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An important environmental application of pattern control by periodic spatial forcing is the restoration of
vegetation patterns in water-limited ecosystems that went through desertification. Vegetation restoration is often
based on periodic landscape modulations that intercept overland water flow and form favorable conditions for
vegetation growth. Viewing this method as a spatial resonance problem, we show that plain realizations of this
method, assuming a complete vegetation response to the imposed modulation pattern, suffer from poor resilience
to rainfall variability. By contrast, less intuitive realizations, based on the inherent spatial modes of vegetation
growth and involving partial vegetation implantation, can be highly resilient and equally productive. We derive
these results using two complementary models, a realistic vegetation model, and a simple pattern formation
model that lends itself to mathematical analysis and highlights the universal aspects of the behaviors found with
the vegetation model. We focus on reversing desertification as an outstanding environmental problem, but the
main conclusions hold for any spatially forced system near the onset of a finite-wave-number instability that is
subjected to noisy conditions.
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I. INTRODUCTION

Resonant response of spatially extended systems to periodic
forcing has been the subject of numerous studies as a means
of pattern control, mostly in the context of temporal forcing of
oscillatory systems [1]. Periodic forcing provides a means of
creating uniform and patterned oscillatory states below their
onset, stabilizing unstable states, controlling their amplitudes
and frequencies, and inducing new oscillatory patterns [2–4].
The spatial counterpart of this problem, resonant response
of pattern-forming systems to periodic spatial forcing [5–8],
is attracting increasing attention recently in various physical
contexts, including thermal convection [9–12], magnetohydro-
dynamics [13], and chemical reactions [14] and has been the
subject of general mathematical analysis [2,4,15]. It shows
all response forms that forced oscillations show but also
essentially different responses that stem from the higher
dimensionality of the physical space, as compared with the
one-dimensional (1D) time axis.

The freedom of a 2D pattern-forming system to respond to
a 1D periodic forcing in a direction orthogonal to the forcing
direction can lead to new 2D resonant patterns, e.g., rectangular
and oblique, that span forcing-wave-number ranges much
wider than the narrow Arnold tongues of 1D resonant stripe
patterns [2,3]. As a consequence, the existence range of
resonant 2D patterns overlaps with those of resonant 1D
patterns, including the basic 1:1 resonance tongue, where the
system follows the forcing pattern in a precise manner. In this
overlap range resonant 2D patterns compete with resonant 1D
patterns and reduce their stability range [15]. Yet, a bistability
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range of the two pattern types generally exists, which offers a
choice of which pattern to induce and control by the forcing.

While this choice is likely to have applications in vari-
ous physical contexts, there exists an outstanding context—
reversing desertification by restoring degraded vegetation
patterns—for which this choice can be crucial. Desertification
is defined as an irreversible loss of biological productivity
as a result of environmental changes or disturbances. It
occurs mostly in water-limited systems, or drylands, which
occupy about two-fifths of the terrestrial earth area and are
home to more than one-third of the world population [16].
The wide scope of potential desertification, along with the
apparent global climate change and the projections for stronger
weather fluctuations [17], make desertification a major threat
for ecosystem function and services.

Despite the likelihood of desertification, little is known
about means of reversing it [18]. The common approach is
water harvesting by spatially periodic ground modulations,
often in the form of parallel linear embankments, that intercept
overland water flow and along which vegetation is planted [19].
Implicit in this approach is the intuitive assumption that vegeta-
tion growth is likely to follow the template of favorable growth
conditions dictated by the periodic ground modulations, and
form, in the case of parallel linear embankments, a 1:1 resonant
pattern.

In this paper we show that adopting the common and
intuitive 1:1 restoration approach in fluctuating environments
can lead to a long process of vegetation degradation or even to
complete mortality. By contrast, an approach that is based on
partial vegetation implantation to form an initial 2D resonant
pattern along the inherent spatial modes of vegetation growth is
highly resilient and is likely to result in sustainable ecosystem
restoration. These results are based on general considerations,
related to the destabilization of 1:1 resonant stripe patterns
by resonant rhombic patterns in their coexistence range, and
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should therefore apply to other physical contexts where pattern
control under noisy condition is needed.

