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Localized structures as spatial hosts for unstable modes
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Abstract – We study spatially extended systems undergoing Hopf-Turing instabilities to temporal
oscillations and periodic spatial patterns, focusing on mono-stability regimes where one mode
nonlinearly damps the other. Using the pertinent normal-form equations, we identify a new type of
instability beyond which localized structures of the dominant mode host the unstable, nonlinearly
damped mode. Thus, stationary localized structures of the Turing mode can lose stability to
breathing structures that host the Hopf mode, and propagating localized structures of the Hopf
mode can lose stability to stationary structures hosting the Turing mode. Hosting instabilities of
this kind are expected to be found in other multi-mode systems as well. Potential applications
include self-organized waveguides, and data storage.
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The dynamics of spatially extended systems far from
thermal equilibrium often involve competing modes [1].
The modes may appear in multiple instabilities or repre-
sent different populations in biological communities [2].
Multiple instabilities have been observed in various
systems including thermal fluid convection [3], paramet-
rically excited surface waves [4], chemical reactions [5]
and optical systems [6]. Dynamical behaviors that have
been identified in such systems include mono-stability of
a single pure-mode state, multi-stability of pure-mode
states, mixed mode states, oscillatory competition,
chaotic dynamics and others [3–7].
The behavior of a multi-mode system in a mono-

stability regime, where a single mode damps all other
modes, resembles in many respects the behavior of the
corresponding single-mode system. For example, the
behavior of a system that goes through both Hopf and
Turing1 bifurcations, but is tuned to the mono-stability
range of the Turing mode, shows stationary spatial
patterns (e.g. stripes and hexagons) indistinguishable
from the patterns exhibited by a single-mode system
that merely goes through a Turing bifurcation. It is,
perhaps, for this reason that most studies of multi-mode
systems focused on other dynamical regimes, primarily
the regimes of multi-stability and of mixed modes, where

1We use the term “Turing bifurcation” to describe a finite-
wavenumber stationary instability in general [1].

spatiotemporal structures and dynamical behaviors
involving different modes have been found.
In this letter we focus on mono-stability ranges of

multi-mode systems and show that localized structures of
stable pure modes can host unstable modes. Specifically,
we find instabilities of pure-mode localized structures,
such as defects in stationary Turing patterns, that give
rise to multi-mode structures, such as breathing defects,
involving locally both the Turing and the Hopf modes.
To study this type of instability we consider systems
whose homogeneous stationary states lose stability both
to stationary periodic patterns and to uniform temporal
oscillations in a Hopf-Turing bifurcation (hereafter “Hopf-
Turing” systems). We further assume, in most of the cases
considered here, that the systems are subjected to spatial
and/or temporal periodic forcing. These types of forcing
significantly increase the variety of localized structures
Hopf-Turing systems can support and help demonstrating
the hosting phenomenon.
Spatial forcing with a wavenumber, kf , about twice as

large as the unforced pattern’s wavenumber, k0, breaks
the translational symmetry of the system and fix the
spatial phase of the pattern at two stable values differing
by π with respect to one another [8]. Along with these
fixed-phase patterns, or “phase states”, stationary front
structures appear. The fronts are bi-asymptotic to the
two phase states, and thus shift the spatial phase of the
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Fig. 1: Bifurcation diagrams showing stationary homogeneous solutions of eqs. (2) for (a) ∆< 0 (mixed mode is unstable) and
(b) ∆> 0 (mixed mode is stable). Solid (dashed) lines denote stable (unstable) solutions. The labels ΓT and ΓH denote the
stability thresholds of pure-Turing and pure-Hopf solutions, respectively.

