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Abstract. Domain patterns in reaction—diffusion systems often contain two spatial scales; a
long scale determined by a typical domain size, and a shert scale pertaining to front structures
separating different domains. Such patterns naturally develop in bistable and excitable systems,
but may also appear far beyond Hopf and Turing bifurcations. The global behaviour of domain
patterns strongly depends on the fronts’ inner structures. [n this paper we study a symmetry
breaking front bifurcation expected to occur in a wide class of reaction—diffusion systemns, and
the effects it has on pattern formation and pattern dynamics. We extend previous works om this
type of front bifurcation and clasify the relations among them. We show that the appearance of
front multiplicity beyond the bifurcation point allows the formation of persisient patterns rather
than transient ones. In a different parameter regime, we find that the front bifurcation outlines
a transition from oscillating (or breathing) patterns to travelling ones. Near a boundary we find
that fronts beyond the bifurcation can reflect, while those below it either bind to the boundary
or disappear.

PACS numbers; (5370, 47240, 64560, 8820

1. Introduction

Pattern formation out of equilibrium can often be attributed to the coupling of diffusion with
local nonlinear dynamics [TyK88, KeO20, Mer92, CrH93]. These processes are explicit in
reaction—diffusion systems such as chemical reactions or electrical activation of biological
membranes, and implicit in systems whose large scale behaviour is governed by dissipative
amplitude equations such as lasers [CGR89]. The coupling of noanlinearity and diffusion
is most beautifully realized in two chemical systems: the Belousov—Zhabotingky (BZ)
reaction, where a variety of travelling patterns have been observed [FiB85, Mer92], and the
Chlorite-Iodide-Malonic-Acid (CIMA) reaction, where statiopary, travelling, and turbulent .
patterns have been found [CDB90, OuS91, LKES2Z]. Reaction—diffusion systems can be
divided into three main categories: excitable, bistable and Hopf-Turing systems. Patterns
in excitable and bistable systems normally involve front structures separating domains of
different uaiform or quasi-uniform states. They coexist with one or two stable uniform
states and thus need to be triggered by specific choices of initial conditions. A Hopf-Turing
system, on the other hand, gives rise to patterns through the destabilization of a uniform
stationary state in a Hopf or a Turing bifurcation [Tur52, Mur89]. Close to onset, smooth
oscillatory or stationary patterns usually appear. However, as the system is driven away
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from onset, short scale structures, in the form of boundary layers or fronts, may develop.
In this regime, the patterns that emerge resemble those in excitable and bistable systems.

In this paper we study one-dimensional patterns in reaction—diffusion systems consisting
of fronts separating different domains. Our primary concern here is with the effects front
bifurcations-may have on the dynamics of fronts and on the patterns they form. Most of
our analysis will focus on bistable systems; however, many of the results to be derived also
apply to excitable systems, and to Hopf—Turing systems far beyond onset. A brief account
of part of this work was reported earlier [HaM93].

We shall consider a specific reaction—diffusion model that exhibits the same variety
of patterns that bave been observed in both the BZ and CIMA reactions. It shares many
gross features with models of the BZ reaction [FiB85] and the Lengyel-Epstein model of the
CIMA reaction [LeE92], but is more amenable to analysis. The model consists of two scalar
fields, u(x, ) and v{x, t) and contains four parameters; the ratio, ¢ = T, /T, between the
timescales assoctated with the two fields, the ratio, § = D,/D,, between the two diffusion
constants, and two parameters, &; > 0 and g, characterizing the local reaction dynamics.
The model reads

Uy =0 — 1 — v+ Uy, (1.la)

v = e(u' — v — og) + 8vsx (1.15)

where the subscripts on # and v denote partial derivatives. Models of this type have
extensively been studied in the context of excitable media where € <« 1. The form with
§ = 0 is known as the FitzHugh-Nagumo model of nerve conduction [Fit6l, NAY62]. In
the following we will refer to (1.1} as the FitzHugh—Nagumo (FHN) model for § &£ 0 as
well.

The stationary homogeneous states of (1.1) are determined by the intersection points of
the two nullclines v = u — 3 and v = (4 — ap)/a;. Three basic cases, corresponding to the
three types of reaction—-diffusion systems mentioned above, can be distinguished as figure 1
illustrates.” (i) The nullclines intersect at a single point lying on one of the outer branches
of the cubic nullcline v = u — *. (ii) The nullclines intersect at a single point lying on
the middle branch of the cubic nullcline. (iii) The nullclines intersect at three points each
lying on a different branch of the cubic nullcline. MNote that these intersection points, and
consequently the stationary homogeneous states of (1.1), are independent of the parameters
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Fipure 1. Three basic cases for the nullckines of the model system {1.1). Case (i) the nullclines
intersect at a single point on an outer branch of the cubic nulleline. Case (ii): the nullclines
intersect at a single point on the middle branch of the cubic nulleline, Case (ifi): the nullclines
intersect at three points each on a different branch of the cubic nulleline,
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¢ and 8. These parameters, however, do affect the stability of the stationary homogeneous
states, and will serve in the following as bifurcation parameters. They also have physical
meanings that do not depend on the details of the FHN model. Thus, with appropriate
choices of ¢ and 8, case (i) can describe an excitable medium, case (i) a medium undergoing
either an Hopf or a Turing bifurcation, and case (iii) a bistable medium. Note also that
when ap = 0, equations (1.1) have an odd symmetry (u,v) = (—u, —v). Analysing the
symmetric system will help us identifying symmetry breaking bifurcations and multiplicity
of stable front solutions. Finally, a few words about notations. The solutions u{x, £) and
u(x, 1) of (1.1) obviously depend cn the four parameters, ag, a;, €, and J, but we will avoid
displaying this dependence unless we specificafly wish to address it. In that case we will
display only the parameter(s) under consideration (see for example (3.25)). The same rule
holds for critical values of € or § at which bifurcations occur (see (3.33)).

We begin in section 2 by first identifying Hopf and Turing bifurcations for case (i), We
then use singular perturbation considerations to argue that far beyond these instabilities
front structures can develop, and that these structures coincide, to leading order, with
the single front solutions of case (iii). This will allow, later on, extending some of the
conclusions we draw for bistable systems to Hopf~Turing systems driven far beyond onset.
In section 3 we proceed to case (iii) or bistable systems and study a symmetry breaking -
front bifurcation that gives rise to front multiplicity. This bifurcation is closely related
to chiral symmetry breaking in magnetic domain walls [LaN79] and in front structures
arising in forced oscillatory systems [CLH90]. Indeed, some of the results to be derived
here apply to these systems as well. The appearance of front multiplicity has dramatic
effects on the behaviour of patterns. For § sufficiently small it allows for the formation of
persistent patterns (stable travelling waves) rather than transient ones, whereas for § large
enough it is responsible for transitions from oscillating or stationary domains to travelling
ones. Another consequence of the coexistence of multiple fronts is the possible reflection of
travelling fronts at boundaries. We study these effects in section 4. In section 5 we describe
the numerical procedures we have used in our simulations. We conclude in section 6 with
a brief summary and a discussion of new problems motivated by the present work.

2. The development of fronts far beyond onset

The FHN model, Tike a number of other reaction—diffusion models [RoM92], may undergo
both Turing and Hopf bifurcations. Figure 2 shows the patterns that develop near and far
from the onset of these instabilities. The appearance of patterns involving two spatial scales
far beyond onset can be understood using singular perturbation theory as we now show,
For the sake of simplicity, consider the symmetric FHN model, that is {1.1) with ag = 0,
and assume further that 0 < a; < 1. These parameter settings imply case (ii) (see figure 1).
The stationary homogeneous state, (x, v) = (0, 0}, loses stability in a Turing bifurcation
when :

pwl=pr! =2—a + 21 — a2 and € > l/a 2.0
where
w=ce/s.

For ;.~! > ! the stationary homogeneous state becomes unstable to perturbations of finite
wavenumbers. The same state loses stability in a Hopf bifurcation when

€ =€y = 1/&] . (2.2)
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Figure 2. Patterns near and far from onset show the development of two spatial scales: {a)
stationary periodic pattern near onset of the Turing instability; () stationary periodic pattern far
from onset of the Turing instability; (¢) travelling pattern near the Hopf bifurcation; {(2) travelling
pattern far from the Hopf bifuccation. In all the figures the full curve is the « field and the
broken curve is the v field.