We derive these results using mathematical and numerical
analyzes of two complementary models. The first is a simple
pattern formation model—the Swift-Hohenberg equation sub-
jected to spatial periodic forcing (hereafter the FSH equation),
which lends itself to mathematical analysis and captures
universal aspects that hold for a variety of other physical
contexts. The second model is a detailed vegetation model
that allows us to relate the results to measurable physical
and ecological parameters and to assess the functioning of
the restored ecosystem in terms of resilience to droughts and
biomass production.

II. THE MODELS

A. Spatially forced Swift-Hohenberg equation

The FSH equation that we study includes parametric forcing
and reads:

∂tu = εu + λu2 − u3 − (∇2 + k2
0

)2
u + γ u cos (kf x), (1)

where γ and kf are the strength and wave number of
the stripelike forcing pattern and the parameter ε controls
the stability of the zero state u = 0. In the absence of
periodic forcing (γ = 0), an increase of ε past zero leads
to an instability of the uniform zero state to the growth of
spatially periodic modes with wave number k0 and to the
formation of hexagonal patterns. These patterns result from
the simultaneous growth of three symmetric modes with wave
vectors satisfying the resonance condition k1 + k2 + k3 = 0
(along with the complex conjugate modes that have wave
vectors −ki , i = 1,2,3) [20].

The FSH equation is a minimal pattern-formation model
that will be used here to gain deeper insights into the dynamic
responses of pattern-forming systems to stripelike forcing.
Earlier studies of the FSH equation have either been restricted
to one spatial dimension [21] or considered the special
case λ = 0 in which the model has an inversion symmetry
u → −u [4,15]. In the presence of the inversion symmetry the
forcing induces the growth of two oblique modes represented
by the wave vectors, k∓ = (−kx, ∓ ky), and their complex
conjugates, −k∓, where kx is locked to the forcing in a 2:1
resonance, kx = kf /2, and ky is determined such that the wave
vectors lie on the circle, k2

x + k2
y = k2

0. When the amplitudes
of the two oblique modes are equal in absolute value their
simultaneous growth results in rectangular patterns, and when
the amplitudes are not equal the growing modes lead to oblique
patterns [4,15]. In the following we will see that breaking the
inversion symmetry results in the growth of an additional pair
of modes, ±kf , which resonate with the two oblique modes
(and their complex conjugates), so k+ + k− + kf = 0, and
leads to rhombic patterns.

B. Vegetation model

The model we study is a modified version of a vegetation
model introduced by Gilad et al. [22,23]. The model describes
the evolution of three dynamical variables: B(X,T ), the areal
density of the above-ground vegetation biomass; W (X,T ),
the areal density of the soil-water content available to the

plants; and H (X,T ), the surface-water areal density (or,
equivalently, the hight of the surface water layer above ground
level). Vegetation pattern formation is captured by modeling
a positive feedback between local biomass growth and water
transport towards the growth location. In the original form of
the model three water transport mechanisms contribute to this
feedback: overland water flow, water conduction by laterally
spread roots, and soil-water diffusion [24]. Here we keep only
the feedback associated with overland flow, which is the most
relevant for vegetation restoration by water harvesting. The
other two are eliminated by assuming confined root zones and
weak, biomass-independent water uptake rates. We refer the
reader to Refs. [23,25] for a detailed account of the original
model. The simplified model version we study is

BT = �WB(1 − B/K) − MB + DB∇̂2B, (2a)

WT = IH − NW − �BW + DW ∇̂2W, (2b)

HT = P − IH + 2DH ∇̂ · [H ∇̂(H + Z)], (2c)

where the dynamical variables, B, W , and H , are measured
in units of kg/m2; the space coordinates, X = (X,Y ), in units
of meters; and the time coordinate, T , in units of years and
∇̂ = x̂∂X + ŷ∂Y . In Eq. (2a), � is the biomass growth rate
per unit amount of soil water, K is the maximum standing
biomass, M is the mortality rate, and DB is the seed dispersal
rate. In Eq. (2b), I is the infiltration rate, N is the evaporation
rate, � is the soil-water consumption rate per unit biomass, and
DW is the soil-water diffusion rate. In Eq. (2c), P is the mean
annual precipitation rate, and the last term describes overland
flow on a ground surface described by a topography function
Z(X). Note that the topography function has units of kg/m2,
like H , but can also be measured in units of mm by dividing it
by the water density, ρW = 1g/cm3.