pattern by π. These fronts go through a non-equilibrium
Ising-Bloch (NIB) bifurcation, whereby a single stationary
Ising front at high forcing strengths loses stability to
a pair of stationary Bloch fronts, with broken chiral
symmetry, at low forcing strengths [9]. In the Bloch
regime stationary two-dimensional vortex structures exist.
Temporal forcing, with a frequency, ωf , about twice as
large as the oscillation frequency, ω0, of the unforced
system similarly fixes the oscillation phase and leads to
front structures that shift the phase by π. These fronts also
go through a NIB bifurcation except that the two Bloch
fronts are not stationary but rather propagate in opposite
directions [9,10]. In this case, vortex cores, where one
Bloch front switches to another, generate spiral waves [11].
Near the onset of a Hopf-Turing bifurcation in a system

subjected to a spatially periodic force with wavenum-
ber kf = 2k0 and a time-periodic force with frequency
ωf ≈ 2ω0, a physical variable of the system can be approx-
imated by

u(x, y, t)≈ u0+ c1Aeikx+ c2Beiωt+c.c. , (1)

where k= kf/2 is the actual wavenumber of the Turing
mode, ω= ωf/2 is the actual frequency of the Hopf mode

2,
and A and B are the modes’ amplitudes, which satisfy the
equations:

At= εA+(2k0∂x− i∂2y)2A−(λ|A|2+κ|B|2)A+ γkA∗ ,
Bt= (µ+ iν)B+α∇2B− (δ|A|2+β|B|2)B+ γωB∗ .

(2)

In eqs. (2), ε > 0 and µ> 0 are the distances from the
Turing and the Hopf instabilities of the unforced system,
ν = ω0−ωf/2 is the frequency detuning, γk and γω are the
strengths of the spatial and temporal forcing, λ and κ are
real-valued constants, and α, β and δ, are complex-valued
constants. The star denotes complex conjugation.

2The actual frequency ω may differ from the frequency ω0 of
the unforced system due to frequency locking at half the forcing
frequency.

Equations (2) have three types of stationary homoge-
neous solutions in addition to the zero solution (A,B) =
(0, 0): pure Turing state (A0, 0), pure Hopf state (0, B0),
and mixed mode state (AM , BM ). We studied the exis-
tence and stability of these solutions for different values
of Γ = ε+ γk, assuming γω = 0, and distinguished between
two cases according to the sign of the quantity

∆≡ λRe(β)−κRe(δ) . (3)

When ∆< 0, the mixed mode solution is unstable and
a bistability range, ΓT < Γ< ΓH , exists where both
the pure-Turing and the pure-Hopf solutions are stable
(fig. 1a). When ∆> 0, there is a range, ΓH < Γ< ΓT ,
where the mixed mode solution is stable, and no bistabilty
range of pure mode solutions exists (fig. 1b).
We first consider mono-stability ranges of pure Turing

solutions, (A,B) = (A0, 0), in a system subjected to
spatial forcing only (γω = 0). These ranges are given
by Γ>max{ΓH ,ΓT }. In these ranges the pure Hopf
state, (A,B) = (0, B0), is unstable and the mixed-mode
state does not exist. There are two stable uniform
pure-Turing solutions in these mono-stability ranges,
(A,B) = (±√Γ, 0) as well as nonuniform stationary front
solutions bi-asymptotic to the two uniform solutions.
In analogy to the single-mode spatially forced Turing
system [9], the front solutions of eqs. (2) can be of the
Ising type, for which |A| vanishes at the front core, or
of the Bloch type for which the moduli are bounded
away from zero. We call these solutions Turing-Ising
fronts and Turing-Bloch fronts. The Turing-Ising and
the Turing-Bloch fronts further divide into longitudinal
fronts, where the π phase shift is in the x-direction,
and transverse fronts, where the phase shift is in the
y-direction [12]. The longitudinal Turing-Ising fronts are
stable for γk > ε/3 and µ sufficiently small (see below),
and are given by [9]