For ¢ < ey it becomes unstable to uniform perturbations. ‘
Far beyond the Turing bifurcation u = €/8 < 1. Introducing a rescaled space coordinate
z = /fx, we find that stationary solutions of (1.1) should satisfy

Wity + 1 —v— =0 (2.3a)
U+t —av=0. (2.3b)

In all regions where u varies on the same scale as v we can neglect the second derivative
term in (2.3a) and solve the remaining cubic equation for # in terms of v. There are
three solution branches of which the outer two, u = w_{v) and u = u.(v), represent,
respectively, low and high # values. In the following we will call regions of high and low
u values up state and down state domains, respectively. Using u.(v) in (2.30) we obtain
closed equations for v in the up and down state domains. There also might be regions where
the second derivative term in (2.34) balances the remaining terms. In these regions 4 varies
on a scale of order /i which is much shorter than the scale of order unity over which
v varies. Such boundary layers arise when nearby regions converge to different branches
u+(v) (because of appropriate initial conditions). Stretching back the space coordinate we
find to leading order:

Upp + 0 —v =02 =0 v = 0. ‘ (2.4)
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These equations have two symmetric front solutions
v=0 4 = £ tanh(x/v2) . (2.5)

To construct approximate solutions representing periodic arrays of front structures as in
figure 2(b), we solve the closed equations for v in the up and down state domains,
Upz + ux(v) — a;v = 0, and match the solutions and their first derivatives at the front
regions. For short wavelength patterns we may stmplify the equations for » by linearizing
(V) around v = 0: ws(v) &~ £l — v/2. Carrying out this calculation we find a band of
periodic stationary solutions with up and down state domains of equal size, a consequence
of the odd symmetry of the model when gy = 0. For more details about this type of
calculation the reader js referred to {DKT8S, Kel89, Mer92] as well as to appendix B,
where the size of a single domain structure in an asymmetric bistable system is calculated.

Simjlar considerations apply to the Hopf bifurcation case. Far beyond that bifurcation
€ & ey, or ¢ & | if we choose a1 ~ O(1). Travelling wave sclutions of (1.1} satisfy

Mg +eco +u—v—u’ =0 (2.6a)
5U¢§+6‘0U§+H—-€Z]U=O ©(2.65)

where { := /€(x — ct) and ¢ = cp4/€ is the wavelling wave speed. This choice of ¢ is
appropriate for short wavelength patterns [DKT88], but other choices may work as well
[Fif35]. As before, we distinguish between domains where both # and v vary on a scale
of order unity, and fronts where # varies on a scale much shorter than that of v, this time
of order /€. For domains we find again the relations, # = uy (v}, and obtain the closed
equations for v: Svyp + vy +uL{v) —a;v = 0. To study the fronts we stretch the moving
coordinate frame, ¥ = ¢/./e = x — ¢t, and find the leading order equations

Uy +CUy +u—v—u =0 Suyy +cuy =0. 2.7)
These equations have the front solution
vey = [u_(ve? +up(u)l/(1+eX] (2.8)

where q = [1q.(vg) — u_(v0))/~/2 and vy is the (approximately) constant value of v across
the front. A symmetric front solution is obtained from (2.8) by the transformation x — —x.
Periodic travelling solutions as appear in figure 2(d) can be constructed as before.

Note that the singular perturbation analysis sketched above does not depend on the
parameter @; in any way that would affect the qualitative results (at least for patterns whose
wavelengths are sufficiently short). In fact, for the particular model considered here, the
front structures are strictly independent of a; (see (2.5), (2.8)). We therefore expect to find
simjlar patterns in bistable systems for which a; > 1.

3. A front bifurcation

Despite the vast literature on FHN-type models very few studies addressed other than small
¢ values. The significance of broadening the range of € is that there exists a critical value ;
at which a front bifurcation occurs. This bifurcation has important implications on pattern
formation as we will see in sections 4 and 5. Rinzel and Terman [RiT82], who studied the



810 A Hagberg and E Meron

FHN model with § = 0, were the first to observe the creation of fronts at a critical ¢ value.
More recently, Ikeda et al [IMN89] analysed the regime &/¢ 3> 1, and found a pitchfork
front bifurcation. In this section we extend these results in a number of ways. First, we
study the FHN model with § = 0 and obtain explicit forms for the front solutions and for
the bifurcation diagram in the vicinity of the bifurcation point. Then we consider non-zero
& values and evaluate a bifurcation line, § = §.(¢), in the -4 plane. Finally, we connect
these results to a recent work by Coullet er af [CLH90] where 2 non-equilibrivm analogue
of the transition from Ising to Bloch walls in ferromagnets with weak anisotropy [LaN79]
has been found. This relation gives a broader perspective to the body of works on patterns
in FHN type models. Before embarking on the front bifurcation analysis we discuss a few
limiting cases of {1.1) which motivate some aspects we wish to emphasize later on.

3.1. The variational case: ¢ =0

The simplest front structures appearing in dissipative systems are those invelving a single
scalar field. One example, known in the context of equilibrivm phase transitions, is the time-
dependent Ginzburg-Landau (TDGL) model obtained from (1.1} by either setting ¢ =0, or
regarding v to be a constant parameter:

_If-r=u'_u3_v+uxx- (3.])

This equation has the variational form
uy =-—3F/Su | (3.2)

where F is a Lyapunov functional given by
f=[km@+@ﬂ@: EQu,v) = —u*/2+ut/4+ vu. (3.3)

In the terminology of equilibrinm phase transitions, © is an order parameter, v is an external
field, and F is a free enetgy. For v values in the range —2/(3/3) < v < 2/(3v3)
the free energy density, £, has double-well forms as shown in figure 3. The two wells
correspond to the stationary homogeneous states, #_(v) and u.(v), that solve the cubic
equation u®> —n +v =0.

<0 =0 v>0
O 0.0 - : ) 1
wu_ 0.0 U, wU_ 0.0 i, . 0.0 u,

[ U u

Figure 3, The free energy density £ (see (3.3)) for different values of 2.
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Front solutions of (3.1} {or domain walls separating different phases) propagate in a
preferred direction dictated by the minimization of F. The speed of propagation, c, is
determined by the nonlinear eigenvatue problem

W red Fu—v—u =0 , (3.4a)
(x) = {“*“(”) B S (3.46)
u-(v) X = o ‘

where ¥ = x — ¢z, An expression for ¢ can be obtained by multiplying (3.4a) by «' and
integrating along the whole line. This yields

¢ = o) = ) [E(u-(v)) — E(u- @) (3.5)

where c(v) = 1/ ff:o u' (u)2dy is positive, For v = 0 the two wells of £ are of equal depth
and the front solution of (3.4} is stationary (¢ = 0). For negative v values, £(u_) > E{u)
and the front moves in the positive x direction (¢ > 0) o0 as to increase that part of the
system having lower energy. When v is positive the front propagates toward negative x
values (¢ < 0). The explicit form of this front solution is given in (2.8). The symmetric
solution is obtained by the transformation x — —yx and ¢ — —c.

3 2. The regime € 3> 1

We turn now to the full form of (1.1) with § = 0, and study the case of bistability (iii) for
large €. We denote the two stable, stationary homogeneous states by (u4, va), where the
subscripts --(—) refer to high (low) # and v values (see figure 1), and ask what types of
fronts connect these two states.