Rescaling the dynamical variables and the space and
time coordinates according to b = B/K , w = W�/N , h =
H�/N , x = X/

√
DB/M , and t = MT and defining the

nondimensional topography function as z = Z�/N , we obtain
the nondimensional form of Eqs. (2c):

∂tb = νwb(1 − b) − b + ∇2b,

∂tw = Ih − νw − γ bw + δw∇2w, (3)

∂th = p − Ih + 2δh∇ · [h∇(h + z)].

The overland flow is induced by water infiltration contrasts
that develop between sparsely vegetated patches (low infiltra-
tion) and densely vegetated patches (high infiltration) and lead
to overland-water gradients. The infiltration contrast is often
related to the development of biogenic soil crusts in sparsely
vegetated areas, which reduce the infiltration rate. The periodic
landscape modulations are modeled using the infiltration rate,
I , rather than the topography function z = z(x,y), which is
taken to be uniform. Modulating the infiltration rate amounts
in practice to periodic soil-crust removal, which imitates the
effect of vegetation in preventing crust growth. The modulated
infiltration rate is given by

I (b) = a
b + qf

b + q
, f = f0

[
1 + γf

2
(1 + cos (kf x))

]
, (4)

where f , the infiltration contrast, is periodically modulated
along the x axis.
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TABLE I. Definitions of the nondimensional parameters in
Eqs. (3) and their numerical values.

Nondimensional parameter Value

ν = N

M

10
3

a = A

M
100/3

q = Q

K
0.05

f0 0.1

γ = � K

M

50
3

p = P �

MN

1
150 P

δw = DW

DB
100

δh = DH
N

DB�
10 000

z = Z�

N
Constant

The nondimensional parameters appearing in Eqs. (3) and
their numerical values in the model simulations are give in
Table I.

III. COMMON ASPECTS OF THE TWO MODELS

To justify the use of the FSH equation to study universal
aspects of spatial resonances that are applicable to the
vegetation context we first show that the fairly complex
vegetation model shares with the FSH equation the same
resonant responses. Figures 1(a) and 1(b) show a comparison
of stripe patterns obtained by numerical solutions of (1) and (3)
using forcing wave numbers, kf , that differ from the wave
numbers that the unforced systems show, k0. The pairs of
peaks located at (±kf ,0) in the power spectra, and the absence
of peaks with wave numbers k0 indicate that in both models
resonant 1:1 patterns were formed. This behavior is limited to
small mismatches between kf and k0, which defines the 1:1
resonance range.

The two models also share another, more robust, resonant
response—the formation of resonant rhombic patterns, as
Figs. 1(c) and 1(d) show. The patterns are resonant because the
wave-vector component in the forcing direction is locked to
half the forcing wave number, kx = kf /2. Note the two oblique
modes, represented by the wave vectors k∓ = (−kx, ∓ ky),
and their complex conjugates, represented by −k∓, that
lie on the circle k2

x + k2
y = k2

0 in both models. Note also
the existence of a stripe mode kf = (±kf ,0) that resonates
with the oblique modes, k+ + k− + kf = 0. This resonance
condition is responsible for the enhancement of any mode in
this triad by the other two modes and for the formation of
robust resonant rhombic patterns [26].

The numerical simulations of Eqs. (1) and (3) were
conducted using periodic boundary conditions. In integrating
the FSH equation we used a semispectral method to calculate
space derivatives and the Euler method to advance time. In
integrating the vegetation model we used finite differences for
calculating space derivatives and the Euler method to advance
time.

(a)

0 kf

0

(b)

0 kf

(c)

0 kx kf

0

ky

(d)

0 kx kf

FIG. 1. Comparison of resonant responses in the two models.
Shown are the responses of the FSH equation [(a) and (c)] and of
the vegetation model [(b) and (d)] to parametric periodic forcing
with wave vector kf = (kf ,0). The top panels show the patterns in
the x (horizontal) and y plane (biomass patterns for solutions of the
vegetation model). The bottom panels show the corresponding power
spectra relative to the circle |k| = k0, where darker dots denote higher
power. Panels (a) and (b) show a comparison of stripe patterns in the
two models. The peaks at ±kf and the absence of peaks on the
circle of radius k0 indicate that the stripes in both models are in 1:1
resonance with the forcing. Panels (c) and (d) show a comparison of
rhombic patterns. In both models there are four peaks on the circle
of radius k0 representing two oblique modes, k∓ = (−kx, ∓ ky), and
their complex conjugates, −k∓. The value kx = kf /2 indicates that
the 2D patterns in both models are resonant. Parameters for panels (a)
and (c): ε = 0.2, λ = γ = 0.4, kf = 1.1k0, k0 = 1.0, and the domain
size is 57 × 60. Parameters for panels (b) and (d) are as in Table I and
kf = 1.1k0, p = 0.8, and the domain size is 398 × 525. The wave
number k0 has been found numerically to be k0 = 0.143.

