied in the context of chemical
reactions �16�. In these studies the slow mode has been as-
sumed to be slowly decaying, but a neighborhood in param-
eter space can be envisaged where the slow mode is linearly
growing as assumed here. Finally, the hosted mode need not
be uniform, as demonstrated in Fig. 1 with the FHN model
near a Hopf-Turing codimension-two point and in experi-
ments on the CIMA reaction �8�. A Turing mode can be
hosted in the core of a Hopf spiral and may possibly couple
to the oscillation phase in a manner that induces spontaneous
hosting events and STC. Hopf-Turing systems have been
found and studied in various contexts including chemical
reactions �17�, nonlinear optical systems �18�, and predator-
prey systems in ecology �19�.
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