In the regime of large ¢, the field v varies on a time scale much shorter than that of u,

at least Initially. Stretching the time coordinate by the factor €, we find
e = V{5t — &5 — U+ ligy) - (3.6a)
Vp = U — QU — g - (3.6b)

where v = ¢! « I and T = t/v. On that new scale, the leading order form of u is
independent of 7 (set v = in (3.6a)} and equation (3.68) can be solved for v:

u(x, £) = vo(r)e™ + a7 [u(x, ) — @)l — &~4). 3.7)

Equation (3.7) implies that apart from a short transient of duration ¢ ~ O(e™!), the v field
follows adiabatically the « field: v = (# — ap)/a;. Using this form in (3.6a) or .(I.la) we
obtain the asymptotic system

uy={1— a[")u —ud - aoa;! = Hox (3.8a)

v=(u-—ao)ar. (3.86)

Equation (3.8a) has the same variational structure as (3.1) has, and consequently, all the
properties discussed in section 3.1 apply here as well. In particular, the property of fronts
propagating in the direction dictated by the minimization of the free energy is retained.
Note that the original system (1.1) is not variational, but reduces to a variational one in the
large € regime.
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Figure 4, Multiplicity of stable front solutions when € < 1: (a) preparing the system in the
down state and perturbing it locally at the left edge of the domain induces a front propagating
to the right; (&) preparing the system in the up state and perturbing it locally at the right edge
of the domain induces a front propagating to the left,

3.3. The regime 0 < ¢ & 1

The regime of small ¢ has been studied extensively (see the reviews [TyK88, Mer92]). The
question we address here is how front solutions connecting the two states (uw, vy) differ
from those we found for € 3 1.

Note first that for ¢ < 1 the v field remains approximately constant on the [ength scale
over which u varies. Thus, in the narrow front region (3.1) applies with v = v, the value of
v at the front position. The front speed is then determined by ¢ = c(vy) where c(v) is given
by (3.5). Imagine now that we prepare the system in the down state (u_, v_) and perturb
it locally at the left edge of the system so as to induce a transition to the upper branch
u = u;(v). This transition occurs at ¥ = v_ and, as a result, a front propagating to the
right, ¢ = ¢(v-} > 0, will be induced as figure 4(a) demonstrates. If, on the other hand, the
system is prepared in the up state {(u, v4.) and perturbed on the right edge so as to induce a
transition to the lower branch # = u_{v), a front propagating to the left, ¢ = ¢{vy) < 0, will
be induced as shown in figure 4(b). Once the system is on a given branch it converges to
the stationary homogeneous state lying on that branch. The two fronts therefore connect the
same asymptiotic states as y -> J=oo, but propagate in opposite directions. This property of
(1.1) reflects its non-varfational (or non-gradient) structure. Multiplicity of front solutions
in reaction—diffusion systems with multiple timescales was first observed by Ortoleva and
Ross [OrR75]. The stability of this type of solutions has been proved later by Rinzel and
Terman [RiT82]. Note in this respect that the front solution of (3.8}, calculated for ¢ > |,
is independent of € and therefore continues to exist for ¢ < 1 as well. In this tegime,
however, it is no longer stable.

The picture revealed so far is as follows: for € 3> 1 there exists only one front solution
having the asymptotic behaviour (1, v) — (4x, ve) a8 ¥ — Foo. For € « 1 three such
front solutions coexist, two of which are stable. In the next section we study the intermediate
¢ regime where we expect to find a bifurcation from a single to muitiple front solutions.

3.4. The front bifurcation

We consider the symmetric case (@ = 0) for which front solutions of (3.8) are stationary.
In the following we will always assume the asymptotic behavionr, (i, v} — (#x, vy) a5
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X — Too, unless we specifically mention otherwise. The explicit form of the stationary
front solution of (3.8) is (see (2.8))

us(x) = —uptanh(nx)  wulx) = o uglx) (3.9)

where u, = —u_ = /(1 Hafl), and n = u+/x/§. We assume that at some € = ¢,
propagating front solutions, u = up(y), v = w{x), where ¥ = x — ¢z, bifurcate from
(3.9). In the vicinity of the bifurcation point we can expand a propagating front solution in
powers of its speed ¢:

up(X} = us(x) -+ cur (x) + Fua(x) + -

(3.10)
Up(x) = v5(x) + cui(x) + o2 () + - -
as well as e:
€=¢€ +tcer+cie -, - . G.I1D
‘We insert these expansions into the propagating front equations
" ' a3 —
dy +cug S up—vp— 1, =0 6.12)

cvy + €y —aqvp) =0

collect all terms that contribute to a given order, and solve the resuiting equations for
the corrections &;s and v;s successively as described below. Note that the corrections to
all orders should decay to zero as x — oo because the leading order form that is the
stationary solution, aiready satisties the correct asymptonc limits.

At order ¢ we obtain

1
Mm:( —1) v =ay'u + (3.13)
eca[

where M is the linear operator
M=d/dx?+ 1 —a' —3ul. (3.14)

We consider a space of functions that decay to zero as x — Fco (e.g. Schwartz space).
On this space M is self adjoint and has the null vector ul:

Ml = Miu, =0. ' . (3.15)

Solvability of (3.13) then yields €, = a;™". =2, Using that result in (3.132) we find Muy =0
and thus uy = bul, where b is an arbitrary constant. Note, however, that ] is a translation
mode and that assngmng a particular value to b defines the origin on thc x axis. For
simplicity we choose & = 0 and thus obtain

Uy = 0 v = u;. . (3.16)
At order ¢? we obtain

Mauy = —e1a?ul + ayull vy =ay uy +ayul 3.17)
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Figure 5. Bifurcation diagrams of front solutions. The dots are data points representing the
speed of the different types of stable front soiutions that exist for each value of e: (a) the
symmetric case (g = 0), the full corve is the theoretical bifurcation diagram computed from
(3.21); (b) the non-symmetric case (ag = 0.1) shows the unfolding of the pitchfork to a saddle
node bifurcation.

Since u, is 0dd, solvability of (3.17) requires ¢; = 0. Using that result in (3.17) we find
uy = Layxu; vy = g xup+ aruy . (3.18)

At order ¢® we obtain

Mus = a*ul’ — exatul (3.19)
which yields the solvability condition € = —%(1 — a;™").

Summing up these results we obtain

MP(X) =5+ %czalxu; 4.
(3.20)
vp(X) =@y s+ cug + S (gxug + mug} + -+

and
e=¢ et .- é =aj> @ =-21-a™). (3.21)

We verified these results by comparing the pitchfork bifurcation implied by (3.21) with
a numerically computed one. The comparison is shown in figure 5(a} and indicates good
agreement up to speed values ¢ ~ (10™!). Note that for the bistable case considered here
a1 > 1 and consequently ¢; is negative. This ensures that the bifurcation is supercritical.

Tt is instructive to look at the propagating solutions (3.20) up to corrections’ of order ¢
(including). These can bé written as

(3 # us(X) vp(x) = ay ug(x + can) . (3.22)

Comparing with (3.9) we see that, to that order, the solutions for 1 and v remain the same
except that v is translated with respect to & by amount proportional to the speed ¢. The
direction of translation determines the direction of propagation as figure 6 demonstrates.
This symmetry breaking is also reflected by the phase portraits of the front solutions in
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Figure 6. The propogation direction of Bloch fronts is determined by the translation of the
v field relative to the & field; v always lags behind 1 unless the front is stationary: (a) left
travelling front; (&) stationary front; (¢} right travelling front.

Figure 7. Phase portraits of front solutions connecting the (uy, vy) state at x = —oo to the
{u_.,v_) state at ¥ = oo for the symmetric model {(ay = 0} with § = 0. The light coloured
curves are the nullclines f = 0 and g = 0 and the dark coloured curves are the numerically
computed trajectories. The trajectory through (0, @) corresponds to the symmetric stationary
front solution. The two other trajectories break the odd symmetry of the system and correspond
to travelling fronts. The computational parameters are € = 1.0,8 = 0,a) = 2.0, ay = ¢ for the
stationary front and the same with ¢ = 0.2 for the two travelling fronts.

the # — v plane, as figure 7 shows. The stationary solution is described by a siraight line,
V- a[‘lu = (, that does not break the odd symmetry of (1.1} (with gy = (), while the
propagating solutions break the odd symmetry and deviate from that line. This deviation is
related to the front speed through

o0
=0 (v, — a['lup)u';dx
—00

where o, = 1/ [°o (u)*dx.
So far we have considered the symmetric model. In general the parameter gy will not

be zero, unless there exists an inherent symmetry in the system that enforces that condition.
When ap 0 the pitchfork front bifurcation unfolds into a saddle-node bifurcation as the
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bifurcation diagram shown in figure 5(b) suggests. The saddie-node bifurcation occurs at a
critical value, € (ap), smaller than ¢, = a;” 2,