IV. COLLAPSE OF VEGETATION STRIPE PATTERNS

We use the vegetation model (3) to study the inherent veg-
etation states that prevail at relatively low precipitation values
p and the resilience of these states to rainfall fluctuations.
Figure 2 shows a bifurcation diagram obtained by numerically
integrating (3) in time. The diagram shows that resonant
rhombic patterns persist at significantly lower precipitation
values, as compared with resonant 1:1 stripe patterns. It further
shows that there are bistability ranges of rhombic patterns and
bare soil and of stripe patterns and bare soil and that there is
a tristability range, p2 < p < p3, of rhombic patterns, stripe
patterns, and bare soil.

Which of the two types of patterns, rhombic or stripe,
are preferable for restoration? To answer this question we
studied the response of stripe patterns within the tristability
range (p2 < p < p3) to precipitation downshifts, bearing in
mind that the unproductive bare-soil state is stable and is
therefore a possible attractor of the dynamics. As Fig. 3
demonstrates, a moderate downshift to the bistability range
of rhombic patterns and bare soil (p1 < p < p2) can lead to a
significant degradation of the stripe pattern before the system
recovers to a rhombic pattern (top row), while a stronger
downshift can lead to a complete collapse of the stripe pattern
to the bare-soil state (middle row). The same precipitation
downshifts, when applied to an initial rhombic pattern, do
not affect the system state in any significant way as the system
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FIG. 2. Bifurcation diagram obtained by numerical integration
of the vegetation model (3). The vertical axis is the L2 norm of the
biomass field (‖b‖ ∝ ∫

b2dx) while the horizontal axis represents the
precipitation parameter. Shown are the bare soil solution (B), which is
stable (unstable) for p < p4 (p > p4); the stable part of the solution
that represents resonant rhombic pattern (R), p1 < p < p3; and the
stable part of the solution that represents resonant stripe patterns (S),
p > p2. Note the existence of a tristability range, p2 < p < p3. Other
parameters are as in Figs. 1(b) and 1(d). Both the R and S branches
were calculated by numerical continuation of periodic rhombic and
stripe solutions, respectively.

remains on the rhombic-pattern branch. By contrast, an upshift
to the bistability range of stripes and bare soil from an initial
rectangular pattern occurs smoothly with continuous biomass
gain (bottom row). These results remain valid outside the
tristability range with sufficiently large precipitation upshifts
and downshifts.

FIG. 3. Responses of stripe and rhombic patterns to precipitation
shifts. The two top rows show numerical simulations of (3) at two
precipitation values in the range p1 < p < p2 starting with stripe
patterns computed at p > p2 (see Fig. 2). Decreasing precipitation to
p = 0.80 involves a substantial biomass decrease before the pattern
recuperates to a rhombic form, whereas decreasing precipitation to
p = 0.79 results in a quick collapse to the bare soil state. The bottom
row shows that increasing precipitation above p3, starting with a
rhombic pattern computed at p < p3, results in a smooth transition
from a rhombic to a stripe pattern. Other parameters are as in Figs. 1(b)
and 1(d).

V. COUPLED-MODES DYNAMICS

In order to gain a deeper insight into the collapse problem
of vegetation stripes under precipitation downshifts, we study
the interactions between the two oblique modes and the stripe
mode. To this end we use the FSH equation to derive coupled
equations for the amplitudes of these modes. That is, we
approximate u in Eq. (1) as

u = Aeikf ·x + aeik−·x + beik+·x + c.c. + h.o.t., (5)

where A, a, and b are the modes’ amplitudes; c.c. denotes
complex conjugate terms; and h.o.t. represents higher-order
terms, and we use multiple scale analysis to derive equations
for A, a, and b, assuming they are small in absolute value and
vary slowly in time and uniform in space. The analysis, which
we describe in detail in the appendix, leads to the following
amplitude equations:

dA

dt
= [ε + εs − η|A|2 − β1|a|2 − β1|b|2]A + γsA

∗

+�a∗b∗ + A2ζ1 + ζ2|A|2 + ζ3(|a|2 + |b|2),

da

dt
= [ε + εr − β1|A|2 − η|a|2 − β2|b|2]a + γrb

∗

+�A∗b∗ + ζ4A
∗a + ζ5Aa ,

db

dt
= [ε + εr − β1|A|2 − β2|a|2 − η|b|2]b + γra

∗

+�A∗a∗ + ζ4A
∗b + ζ5Ab . (6)