A=
√
Γ tanh

[√
Γ

2

(
x

2k0

)]
, B = 0 . (4)
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Fig. 2: Localized Turing structures as hosts of the Hopf mode. (a) A bifurcation diagram showing an instability of a stationary
longitudinal Turing-Ising front to a breathing Turing-Ising front, as the distance µ from the Hopf bifurcation of the zero state
is increased. Solid (dashed) lines denote stable (unstable) solutions. The spatial front structures are shown in the two insets.
Below µc, the Turing mode A completely damps the Hopf mode B (left inset). Above µc, the Turing-Ising front hosts the Hopf
mode in the front core (right inset). (b) Snapshot of a breathing Turing vortex. The Hopf mode B is damped everywhere in
the plane, except at the Turing vortex core. Parameters: k0 = 0.5, λ= κ= 1 and (a) ε= 0.07, γk = 0.03, ν = 0.01, α= 1+0.015i,
β = 1+0.06i, δ= 1+0.06i, γω = 0, (b) ε= 0.1, γk = 0.0064, k0 = 0.5, µ= 0.089, ν = 0.05, α= 1, β = 1+0.01i, δ= 1+0.01i,
γω = 0.

They lose stability to (longitudinal) Turing-Bloch fronts
when γk is decreased below ε/3. The Turing-Bloch fronts
are given by

A =
√
Γ tanh

[√
2γk

(
x

2k0

)]

±i√ε− 3γksech
[√
2γk

(
x

2k0

)]
, B = 0 , (5)

and trace two types of trajectories connecting the
two uniform states A=±√Γ in the complex A plane;
clockwise (negative chirality) and anti-clockwise (positive
chirality) [9].
In the mono-stability ranges considered here the

uniform Hopf mode B is everywhere damped by the
uniform Turing mode A. However, localized structures
of the Turing mode, where |A| vanishes or is very small,
may fail to damp the Hopf mode. The first example we
consider is a longitudinal Turing-Ising front that vanishes
at the front core (|A|= 0 at x= 0). Increasing µ, the
distance from the Hopf-bifurcation of the zero state,
we identified a critical value, µc, beyond which local
temporal oscillations develop at the front core. This is a
Hopf bifurcation of the stationary Turing-Ising front to
a breathing Turing-Ising front. A numerically calculated
bifurcation diagram of this instability is shown in fig. 2a.
The insets in this figure show typical spatial profiles of
the stationary and breathing Turing-Ising-fronts.

For the special case where α= 4k20 and β = δ= 1, we
found an exact solution for the breathing Ising-front,

A =
√
Γ tanh

[√
Γ−µ

(
x

2k0

)]
,

B =
√
2µ−Γsech

[√
Γ−µ

(
x

2k0

)]
eiνt+iφ ,

(6)

where φ is an arbitrary constant phase. The solution
appears at µc =Γ/2. A transverse Turing-Ising front can
go through a similar instability to a breathing front.
Another example of a localized Turing structure that

can host the Hopf mode is a Turing vortex, where
two Turing-Bloch fronts of opposite chirality meet. At
the vortex core the Turing amplitude A vanishes and
localized oscillations, giving rise to a breathing Turing
vortex, can set in, as fig. 2 demonstrates for the case
of longitudinal Turing-Bloch fronts. The critical µ value
where a breathing Turing vortex sets in is higher than
that of a breathing Turing-Ising front.
The core lines of breathing Turing-Ising fronts in

two space dimensions can be viewed as “self-organized
waveguides” capable of propagating traveling waves.
These core lines can host richer oscillatory dynamics
when temporal forcing is added (γω �= 0). Forcing at a
frequency twice as large as the breathing frequency locks
the breathing phase at two stable values, shifted by π with
respect to one another. A consequence of this bistability
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Fig. 3: Self-organized waveguide. Solution of eqs. (2) showing pulse propagation of the Hopf mode (bottom row) along the core
line of a breathing Turing-Ising front in a system subjected to a spatial periodic forcing (kf ≈ 2k0) and a temporal periodic
forcing (ωf ≈ 2ω0). Time proceeds from left to right. Note that the Turing mode (top row) is barely affected by the propagation
of the Hopf pulse. Parameters: ε= 0.05, λ= κ= 1, γk = 0.08, k0 = 0.5, µ= 0.103, ν = 0.001, α= 1, β = 1, δ= 1, γω = 0.003.