3.5. Ising versus Bloch fronts

An interesting distinction between the stationary and the propagating front solutions in
the symmetric model can be made once we define an angle or phase in the u—v plane,
@ = tan~ 1(v/u). Across the stationary front the phase is constant except at the core where
it suffers a jump by 7 and the norm (u? + »%)!/2 vanishes. Across a propagating front, on
the other hand, the phase rotates smoothly by an angle 7 and the norm never vanishes. An
analogous front bifurcation has been found recently by Coullet ef ¢ [CLH90] in the forced
complex Ginzburg-Landau (CGL) equation

A= (o +INA+ (1 +ia)Ag — (1 +iB)APA+ VA O (323)

where A(x, #) is a complex field. This equation describes spatiotemporal modulations of an
oscillating medium, periodically forced at twice the oscillation frequency with strength y.
The effect of the forcing is to create two stable, phased locked states whose phases, or
arg(A) values, differ by 7. The phase arg(A)} plays the same role as ¢ does in the FHN
model; it remains constant or smoothly rotates across a front separating different phase
locked states for sufficiently large or small ¥ values, respectively. Coullet et af [CLH90]
proposed these types of fronts solutions to be the non-equilibrium analogues of Ising and
Bloch walls in ferromagnets with weak anisotropy (Where arg(A}) corresponds to the angle
the magnetization vector makes with an easy magnetization direction) [LaN79]. In the
following we will occasionally follow this terminology and refer to the two types of fronts
in the FHN model as Ising and Bloch fronts.

2.6. The bifurcation line in the €8 plane

The extension of the bifurcation analysis of section 3.4 to non-zero § values is rather tedious
and we evaluate here the bifurcation line only. Even this calculation is not simple as the
exact stationary front solution is not known. We therefore consider the regime of small §
values where the stationary front solation can be expanded in powers of §, and evaluate
a linear approximation for the bifurcation line valid for § <« 1. At the other extreme,
d/€ > |, we use a singular perturbation analysis, similar to that of Ikeda er a/ [IMN89].
The complete bifurcation line is obtained numerically by integrating (1.1) with Neumann
boundary conditions.

Consider the symmetric model, that is, (1.1) with ao = 0. A stationary front solution
u=us(x;8) v=uvy(x;8) satisfies ‘

u ug— v — 0> =0 (3.24a)
Sl +eus —ayvs) = 0. (3.24b)
Note that in these notations i = uy(x; 0), v = uy(x; Q) is the stationary solution (3.9). For
d <« ] we can solve (3.24) perturbatively. Since we shall need the form of the stationary

solution on the bifurcation line we set € = &.(6) in (3.24b). Expanding the stationary
- solution, & = us{x; 8) v = vs(x;8), and .(5) in powers of §
ug(x; 8) = (3 0) + 82y (x) + - - -

‘ (3.25)
vy(x; 8) = vy (x; 0) 4 duy (x) 4 - - -

@) =a7> e 4 (3.26)
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and using these expansions in (3.24) we find at order &
My (x) = ul(x; 0) (3.27)
vi(x) = a;lun () + ul (x: 0) (3.28)
where A is given by (3.14) with u, = us(x;0). The solution of (3.27) is u (x) =
%xu;(x; 0). This, together with (3.28), yields the leading order approximation
us(x; 8) = wg(x; 0) + x4, (x; 0) + - - ; - (3.29)
(x5 8) = a ug(x; 0} + 387 xudl (5 0) + 8ul(x; 0) +--- - (3.29)
where iy (x; 0} is given by (3.9).

As before we expand ¢ and the propagation front sclutions in power series in ¢ (see
(3.10)) :

wp (X3 8) = us (i 8) 4 caty (x; 8) + - - -
(3.30)

(X 8) = v (x; &) Fev{x; 8) +---
€ =& (8) +cer(B)+--- (331)
and insert these expansions into (1.1). At order ¢ we obtain

(a§+1_3u;3(x;a) —1 )(u:(x;a))
/8 a%—ecal/a Avi(x; &)

- uy(x;8)
= (u_:.(x; 5)/6 + & lus(x; &) — arus(x; 5)1/5) : (3:32)

Solvability of (3.32) requires the right-hand side of this equatioh to be orthogonal to the
vector (ui(x; &), —(8/e)vi(x; 8))T. This yields the following equation for the bifurcation
line:

o - o0
€ = €.(8) = f v (x; S)de/f Wl (x; 8)2dy . (3.33)
, —0Q -00 .
Using the leading order approximation (3.29) in (3.33) we find
€@ ={(1-b8)/al or 8 (e) = (1 —ale)/b RN (3.34)

where b = 4(a, — 1)/5.

In appendix A we evaluate the bifurcation line for /¢ > 1 using singular perturbation
theory. This approach differs from that presented above in that it uses the smallness of
€/8 rather than that of the speed. As noted by Ikeda er al [IMINS9] it yields approximate
front solutions and bifurcation diagrams valid away from the bifurcation point as well. The
price though is the limited vaiidity range along the bifurcation line. Using this approach
we obtain ]

€(8) =d/s d=9/(2a, + 1) (3.35)
where we took ag = 0 (symmetric model).

Figure 8 shows the exact bifurcation line obtained by direct numerical integration of
(1.1). The linear approximation for § < 1 and the singular perturbation result (3.35) (valid
for §/¢ 3> 1) are shown by a full line and a broken curve, respectively. We conclude this
section by showing in figure 9 typical phase portraits of the front solutions (more precisely,
projections thereof on the (1, v) plane) for & values of order unity or larger. The outer
portraits pertain to the two counter propagating front solutions that exist for ¢ < €.(8),
whereas the middle one represents the stationary front solution at € > ¢.(¢). Note that
the field v barely changes across the frant, This is a consequence of the smallness of /8
(compare with the corresponding phase portraits shown in figure 7 for & = Q).
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Figure 8. The front bifurcation line in the e—& plane for the symmetric (gp = 0} model with
at = 2.0. The full circles represent the numerically calculated bifurcation line, The full line

is the linear approximation (valid for § <« 1) and the broken curve is the singular pertubation
result (valid for 3/¢ » 1),

0.4 S e |
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—1.0 0.0 1.0
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Figure 9. Phase portraits of front solutions connecting the (14, v3) state at ¥ = —co to the
(u—, v-) state at ¥ = oo for the symmetric model (gg = 0) with § > 1, The light coloured curves
are the nullclines f =0 and g = 0 and the dark coloured curves are the numerically computed
trajectories. The trajectory through (0, 0} corresponds to the symmetric stationary front with

€ > €.(5) and the two other trajectories correspond to the symmetry breaking travelling fronts
with € < e.{6).

4. Implications on pattern formation

4.1, The emergence of persistent patterns

A significant implication of the front bifurcation for § = 0 or sufficiently small is that it
tells us where in parameter space we should expect an initial pattern of domains to decay
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toward a uniform state and where to develop into a stable travelling wave, Consider first the
regime of high ¢ values, € > ¢.(ao) (see last paragraph of section 3.4). In this parameter
regime the non-variational system (1.1) reduces to the variational system (3.8). As a result,
patterns evolve so as to minimize the appropriate free energy functional. As in equilibrinm
phase transitions, up state domains either shrink or expand (depending on the sign of gp) to
form the uniform state of lowest free energy. The relaxation toward a uniform state occurs
even for the symmetric case (ag = 0) where an isolated front is stationary. As shown by
Kawasaki and Ohta [KaO82] and more recently by, Carr and Pego [CaP89], nearby fronts
that bound a domain attract and annihilate one another on a timescale ¢ ~ exp(A/w) where
A is the domain size and w is the front width. Thus, domains shrink and disappear, but the
relaxation can be extremely slow, and unnoticible in practice.