Constant solutions of these equations of the form (A,a,b) =
(AS,0,0), describe 1:1 resonant stripe patterns, i.e., patterns
with wave number k that is locked to the forcing wave number
kf in a 1:1 ratio, as Fig. 1(a) shows. Constant solutions of the
form (AR,aR,bR) describe resonant rhombic patterns when
|aR| = |bR| and resonant oblique patterns when |aR| 	= |bR|.
As the solution (5) implies and Fig. 1(c) shows, these are
2:1 resonant patterns, since the period of the pattern in the
forcing direction x is double the period of the forcing (this is
because the solution is a superposition of oblique modes with
kx = kf /2, a second harmonic stripe mode with k = kx = kf ,
and higher harmonics). Note the difference between rhombic
patterns, (AR,aR,bR), and rectangular patterns, (0,aR,bR),
that do not contain a stripe mode [2]; the latter do not
exist in systems with broken inversion symmetry (λ 	= 0). A
bifurcation diagram showing the existence and stability ranges
of these solutions is shown in Fig. 6 in the appendix.

Because of their universal nature, the amplitude equa-
tions (6), albeit with different coefficients, apply to the
vegetation context, too. Thus, approximating a solution of the
vegetation model (3) as

U (x,t) = U0 + U1 Aeikf x + U2 a eik−·r + U3 b eik+·r + c.c.,

(7)

where U = (b,w,h); U0,U1,U2,U3 are constant vectors in C3;

kx = kf /2; and ky =
√

k2
0 − k2

x , we expect the amplitudes A,
a, and b of the stripe mode and the two oblique modes to
satisfy Eqs. (6). In this context, the parameter ε is a control
parameter analogous to the precipitation parameter in the
vegetation model, while the other parameters are calibrated
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FIG. 4. Bifurcation diagram derived from the amplitude equa-
tions (6). Shown are stationary solutions and their stability properties
as obtained by linear stability analysis, where stable (unstable)
solutions are represented by solid (dashed) lines. Included in the
diagram are solution branches representing bare soil (B), rhombic
patterns (R), and stripe patterns (S). Note the existence of a
tri-stability range, ε2 < ε < ε4. Parameters: γs = γr = εr = −εs =
0.02, η = � = 2, βj = 6 (j = 1,2), ζj = 0.6 (j = 1, . . . ,5).

such that Eqs. (6) reproduce a bifurcation diagram similar to
the numerical bifurcation diagram shown in Fig. 2.

VI. THE ROLE OF UNSTABLE STRIPE SOLUTIONS

The bifurcation diagram obtained from (6) is shown in
Fig. 4. It has stable solution branches similar to those
appearing in Fig. 2 and complements the latter with unstable
solution branches. This additional information is crucial for
understanding the vegetation collapse that follows precipita-
tion downshifts (see Fig. 3). Consider the tristability range,

ε2 < ε < ε4, of bare soil, rhombic patterns, and stripe patterns.
Starting with an initial stripe pattern within this range, we ask
what makes the system converge to bare soil rather than to
rhombic patterns following a downshift to the bistability range,
ε1 < ε < ε2, of these two states? Figure 5 shows the stationary
states (fixed points) and the vector field of (6) for three different
ε values. The first value is in the range ε5 < ε < ε2 [Fig. 5(a)],
where a pair of large-amplitude and small-amplitude stripe so-
lutions exist but are unstable, and the other two values are in the
range ε1 < ε < ε5, where the stripe solutions do not exist (have
disappeared in the fold bifurcation at ε = ε5). Also shown
in Fig. 5 are phase trajectories of numerical solutions of (6)
(using the Dormand-Prince method), starting with a slightly
perturbed stripe solution that was computed at ε > ε2 as an
initial condition. These trajectories represent the responses of
stripe patterns to ε downshifts of increasing strengths.