of phase states is the possible appearance of phase fronts
along the core line of a breathing Turing-Ising front
that shift the breathing phase by π. Depending on the
strength of the temporal forcing, γω, the phase fronts can
be stationary, resembling Ising fronts in homogeneous
oscillatory media, or propagating, resembling Bloch
fronts. Richer pattern formation phenomena, typical of
homogeneous oscillatory media subjected to periodic
forcing, may be expected as well. Figure 3 shows a pulse
of the Hopf mode, consisting of a pair of (“Bloch”) phase
fronts with opposite chirality, propagating along the core
line of a transverse Turing-Ising front. Note that the front
structure of the Turing amplitude A is hardly affected by
the propagating pulse of the Hopf amplitude B.
Analogous behavior exist in mono-stability ranges of

uniform pure Hopf solutions when the system is period-
ically forced in time rather than in space (γk = 0, γω �=
0). A stationary pure-mode Hopf-Ising front (A= 0, B =
BIsing(x)) loses stability, as ε is increased past a critical
value to a mixed-mode Hopf-Ising front characterized by
an amplitude A that does not vanish at the front core
(the counterpart of the breathing Turing-Ising front)3.
A propagating pure-mode Hopf-Bloch front (A= 0, B =
BBloch(x− ct)) can also lose stability to the growth of a
localized Turing mode as fig. 4 demonstrates. The appear-
ance of the Turing mode at the core of the Hopf-Bloch
front beyond the instability point, ε= εc1 , slows down the
front motion as fig. 4b shows. Increasing ε beyond a second
threshold, εc2 , leads to a stationary front solution. As the
insets in fig. 4a imply, the instability at ε= εc2 takes a
Bloch-type front at ε < εc2 , where |B| does not vanish at
the front core, to an Ising-type front at ε > εc2 , where |B|
does vanish at the front core. These results imply that a
hidden Turing mode (i.e. linearly growing but nonlinearly

3For α= 4k20 , β = δ= 1 and ν = 0, the critical value is ε=
(µ+ γω)/2 and the solution is exactly the same as (6) when A and
B are interchanged, µ is replaced by ε and Γ is replaced by µ+ γω.
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Fig. 4: Transition from a Hopf-Bloch front to a Hopf-Ising
front induced by a hosted Turing mode. The transition is
gradual and characterized by two thresholds: εc1 , designating
the appearance of the Turing mode at the Bloch-front core
and the slowing-down of the front motion, and εc2 , designating
the transition to a non-propagating Ising front. Parameters:
λ= κ= 1, γk = 0, k0 = 0.5, µ= 0.1, ν = 0.001, α= 1, β = 1.25,
δ= 0.8, γω = 0.025.

damped by a Hopf mode) can shift the threshold of a NIB
bifurcation into the Bloch regime, making the Ising regime
larger.
We focused our attention on localized structures

(fronts, vortices) arising in periodically forced Hopf-
Turing systems, but the general principles apply to
other contexts as well. A topological defect, such as a
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dislocation defect in a spatially periodic pattern, can host
an unstable oscillatory mode and give rise to a breathing
defect similar in structure to that shown in fig. 2b. A nice
experimental example is the observation of a spiral-core
instability in Boussinesq Rayleigh-Bénard convection,
beyond which a hexagonal mode appears at the core
of a spiral-roll pattern [13]. In the context of biological
communities, localized structures of a dominant species
may host other species, forming spots of higher species
diversity. Another potentially interesting ramification
is data storage in localized structures [14]. Temporal
forcing of a breathing vortex can provide a means for
creating a multi-state vortex. Forcing at a frequency n
times larger than the vortex breathing frequency yields n
stable oscillation phases of the breathing vortex, thereby
increasing the information content that can be stored
in such a structure. Multi-state structures can also be
formed by spatially forcing Hopf vortices and fronts that
host the Turing mode. The existence of traveling Bloch
fronts in this case (see the range εc1 < ε< εc2 in fig. 4)
can potentially be used for data transmission.
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