We have found numerically that this qualitative behaviour remains unchanged for alf
¢ > €.{ag). Figure 10{a) shows the relaxation of an initial pattern toward a uniform state
for €/e.(ap) = 1.12. Figure 10(b) shows the time evolution of the same initial pattern

(a)

Figure 10. (¢) Relaxation of an initial pattern to the uniform down state for the regime of Ising
“fronts, € = 0.14,8 = 0,2) = 2.0, an = —0.1. (5) The convergence of the same initial pattern
toward a stable travelling pattern beyond the bifurcation from Ising to Bloch fronts, ¢ = 0.09.
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Figure 11. Phase diagram in the e—ag plane. For the region to the right of the full curve only one
type of front solution exists and initial patters do not persist. In the region between the full and
the broken curves muliiple stable fronts coexist but patterns still decay toward a uniform state.
For the region to the left of the broken curve initial patteens evolve toward persistent patterns
in the form of stable travelling waves. Computational parameters are; § =0, a1 = 2.0,

for e/e.(ap) = 0.72, that is beyond the bifurcation from Ising to Bloch fronts. In contrast
to figure 10{a), here a stable travelling pattern develops. We explored the transition from
transient to persistent patterns more carefully by integrating equations (1.1} for various
¢ and ap values keeping the other parameters constant (§ = 0, a; = 2). The resulting
phase diagram is shown in figure 11. The full (right) curve designates the front bifurcation,
¢ = &.{ag). To the right of this curve only one front solution (i, v) = (x+, v+) a5 x — FoO
exists, and initial patterns decay toward a uniform state. To the left of this curve, three front
solutions connecting the same asymptotic states coexist; two stable (Bloch fronts) and one
unstable (Ising front). Stable travelling domains, however, appear only beyond a second
threshold, e(ap), given by the broken (leff) curve. Using a numerical continuation method
we found that for the symmetric case {gp = 0) travelling domain solutions do exist for
€ < € < &, but they are unstable. We did not find such solutions for the non-symmetric
model {i.e. for ep(ap) < € < e(ap) with ag # 0).

This significant change in the qualitative behaviour of patterns can be attributed to
two related factors; the appearance of front multiplicity and the appearance of a second
independent field. The former makes it possible for domains to travel rather than shrink or
expand, whereas the latter affects front interactions’so as to bind a trailing front to a leading
one. In the rest of this section we elaborate on these two factors at some length,

The multiplicity of front solutions for € < e.{ap) and the symmetry x = —x of (1.1)
imply that along with a front that transforms the lower state (x_, v_) to the upper state
(44, vy), there exists another front (hereafter ‘back’) propagating in the same direction
that transforms the upper state back to the lower one (note that the front and the back
represent two different Bloch fronts). A combination of the two, using appropriate initial
conditions, can yield a travelling up-state domain. To be concrete, let us assume that the
(isolated) trailing front, or back, is faster than the leading front. This situation is attainable
with gy < 0. The fate of the travelling domain as the back approaches the (leading) front
depends on the interaction between the two. Unlike the case of Ising fronts where the field
v(x, t) is eliminated through the relation v = (# — ag)/a; and the interaction is attractive,
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for € < e.(ap), v(x,?) is independent of u(x, ) and allows for a repulsive interaction as
well.

To see this, let us assume that € & ¢, where ¢, < €, ~ O(afzj_ Then v varies on time
and length scales much longer than those of u. Just behind the front the value of v is still
close to the down state value v—. It approches the up state value, vy, only far behind the
front. Since v is approximately constant across the narrow back region, the back speed is
determined by the local v value, v, according to (3.5). When the back is still far behind
the front u, & v, the energy difference V{u_(v,)) — &(uy(v4)) is large (see figure 3(c))
and the speed high. As it approaches the front, however, v, decreases, the energy difference
becomes staller and the speed lower. Thus, the back is slowed down (or repelled) by the
field v induced by the front. For ¢ sufficiently small the back approaches the front speed
while it is still far behind the front. At such distances the u field follows adiabatically the
slow field v (that is, « = . (v)) and a stable travelling domain of fixed size is formed
(see below). For ¢ values closer to ¢, the adiabatic elimination of # may not be valid and
more complicated interactions are possible. We believe that in this parameter range both
repulsive and attractive interactions are significant and suggest that the balance between the
two gives the threshold ¢, represented in figure 11 by the inner curve. We note though
that we have not studied vet this regime in detail and that the above suggestion is not yet
established.

To study the formation of a stable travelling domain of fixed size we assume ¢ &
and use a singular perturbation approach. We first evaluate the slow field v that builds up
behind a front propagating at constant speed ¢ = ¢{v_). In this region u = 1, (v) and the
equation we need to solve is

e +e(up() —aiv—a) =0 4.1)
where v = v(x) and y = x — c¢t. The boundary conditions are
() = v- () = vy as x — —0o S (4.2)

where )(P is the front position in a frame moving at speed ¢. To simplify (4.1} we take a,
to be sufficiently large so that [v_| ~ v, < 1. The branches x4 can then be linearized:

uz(v) = =1 —1v. (4.3)

Using (4.3) in (4.1) and solving for v we obtain

u(x) = (o — e fuy x < (4.4a)
where
+1 — +4
vy = 2 L 3 i : (4.4b)
@ -+ 5 c

A ftravelling domain of fixed size can be obtained by derﬁanding the front and back
speeds to be equal

—c(v)) =cv) =c. ‘ (4.5)
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Figure 12. Time evolution of a front and a back (or two Bloch fronts following one another):
(a) the back propagates faster than the front and binds to the front to form a travelling up
state domain; (5} the back propagates slower than the front and the up state domain expands
indefinitely.

This relation together with (3.5) can be used to evaluate UE = v(xg), the level of v at
the back position for a domain of fixed size. The fixed size of an up-state domain can be
expressed in terms of v using (4.4a):

1 vy —U_ '
=0 _ 0~ "=
A== 1n(v+_vg). (4.6)

Note that (4.6) requires vg < vy or an isolated back to propagate faster than an isolated

front. For v > v, (back siower than front) the v field behind the front can never reach the
value vg needed for a back to propagate at the front speed. In this case, an up-state domain
expands indefinitely, and a down-state domain of fixed size (referred to as an E-pulse in
[RiT82]) becomes feasible. We illustrate these two cases in figure 12.

The relaxation toward an up-state domain of fixed size can be derived by writing a back
solution in the form

ip(X, £) = up(x — Xo) + € (X — Xo» €1) ‘ {(4.7a)
vo = v(Xp) = v + evi(er) - (4.7b)
where u{(x) solves

wl end Fud -l - =0 ' (4.82)
o0
n_{v - -0

W =1 4-W X (4.8b)
) x> oo

and
Xoler) = xg + Fvler)

is the actual back position. The slow time dependence of v, is introduced to account for
the declining v field at the back position as the latter approaches the front. Using (4.7) in
(1.la) we find

dug

02ub -+ caul + (1 — 3udul = o} - e“)'(bd—x--- : (4.9)
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where the dot over ¥, denotes differentiation with respect to the fast time z. Solvability of
(4.9} requires the right-hand side of to be orthogonal to exp(cx)dug/dx or

iv = Bev] (4.10)

==} duo -5} duo z
16 =f - Cde/f ('—-tl) eXd
—oo dX o NOX X

is a positive constant.
Equation (4.10) relates the back speed to the level of v at the back position. The latter,
in turn, can be related to former through (4.4a):

where

vy = v(Xp) — vp = vy —)(1 — o), (4.11)
Combining (4.10} and (4.11) we obtain an equation of motion for the back
%o = B — v)(1 — eh). “4.12)

The linearization of (4.12) about j, = 0 (i.e. the fixed size domain) gives the equation

Ko = —ekB(vy — DT

Recali that €, « and g are all positive and v] < vy for a relaxation toward an up-state
domain. We therfore conclude that the up-state domain whose size i5 given by (4.6) is
stable to translational perturbations. Note that in the small ¢ regime considered here the
size of a domain is much larger than the front (back) width. Thus, the front and back that
bound a domain are approximately isolated (see (4.7a). The isolated front solutions, in
turn, are marginally stable to translations but stable fo other types of perturbations (such as
amplitude modulations). We therefore expect the translational perturbations to be the most
‘dangerous’ ones.