A downshift of ε to the range ε5 < ε < ε2 results in a
smooth transition to a rhombic pattern as Fig. 5(a) shows. The
unstable large-amplitude stripe solution plays a crucial role
in this response; its unstable manifold, which represents the
growth of the two oblique modes, acts as a separatrix that
prevents convergence to the stable bare-soil state. Downshifts
to the range ε1 < ε < ε5, where the unstable stripe solutions
no longer exist, can be divided into two groups. A moderate
downshift results in an initial condition that still lies in
the basin of attraction of the rhombic pattern; the system
initially degrades towards the bare-soil state but then recovers,
as Fig. 5(b) shows. A stronger downshift places the initial
condition in the basin of attraction of the bare-soil state and
leads to a complete vegetation collapse, as Fig. 5(c) shows.
Note the important role unstable stripe solutions play in
shaping the phase-space dynamics; collapse becomes possible
when these solutions disappear in a fold bifurcation. Note
also that complete collapse becomes feasible only when

0.0 0.2 0.4

ρS

0.0

0.1

0.2

ρR

SSB

R

R

(a)

0.0 0.2 0.4

ρS

R

R

B

(b)

0.0 0.2 0.4

ρS

B

R

R

(c)

FIG. 5. Phase-space dynamics of the amplitude equations (6). Shown are projections of the phase-space dynamics of (6) onto the phase
plan spanned by ρS = |A| and ρR = |a| = |b| at (a) ε = −0.15, which lies in the range ε5 < ε < ε2 where a pair of unstable stripe solutions
exist; (b) ε = −0.22, which lies in the range ε1 < ε < ε5 where the unstable stripe solutions no longer exist; and (c) ε = −0.24, which lies in
the same range as in (b). The solid (hollow) circles denote stable (unstable) stationary states. The labels B, S, and R denote the zero state (bare
soil), the stripe patterns, and the rhombic patterns, respectively. The arrows denote the projection of the vector field of (6). The responses of a
stable resonant stripe pattern obtained slightly above ε = ε2 to ε downshifts is shown by the thick black phase portraits: (a) a small downshift
to a range where unstable stripe solutions still exist, results in a smooth transition to a rhombic pattern; (b) a moderate downshift beyond the
existence range of unstable stripe solutions involves temporary approach to the zero state followed by convergence to a rhombic pattern; (c) a
yet stronger downshift places the initial stripe condition in the attraction basin of the zero state and leads to a complete collapse. Parameters:
same as in Fig. 4.
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the bifurcation of the bare-soil state to rhombic patterns is
subcritical.

VII. CONCLUSION

The analysis presented here shows that the common
intuitive restoration approach in 1:1 stripe patterns suffers
from poor resilience to precipitation downshifts (droughts).
Restoration in a rhombic pattern, which facilitates the growth
of the inherent oblique modes, circumvents this difficulty
and does not suffer from precipitation upshifts; as Fig. 3
indicates, the transition from rhombic patterns to stripes is
smooth. Restoration in a rhombic pattern therefore leads to a
more sustainable recovery, and, despite the lower (and more
economic) vegetation coverage, no compromise in the total
bioproductivity is made; as Fig. 2 indicates, the L2 norm of a
rhombic pattern is about the same as that of a stripe pattern
and the same result also holds for the total biomass.

While reversing desertification is the most important ap-
plication we are currently aware of, the results of this study
are also relevant to other physical contexts, especially when
pattern control by periodic forcing is needed under noisy or
fluctuating conditions. The main finding—pattern collapse
as a result of the disappearance of a pair of unstable stripe
solutions—is generic because it is based on universal ampli-
tude equations. It is expected to apply to many other spatially
forced systems that show a subcritical bifurcation to rhombic
patterns and thus a bistability range of rhombic patterns and
zero state. Even when the bifurcation is supercritical, as in
Fig. 6 in the appendix, a prolonged pattern collapse can
occur before rhombic patterns recover, making the collapse
phenomenon even more general. This is because a downshift
fluctuation that takes a stripe pattern below its existence range,
lies very close to the stable manifold of the unstable zero state.
As a result, the system spends a long period in the vicinity
of the zero state before it starts following the direction of the
unstable manifold that leads to rhombic patterns, as the phase
trajectories in Fig. 7 in the appendix demonstrate.