A similar approach can be used to study the relaxation of arrays of wavelling up-state
domains toward pericdic travelling waves. The difference with respect to a single domain is
that now the leading front of any domain propagates into the slowly decaying v field behind
the back ahead of it. As a result, the front speed is not constant; it rather depends on the
distance between the front and the leading back. A different kinematical approach, leading
to equations of motion expressed in implicit form, has been proposed carlier by Keener
[Kee80] in the context of excitable media. We also note that the singular perturbation
theory sketched above cannot capture an oscillatory decay toward either of the stationary
homogeneous states. Such a decay, can lead to spatial chaos as discussed in [EMSSS,
Mer92).

So far we have considered the case § = 0. Similar conclusions hold for small enough &
vajues. We conclude this section with a numerical study of the forced CGL equation (3.23)
for which § = [. We have added to the right-hand side of this equation a constant term,
vo, t0 break the symmetry between the two phase locked states (analogous to ap). Such a
term appears when the pedodic forcing contains a component at the medium’s oscillation
frequency. We have not explored in detail the (y, o) parameter plane, but for fixed
we did observe transient patterns for y sufficiently large, stable travelling waves for y
sufficiently small, and transient patterns involving travelling domains in a narrow range of
intermediate ¥ values. This suggests that the qualitative form of the phase diagram drawn in
figure 11 is quite general and might apply to any system (with § relatively smalf) undergoing
an Ising-Bloch type front bifurcation.
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4.2. Stationary, oscillating and travelling domains in an infinite system

When the diffusion of v is fast erough stable stationary domains, rather than transient ones,
may develop [EHTE4] in the regime of Ising fronts. The formation of this type of domain
for 8/¢ sufficiently large is illustrated in figure 13. As the two fronts approach one another
the v field, inside the domain bounded by the fronts, develops a narrow lumped structure.
The consequent diffusive damping lowers the level of v at the front regions and thus slow
them down. The size, X, of 2 single stationary domain is given by

r = (5/e)? = —In(—ap)/(ar + $)'* (4.13)

assuming u = €/§ & 1. We derive this result in appendix B using a singular perturbation
approach. Note that the stationary domain size decreases as p~' = §/¢ decreases.
Obviously, for such a domain to exist its size should be at least of the order of the front
width. This consideration explains the existence of a critical value g, below which
stationary domains do not exist. We note that the transition to stationary patterns beyond
e does not occur by a Turing bifurcation. We remind the reader that we are considering
here case (iii) pertaining to bistable systems, and that none of the homogeneous states of the .
system lose stability at the transition point. The transition line in the ¢—§ plane, § = e,
does resemble, however, the Turing bifurcation line (2.1).

To study how patterns are affected by the front bifurcation, we begin with a single
stationary domain in an infinite medium and follow that structure as we approach the front
bifurcation line, We postpone the discussion of periodic domain patterns to the next section.
The results to be described below have been obtained numerically. For more details about
the numerical procedures the reader is referred to section 5. Qur starting point in the € — §
plane lies above the transition to stationary domains, §/¢ > ;,L;;I, and far to the right of
the front bifurcation line, namely, at ¢ values significantly larger than €;(8) (see (3.34) and
(3.35)). As ¢ is decreased (keeping 3 constant) past a critical value, &,(8), the stationary
domain loses stability in a Hopf bifurcation, and a breathing like oscillatory motion sets
in as shown in figure 14{g). This type of oscillations have first been observed by Koga
and Kuramoto [KoK20] and more recently have been studied analytically by Nishiura and
Mimura [NiM89] (see also [KeL90], [OIT90]). In the latter study a finite medium has been
considered and the oscillations were found to persist well below ¢, without any indication
of a secondary bifurcation. Qur findings for a single domain in an infinite medium are

20‘ 40 B0 80

x

Figure 13. The onset of stationary domains in the Ising front regime as 8/¢ is increased. [sing
fronts either {2) collide and anihilate to form a uniform state for € > ugd, or (b) slow to a stop
and form a stationary domain for € < [ty8.
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Figure 14. Oscillating or breathing domains: (a) steady oscillations close to the Hopf
bifurcation, computational parameters € = 0.03,§ = 2.5.a; = 2.0,ay = —0.1; (b) collapse
of an oscillating domain further away from the Hopf bifurcation. Computational parameters are
the same with € = 0.025.

different; as € is further decreased the oscillation amplitude grows, leading eventually to
the collapse of the domain and to a uniform down state as figure 14(b) illustrates (note that
the homogeneous states (u+, vy) remain linearly stable for any € and § values). Similar
collapse events have recently been found in a model for a semiconductor etalon [RRH93].
The collapse can be avoided by increasing the size of the domain. This can be achieved
by making the system more symmetric, that is, by decreasing |ag|. For |ag| sufficiently
small oscillating domains have been observed all the way down to the front bifurcation line,
€ = €.(8), but not below it!

The effect of the front bifurcation on the behaviour of a single domain structure is
demonstrated in figure 15(a) and 15(b) corresponding to € > €.(8) (Ising fronts) and
€ < €.(8) (Bloch fronts), respectively. In both figures the initial conditions consist of
two fronts bounding a wide up-state domain and propagating toward one another. In 15(a)
the two fronts set in a stable oscillatory motion, whereas in 15() they rebound from one
another and leave the system in a uniform up state. We attribute this change of behaviour to
the appearance of multiple fronts. Above the bifurcation line (¢ > €.(8)) there exists only
one type of stable front solution, approaching (u,vy) as x — Foo and propagating to
the left (assuming ap negative), or, the symmetric one, approaching (u4, v¢) as ¥ — Foo
and propagating to the right. Below the bifurcation (¢ < €.(8)), another pair of stable front
solutions appear (in addition to the aforementioned one): a front approaching (u4,vy) as
x — Foo and propagating to the right, and a front approaching (u4, v¢) as x — Foo and
propagating to the left. In 15(h) the outward propagating front structures converge to the
second pair of stable front solutions and thus proceed with the outward motion indefinitely.
In 15(a), on the other hand, there exist no front solutions that pertain to an outward motion.
The only front solutions that exist are those propagating toward one another, and the change
in the direction of propagation just reflects the convergence toward these stable solutions.

Figure 16 shows another numerical experiment where the same parameter settings are
used but the initial conditions consist now of two fronts propagating in the same direction
(recall that the direction of propagation is determined by the relative translation of v with
respect to u). For € > €.(8) (figure 16(a)), the front on the right side of the domain changes
its direction of propagation and an oscillatory motion sets in. For € < €.(8) (figure 16(b)),
a stable travelling domain, is obtained.

We note that the stationary domain solution still exists on both sides of the bifurcation
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Figure 15. The effect of the front bifurcation on the dynamics of two fronts propagating toward
one another: («) below the bifurcation (¢ > €.(8) an oscillating domain is formed, computational
parameters: € = 0.03,8 = 2.5, a; = 2.0,a9 = —0.01; (b) beyond the bifurcation the two fronts
rebound from one another and propagate to the boundaries. Same parameters as in (a) except
that € = 0.012.

. 800

x

Figure 16. The effect of the front bifurcation on the dynamics of two fronts following one
another: (a) below the bifurcation (e > €.(8)) an oscillating domain develops (at later times
the dynamics converge to steady oscillations), computational parameters are € = 0.030,5 =
2.5, a1 = 2.0,a9 = —0.012; (b) beyond the bifurcation a travelling domain is formed. Same
parameters as in (a) except that e = 0.25.

line but is unstable. Figure 17 shows a typical bifurcation diagram for domain structures. It
does not capture the oscillatory domain solutions or the collapsing solutions (see section 5)
but it shows the destabilization of the stationary domain solution at € = €, and how
travelling domain solutions bifurcate from it. We also note that by making the system more
symmetric (i.e. decreasing |ap|) the destabilization of the stationary domain solution occurs
closer to the bifurcation to travelling domains. For sufficiently symmetric systems it might
be possible for the stationary domain solution to remain stable all the way down to the
travelling-domain branch, but we have not verified that.

A bifurcation from stationary to travelling domain solutions has already been found in
the context of excitable media [DoK89]. What is new in our findings is that this transition
is a consequence of the front bifurcation. Indeed, we have verified numerically that the
appearance of travelling domain solutions at € = €,(8) (see figure 17) coincides, within
the numerical accuracy, with the front bifurcation line, € = €.(8), at least above the onset
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Figure 17. A typical bifurcation diagram for single domain structures. The solutions shown
with the full (broken) curve are stable (unstable) structures. The stationary dotnain solution loses
stability to an oscillating domain at € = epr. At € = &, a branch of stable travelling domain
solutions appears. By the symmetry ¢ — —¢, x —+ —y, this diagram is symmetric with respect
to the ¢ = { axis, bot only the positive speed branch of travelling domain solutions is shown.
Also, there is an additional branch of zero speed solutions that is unstable for all values of ¢.
Parameters: § = 2.5, 4; = 2.0, ap = —0.1, period = 100.

of stationary domains (the line § = p5'¢). Well below that line ¢, deviates from €. and
converges, at § = 0, to ¢, (see section 4.1).

We summarize the discussion of single domain structures in infinite media by showing
in figure 18 a phase diagram in the €—§ plane. The diagram is divided into four main
regions. Region I, € > €.(8) and € > uyd, where domain structures are transient and the
asymptotic state is either the uniform up or uniform down state. Region I, € > €, (8)
and € < pqd, where stationary domains prevails. Region III, ¢ > .{§), € < pqd, and
€ < ey(d), where domains oscillate. And region IV, ¢ < €,(8), where domains travel
invariably. The hatched area in region III designates, in a schematic manner, the regime
of steadily osciflating domains. Outside this regime domains oscillate for a while and then
collapse. Depending on the asymmetry of the system, this regime may shrink to a narrow
strip below the line € == ¢, (8) (strong asymmetry), or span the whole range between the
lines € = €, (8) and € = &,(8) (weak asymmetry). The range between the two lines, in
turn, becomes smailer the more symmetric is the system. Note the thick full-broken line.
This is the front bifurcation line (¢ = «.(8)} which coincides with the onset of traveiling
domains at € = ¢;(§) apart from a small portion at small & values.

4.3. Periodic domain patterns

The behaviour of periodic domain patterns is similar in many respects to that of single
domain structures. One notable difference though is the persistence of stable oscillating
domain solutions to the left of the front bifurcation line (¢ < ¢.(8)), where they coexist
with stable travelling domain solutions as figure 19 demonstrates. The regime of coexistence
seems to be limited; far enough from the front bifurcation line we found the travelling
domain solutions to prevail. The existence of oscillatory dynamics in the regime of multiple
fronts is a consequence of front interactions. As nearby domains expand and approach one
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e=e(6)=¢.(5)

e=¢,(6)

0.0 e=eu(s) 0.15

Figure 18. Phase diagram for single domain structures in the e-§ plane. In region 1, domain
structures are transient and the asymptotic state is either the uniform up or down state. In region
II stable stationary domains coexist with the uniform up and down states. In region Il domains
oscillate with a typical region of steady oscillations denoted by the hatched area. In region IV
domains travel. The boundary between regions III and IV (i.e. the onset of travelling domains)
coincides with the front bifurcation line denoted by the thick full/broken curve. For this phase
diagmm. a) = 2.0 and ay = —0.1.

another there is little room left for diffusion of v. As a result the level of v at any front
position increases and the fronts change their directions of propagation.

Another difference between periodic and single domain patterns is the possibility of
having various modes of oscillation. Ohta et al [OIT90] have identified three such modes;
an in-phase mode where all domains expand and shrink simultaneously, an out-of-phase
mode where nearby domains oscillate with a phase shift of 7, and an ‘acoustic’ mode,
where nearby domains travel in opposite directions back and forth (note that in the latter
case the spaces between the domains, or the down-state domains, undergo out-of-phase
oscillations). Of the three, the in-phase mode is the first to be excited. As pointed out by
Ohta et al [OIT90], this can be understood by considering the stabilizing effect the diffusion
of v has. The in-phase mode involves uniform deviations of v from the stationary domain
profile and stabilization by diffusion does not take place. The out-of-phase mode, on the
other hand, pertains to alternating deviations every second front site. In this case diffusion
of v tends to smear out these deviations and thus to stabilize the stationary pattern against
this mode. Similar considerations hold for the acoustic mode. In the numerical experiments
we have conducted the in-phase mode always prevailed, even at relatively small § values,
where the diffusive damping of that mode is weaker.

We expect Hopf—Turing systems, driven far beyond the Turing instability, to exhibit
the same phenomenology that short-wavelength patterns in bistable systems do. Indeed, by
decreasing € at constant § (far beyond the Turing instability) we found a transition from
stationary to oscillating patterns, followed by a transition to travelling patterns.

4.4. Reflection at boundaries

The front bifurcation may drastically affect the behaviour of fronts near an impermeable
boundary. The effect of such a boundary is similar to that of another approaching front
and the scenario of behaviours is similar to that found for domain structures. Figure 20
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Figure 19. Coexistence of travelling and oscillating periodic patterns beyond the bifurcation
from Ising to Bloch fronts. Both (a) and (b) are obtained for the same computational parameters
with different initial conditions. Note the difference in average wavelength between the two
patterns. Computational parameters: € = 0.013,8 =2.5,a) =2.0,a0 = —0.1.

shows the boundary effects as we cross all four regions in the €-8 plane by decreasing €
at constant 8 (the simulations were carried out with Neumann boundary conditions). In
region I (transient domains) the front is absorbed at the boundary, leaving the system in a
uniform state. In region II (stationary domains), the front comes to a stop at a characteristic
distance from the boundary, whereas in region III (oscillating domains) it oscillates near
the boundary. In all these regions the (Ising) front is either absorbed at the boundary or
is bound to it. By contrast, in region IV the front is reflected. This is a consequence of
the coexistence of two counterpropagating Bloch fronts beyond the front bifurcation line.
At front speeds high enough relative to the diffusion of v, both Ising and Bloch fronts are
absorbed at the boundaries. Ising fronts, however, never reflect at boundaries.
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(a) (b)

Figure 20. Front-boundary interactions: (a) transient domain region: the front is absorbed at
the boundary; (b) stationary domain region: the front is stopped at the boundary; (¢) oscillating
domain region: the front oscillates near the boundary; () travelling domain region (beyond the
front bifurcation): the front is reflected at the boundaries. All simulations are with Neumann
boundary conditions.

5. Numerical procedures

Numerical simulations of (1.1) were performed using the method of lines with the spatial
derivatives approximated by second or fourth order finite differences on a uniform mesh.
To solve the resulting system of ordinary differential equations, we used a stiff ODE solver
[NKM89]. This solver implements the implicit methods of Gear [Gea7l] with adaptive
control of both time step and method order.

For the computations pertaining to single domain structures in inifinite systems the
simulations were done with Neumann (no flux) boundary conditions and large computational
system sizes. We checked the results with larger system sizes to ensure that the boundaries
did not contribute any measurable effect on the solution. When the simulations pertain to
periodic patterns, periodic boundary conditions were applied. Occasionally we used periodic
boundary conditions for single travelling domains rather than Neumann boundary conditions
(see for example figure 16(b)). In those cases we chose the period to be large in comparison
with the domain size and checked that the two types of boundary conditions gave the same
solution within the numerical accuracy.

For the continuation of solutions we used the bifurcation package AUTO [Doe86].
Starting with a stable travelling or stationary solution computed with our PDE solver we
continued a periodic solution in one or two parameters to study the effects of parameter
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variations on the existence and stabljlty of solutions. When AUTO failed to give accurate
stability information, due to the approach of the periodic orbit towards two heteroclinic
cycles, we used our PDE solver to integrate the computed solution forward in time to check
its stability. ‘ ‘

To find the oscillating domains region we linearized (1.1) about the numerically
computed stationary solution and solved the resulting eigenvalue problem. The spatial
part of the linearized operator was discretized using second-order finite differences on a
non-uniform mesh with grid points concentrated near the steep gradient front structures of
the domain. We solved the eigenvalue problem uvsing the IMSL routine DEVCRG for real
general matrices. Decreasing ¢ below the line € = &,(8) a pair of complex conjugate
eigenvalues crosses the imaginary axis indicating that the stationary stable solution goes
unstable through a Hopf bifurcation to an oscillating domain.