Controlling rhombic patterns is advantageous over
controlling stripe patterns not only because rhombic patterns
do not suffer from fluctuations that induce collapse, as stripe
patterns do, but also because rhombic patterns are expected
to remain wave-number locked to the forcing (kx = kf /2)
under stronger wave-number fluctuations. This is because
of the wide wave-number-locking range of rhombic patterns
compared to the narrow locking range of stripe patterns [2,15]
and the channeling of wave-number fluctuations to the ky

component of the rhombic patterns, keeping the kx component
locked to the forcing.
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APPENDIX: COUPLED-MODE DYNAMICS IN THE
FSH EQUATION

1. Derivation of the amplitude equations

We use the FSH equation that includes a parametric forcing
term to derive the equations for the amplitudes of the stripe
and the two oblique modes. The FSH equation is given by

∂tu = εu + λu2 − u3 − (∇2 + k2
0

)2
u + γ u cos (kf x) . (A1)

We assume weak forcing (γ 
 1) and proximity to the insta-
bility of the zero solution (|ε| 
 1). The periodic solutions that
appear beyond the instability point have small amplitudes that
vary slowly in time and space. Using ε as the small parameter,
we expand solutions of Eq. (1) as

u =
∞∑
i=1

|ε|i/2ui(x0,y0,x1,y1,t1,x2,y2,t2, . . . ) , (A2)

where χi = |ε|i/2χ and χ stands for x, y, or t . The variables
χi represent “slow” space and time variables for i > 0 and
“fast” variables for i = 0. With these choices of space and time
variables the derivatives in Eq. (1) transform according to:

∂χ =
∞∑
i=0

|ε|i/2∂χi
. (A3)

We assume that the forcing strength scales with ε like

γ = |ε|1/2γ1, γ1 ∼ O(1), (A4)

and that the forcing wave number is close to k0, that is,
kf ≈ k0, where the proximity to exact resonance is introduced
by a small detuning parameter ν:

ν = k0 − kf = |ε|1/2ν1, ν1 ∼ O(1). (A5)

The parameter λ is of order unity.
Substituting Eqs. (A2)–(A4) into Eq. (1) we obtain the

following linear equations at successive orders of |ε|1/2:

|ε|1/2 : L2u1 = 0, (A6a)

|ε|2/2 : L2u2 = −∂t1u1 − 4LM0,1u1

+ λu2
1 + �1u1 cos(x0kf ), (A6b)

|ε|3/2 : L2u3 = u1 + 2λu1u2 − u3
1 + �1u2 cos(x0kf )

− 4M2
0,1u1 − ∂t2u1 − ∂t1u2

− 2L(2M0,2u1 + M1,1u1 + 2M0,1u2), (A6c)

where L = M0,0 + k2
0 and Mi,j = ∂xi

∂xj
+ ∂yi

∂yj
. The

solution of Eq. (A6a), which provides the leading-order
approximation, reads

u1 = E1 + E2 + E3 + c.c., (A7)

where c.c. stands for the complex conjugate,

E1 = A(t1,t2)eiν1x1eik0x0 ,

E2 = a(t1,t2)e−ikxx0+ikyy0 , (A8)

E3 = b(t1,t2)e−ikxx0−ikyy0 ,

kx and ky satisfy k2
x + k2

y = k2
0, and we have assumed that the

amplitudes are spatially uniform, i.e., depend only on slow
time variables.

The next order contribution, u2, satisfies Eq. (A6b). The
right-hand side of this equation contains secular terms that
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need to be eliminated, thus, applying the solvability condition,
we find

∂t1A = 2λa�b�,

∂t1a = 2λA�b� + γ1

2
b�, (A9)

∂t1b = 2λA�a� + γ1

2
a�,

Using Eq. (A7), the solution of Eq. (A6b) can be written as

u2 = γ1

2
E1(d−E�

f + d+Ef ) + 2λp2E2E
�
3

+
(

γ1

2
d2Ef + 2λp1E1

)
(E�

2 + E�
3)

+ λ

k4
0

(|E1|2 + |E2|2 + |E3|2)

+ λ

9k4
0

(
E2

1 + E2
2 + E2

3

) + c.c., (A10)

where Ef = eikf x0 and

d± = [kf (2k0 ± kf )]−2, d2 = [
2k2

f

]−2
,

(A11)
p1 = [k0(k0 + kf )]−2, p2 = [

3k2
0 − k2

f

]−2
.