6. Conclusion

We have studied a front bifurcation, likely to occur in a variety of non-variational reaction
diffusion systems, and the possible consequences of this bifurcation on pattern formation
and pattern dynamics. The bifurcation is accompanied by the appearance of a second
independent field which breaks the odd symmetry of front solutions, and leads to a richer
dynamical behaviour, The main effect of the bifurcation, regarding patterns. is to allow
the formation of stable travelling domain patterns. For small & values {including é = 0), it
provides a mechanism for pattern formation as no persistent domain patterns can be formed
below the bifurcation. For larger § values it is responsible for transitions from transient,
oscillating, or stationary patterns to travelling ones. Other consequences of the bifurcation
are a coexistence regime of travelling and oscillating patterns, and the possible reflection of
fronts at boundaries.

These results were obtained for bistable systems but are also relevant to excitable and
Hopf-Turing systems as the latter can be obtained by unfolding the former. In this sense, the
variety of chemical-wave phenomena in excitable and oscillatory systems can be regarded
as a consequence of an Ising—Bloch front bifurcation occurring nearby in parameter space.
A more specific implication for Hopf-Turing systems is the prediction of a transition from
stationary to oscillating patterns, and from oscillating to travelling patterns far beyond
the Turing instability. These transitions may shed light on the complex spatio-temporal
behaviour that has recently been observed in the CIMA reaction by Ouyang and Swinney
[OuS91].

Beyond these specific results and implications, the present analysis demonstrates the
usefulness of focusing attention on localized structures that appear in extended patterns.
This view lies behind the various kinematical approaches to pattern dynamics [KiM89,
NeM92, Mer92, CcH93], where the effects of small perturbations and weak interactions on
the dynamics of localized structures are studied. The point-we wish fo emphasize here is
that it is also important to look for structural changes that localized structures might undergo
as these can drastically affect pattern dynamics.

We have confined ourselves in this paper to patterns in one space dimension, but we
expect the front bifurcation to have important effects in two dimensions as well. Perhaps
the first question that needs to be addressed concerns the dynamics of a curved Bloch front
near the front bifurcation point. The dynamics of such a front far beyond the bifurcation is
well known [TyK88, Mer92]; the normal speed ¢ is affected by the curvature k according
to the simple linear law. ¢, = ¢ — Dk, where D is a positive constant (at least for sufficiently
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small &) having the dimension of a diffusion coefficient. Close to the bifurcation point we
expect this relation to be highly nonlinear. This might change the role of curvature in a
way that still needs to be explored.

An important consequence of the Ising—Bloch front bifurcation in two space dimensions
is the possible formation of spiral waves. As pointed out by Coullet, a spiral wave can be
created by joining end to end two counterpropagating Bloch fronts. This view goes back
to Fife [Fif88] who discussed the twisting action induced by joining a front and a back end
to end in an excitable medium. All studies of spiral waves so far have taken € to be a
small parameter, and therefore are only valid far from the front bifurcation. The expected
nonlinear relation between curvature and normal speed close to the bifurcation point makes
the study of spiral waves in that regime potentially interesting.
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Appendix A. The front bifurcation for e/§ « 1

We consider here the regime /8 <« 1 and use singular perturbation theory to derive the
front bifurcation line. Rescaling space and time according to

7= /x T=¢t p=e/d Kl (Al)

and assuming travelling solutions, & = u(¢) and v = v(¢), where ¢ = z — ¢7, we obtain
from (1.1}

pler +cdpny +u—ud —v=0 -
{7 e (A2)
Vg Fovp+r—av—ay=0.

We consider front solutions of (AZ) that satisfy (v, v) — (x4, ve) as { — Foo, and set

the origin, { = 0, by demanding #(0) = 0. Outer solutions of (A2) are obtained by setting
¢ = 0 and solving

Ver eV ur (V) —qiv —ap =0 (A3)

for ¢ < 0(u = us(v))and £ > 0 (& = u_(v)). To simplify (A3} we approximate the
branches u.{v) by the linear forms (4.3). This approximation can be controlled by varying
a;. We then obtain the following boundary value problems:

u<¢+cv¢—k2v+kzv+=0 2_,'<0
(A1)
v{—co) = vy v = vf
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and

Uz;+CU(—k2U+k2U_=O §>0
(AS5)
v{co) = u_ v(0) = v

where vy are given by (4.4b), k% =a; + % and v is the level of v at the front position.
The solutions are

u(g) = (v — va)e™ oy r <0 (A6)
V() = (vr—u_)e™t + v r>0 (A7)

where .
o1z =c/2% (/A + K32 (A8}

Matching the derivatives of the two outer solutions at ¢ = @ yields
_ i %
26224+ kT2 27

A second relation between vy and ¢ is obtained by solving the inner problem. To this end
we stretch the travelling-frame coordinate according to x = ¢ /.,/1t and obtain from (A2)

U = (Ag)

tyy +NCty +u— > —v=0 ALD)

Vyy -+ /ICUy 4+ (i —ayv —ap) =0

where n? = ¢8. Setting formally 4 = 0 in (A10) we obtain a nonlinear eigenvalue problem
for ¢,

Hyy +ncity +u—u — v, =0

(ALD)
H(Fo0) = ux(v) = =1 — fve.
Projecting (A1) onto u, using the smallness of vr and (2.5) we get
2
vr= ——\g—_nc. (A12)
Comparing (A9) and (A12) we find
NG c ag
——nc= —. 1
3T w AT R R (A13)

A plot of the solutions ¢ = ¢(n) of (A13) in the (¢, n) plane yields a bifurcation diagram with
n being the bifurcation parameter. Consider now the symmetric case, ap = 0. Assuming
propagating solutions (¢ £ 0} and taking the limit ¢ — 0 we find the bifurcation point

3

e = (2a; + 1)*2

ot, recalling that »n* = ¢§, the bifurcation line

9

Qa+ 17 (A14)

defe) =
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Appendix B. Stationary-domain solutions for ¢/8 <« 1

Stationary-domain solutions of (1) satisfy

,u,uzz+u—u3—v=0

(BI)
vy tu—qv—g=0

where z = /itx and p = €/§ is sufficiently small. In the following we will assume that
¢ < | and that ay < 0. The latter assumption means that an Ising front connecting an up
state on the left with a down state on the right propagates to the left and consequently that a
single domain is an up-state domain (see figure 13). Quter solutions are obtained by setting
p=01in (B1). We look for such solutions in three regions, z <z, z >z, and ) < 2 < 2,
where z; and z; are the positions of the fronts that bound the stationary domain from the left
and the right, respectively. The first two regions pertain to dowan-state domains in which
we need to solve

Uy — Ko+ P =0 (B2)
subject to the boundary conditions

v{—o0) = v ) = for z <z
) (B3)
v(oc) = v_ wz) = v for z>z
where v and v, are yet to be determined. The third region, z; < z < 2, corresponds to an
up-state domain in which we solve

Vg — k2u 4+ ko, =0 (B4)
subject to the boundary conditions
v(zi) =y v(ze) = u. (BS)

In (B2) and (B4), £* = q, —l—% and we have used the linearized forms of the branches i, (1)
(see (4.3)).
' The solutions of (B2) to (B3) are

v(z) = (v — v=) ™ Ly z <z (B6)
v(2) = (r—v)e @y z>z (B7)
and
| ] .
v(2) = 'm[(ur — vy )sinhk(z — z;) — (v — vy) sinh k(z — z)] + vy 7 <z <2
(B8)

where A = z; —z;. Matching the first devivatives of these solutions at z = zy and z = z,
we find that v = v, and that A (the domain width) solves the equation

coth kA — cosech kA = vy — v )/ (e —vy) . (B9

Equation (B9) still contains one unknown parameter, v,. This parameter is obtained from
the analysis of the inner regions'centreed at z = z; and z = z.. Stretching the coordinate
system according to x = z/./i and setting ¢ = 0 we find

Uyt u—ud—u =0 B10)
implying v, = 0 (see (Al12)). Using this result in (B9) and solving for A we get

A= --%]n(—-—ag) (B11)
or (4.13) where A = A/ /1.
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