The highest-order contribution to be considered here, u3,
satisfies Eq. (A6c). Substituting Eqs. (A7) and (A10) into
Eq. (A6c) and eliminating secular terms, we find a second
solvability condition. The final form of the amplitude equations
can be now obtained by combing both solvability conditions
using the chain rule. Rescaling back to fast variables we obtain

dA

dt
= [ε + εs − η|A|2 − β1|a|2 − β1|b|2]A + γsA

∗

+�a∗b∗ + A2ζ1 + ζ2|A|2 + ζ3(|a|2 + |b|2),

da

dt
= [ε + εr − β1|A|2 − η|a|2 − β2|b|2]a + γrb

∗

+�A∗b∗ + ζ4A
∗a + ζ5Aa,

db

dt
= [ε + εr − β1|A|2 − β2|a|2 − η|b|2]b + γra

∗

+�A∗a∗ + ζ4A
∗b + ζ5Ab, (A12)

where

εs = 1

4
γ 2(d− + d+) − 4k2

0ν
2, εr = γ 2

4
d2,

γs = γ 2

4
d−, γr = γ

2
, � = 2λ,

η = 3 − 38λ2

9k4
0

, βi = 6 − 4λ2

(
1

k4
0

+ pi

)
,

(A13)

ζ1 = γ λ

(
d− + 1

18k4
0

)
, ζ4 = γ λ(d− + p1)

ζ2 = γ λ
(
d− + d+ + k−4

0

)
, ζ5 = γ λ(d− + d2)

ζ3 = γ λ
(
d2 + k−4

0

)
.

Because of their universal nature we expect Eqs. (6) to hold
for the vegetation problem, too, although with different coeffi-
cients. Deriving these equations using the vegetation model (2)

−0.1 0.0 0.1 0.2 0.3

0.0

0.1

0.2

0.3

√
|A

|2
+
|a
|2

+
|b|

2

R

B

S

O

FIG. 6. Bifurcation diagram derived from the amplitude equa-
tions (A12) and the coefficients (A13). Shown are stationary solutions
and their stability properties as obtained by linear stability analysis,
where stable (unstable) solutions are represented by solid (dashed)
lines. Included in the diagram are solution branches representing
bare soil (B), stripe patterns (S), rhombic patterns (R), and oblique
solutions (O). Parameters: λ = 0.1, kf = 1.1, γ = 0.2, and k0 = 1.

is a formidable task. Instead, we treat the coefficients in these
amplitude equations as phenomenological and calibrate them
to give a bifurcation diagram that captures the mains features
of the numerical diagram found with the vegetation model.
The latter is insufficient for our purpose because it does not
contain information about unstable solutions, which are crucial
for understanding the vegetation collapse mechanism.

2. Bifurcation diagram and phase-space dynamics

A linear stability analysis of the amplitude equations (A12)
for the FSH equation, i.e., using the expressions (A13) for
the coefficients in (A12), gives the typical bifurcation diagram
shown in Fig. 6. Unlike the bifurcation diagram in Fig. 4, the
bifurcation to rhombic patterns is supercritical. The bifurcation

0.0 0.1

ρS

0.00

0.15

ρR

R

B

(a)

0.0 0.1

ρS

R

B
S

(b)

FIG. 7. Phase-space dynamics of the amplitude equations (A12)
with (A13). Shown are projections of the dynamics of (A12) onto the
phase plan spanned by ρS = |A| and ρR = |a| = |b|. Solid (hollow)
circles denote stable (unstable) stationary states. The labels B, S, and
R denote the zero state, the stripe pattern, and the rhombic pattern,
respectively. The arrows denote the projection of the vector field
of (A12), and the thick black phase trajectories show the responses
of stripe patterns to ε downshifts. Parameters: same as in Fig. 6 and
(a) ε = −0.01 and (b) ε = 0.05.
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diagram also shows the oblique pattern branch that bifurcates
from the rhombic pattern branch.

Figure 7 shows the stationary states and the vector field
of (A12) for the FSH equation, for two ε values, below
the bifurcation point of the stripe solution (a), i.e., when
this solution does not exist, and above it (b), where it
exists but is unstable to the growth of oblique modes. The

phase portraits show the response of a perturbed stripe
pattern calculated at a higher ε value to the correspond-
ing ε downshifts. A downshift below the bifurcation point
to the unstable stripe solution results in a long temporal
collapse. The collapse problem is therefore relevant even
to systems that show supercritical bifurcations to rhombic
patterns.
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