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Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhabotinsky(BZ) reaction in
response to a spatially homogeneous time-periodic perturbation with light. The regions(tongues) in the forcing
frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis
of the temporal response of the patterns. Resonant and near-resonant responses are distinguished. The unforced
BZ reaction shows both spatially uniform oscillations and rotating spiral waves, while the forced system shows
patterns such as standing-wave labyrinths and rotating spiral waves. The patterns depend on the amplitude and
frequency of the perturbation, and also on whether the system responds to the forcing near the uniform
oscillation frequency or the spiral wave frequency. Numerical simulations of a forced FitzHugh-Nagumo
reaction-diffusion model show both resonant and near-resonant patterns similar to the BZ chemical system.
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I. INTRODUCTION

An oscillator forced by a periodic external perturbation
entrains to the forcing for certain values of the perturbation
frequency and amplitude. This behavior is observed in a
wide range of biological, chemical, and physical systems, for
example, in circadian rhythms such as the sleep-wake cycle
forced by the sun[1], in the tips of chemical spiral waves
forced with light [2–6], and in arrays of Josephson’s junc-
tions [7].

The entrainment to the forcing can take place even when
the oscillator is detuned from an exact resonance[8–10]. In
this case, a periodic force with a frequencyf f shifts the os-
cillator from its natural frequencyf0 to a new frequencyf r,
such thatf f / f r is a rational numberm:n. When the forcing
amplitude is too weak this frequency adjustment or locking
does not occur; the ratiof f / f r is irrational and the oscilla-
tions are quasiperiodic. In dissipative systems frequency
locking is the major signature of resonant response. Nearly
conservative systems show in addition a large increase in the
amplitude of oscillations.

The response of a two-dimensional array of coupled non-
linear oscillators or of a two-dimensional oscillating field is
much less well understood. For a periodically forced single
oscillator, the structure in the parameter plane of the forcing
frequencyf f and amplitudeI contains many universal fea-
tures identified with frequency locking[11], but it is unclear
if these features persist or change in the more complex case
of spatially extended systems where patterns can form. Pat-
terns resulting from time-periodic forcing[12–22], spatially
periodic forcing [23], and global feedback[24–26] have
been studied in the past, but a whole phase diagram showing

a resonance structure for spatially extended systems has not
been reported. Moreover, it is not even clear to what extent
the familiar concept of resonance applies to spatially ex-
tended systems.

To investigate a phase diagram showing multiple reso-
nances in spatially extended systems, we applied periodic
perturbations to a light sensitive form of the Belousov-
Zhabotinsky (BZ) chemical reaction-diffusion system and
measured the temporal response and pattern formation. In the
course of this investigation a different mode of response has
been identified. Patterns may fail to lock to the forcing fre-
quency but still respond by showing anm-peaked distribu-
tion of the oscillation-phase as in resonant patterns. We refer
to this response mode as “near resonant.”

In addition to the nonuniform distribution of the oscilla-
tion phase, resonant and near-resonant patterns can also be
characterized by theshapeof the phase in the complex phase
plane. The phase of unforced spirals has a circular shape in
the complex phase plane but forcing breaks the circular sym-
metry. At high enough forcing this is visible as am-fold
symmetry in the phase plane. Examples ofm:1 patterns ob-
served in the BZ system, wherem:1= f f / f0 and m=2,3,4
are shown in Fig. 1. Unlike the single oscillator case, a spa-
tially extended system can exhibit phase waves and other
phase patterns. In Fig. 1 each pattern is shown in two repre-
sentations: in the real spacex-y plane, and in the complex
phase plane.

In this paper we construct an experimental phase diagram
in the forcing frequency and amplitude parameter plane of
resonant and nearly resonantm:n responses and identify the
pattern types that lead to the two responses. The experimen-
tal setup and determination of resonance tongues are de-
scribed in Secs. II and III, respectively. The qualitatively
different patterns observed in the experiments are presented
in Sec. IV. A forced reaction-diffusion model, modified
FitzHugh-Nagumo equations, is introduced in Sec. V, which
is followed by a discussion of the model and the insight it
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provides into the mechanisms of pattern formation in the
experimental system. A general discussion and summary of
the results are given in Sec. VI.

II. BELOUSOV-ZHABOTINSKY CHEMICAL SYSTEM

The oscillatory chemical reaction occurs in a thin, porous-
glass membrane(0.4 mm thick, 25 mm in diameter), which
is in contact on each side with continuously refreshed reser-
voirs of reagents for the ruthenium-catalyzed BZ reaction
[27,28]. Each reservoir is well stirred and the reagents dif-
fuse from them into the membrane where they react. The
chemical concentrations in the reservoirs are given in Refs.
[27,29]. Visualization of the patterns is achieved using a low
intensity tungsten lamp, which measures the optical density
of the concentration patterns in the membrane without affect-
ing the chemical reactions.

For the chemical concentrations used in the present ex-
periments the unforced system exhibits rotating spiral pat-
terns. The patterns are sustained indefinitely in time because
the reaction products leave the membrane by diffusion into
the reservoirs, and reservoir concentrations are maintained
by continuous feeds. We used two different sets of chemical
conditions [27,29], one creating spirals with a higher fre-
quency sfs=0.072 Hzd and one creating spirals of a lower
frequencysfs=0.020 Hzd. Examples of the unforced spiral
waves for both sets of chemical conditions are shown in Fig.
2.

In addition to the spiral frequency, the BZ system has
another natural frequency: the unforced spatially homoge-
neous oscillation frequency. Since perturbations always lead
ultimately to the formation of spiral waves in the membrane,
we determined the homogeneous oscillation frequencyf0 by
the following method. The membrane was exposed to a spa-
tially uniform high-intensity pulse of light for 30 s, which

resets the system so that the entire membrane is oscillating
with the same frequency and phase. The frequency of this
spatially uniform oscillation, determined by the chemical ki-
netics, was found in our previous work to be essentially in-
dependent of the chemical concentrations used in our study,
f0=0.020 Hz [12]. The uniform oscillations eventually
evolve to rotating spiral waves which fill the system. How-
ever, the frequency of the spiral waves does depend on the
chemical conditions. The ramifications of this dependence
will be discussed in the following section.

III. MULTIPLE RESONANCE TONGUES

The chemical reaction is forced by illuminating it with
spatially homogeneous light that is periodically blocked

FIG. 1. (Color online) Patterns in the periodically forced BZ reaction.(a)–(d) show a 11.5311.5 mm2 size region of patterns formed at
different forcing frequencies and amplitudes. The data are processed to show the pattern only near the subharmonic response frequency.
Patterns(a) and(c) are frequency locked(resonant). Patterns(b) and(d) are near resonant but not frequency locked. The frames(e)–(h) show
the same data represented in the complex phase plane, see Ref.[21]. The colors in the phase plane vary with the anglef0,2pg and are the
key to the pattern images above. See the text for details.(a) and(e) 2:1 two phase standing-wave pattern,(b) and(f) 3:1 three phase rotating
spiral, (c) and (g) 3:1 three phase standing-wave pattern,(d) and (h) 4:1 four phase rotating spiral. Chemical conditions are given in Ref.
[27].

FIG. 2. Unforced spiral patterns for the two sets of chemical
conditions used for the experiments presented.(a) Spiral waves
with a shorter period,fBrMAg=0.220 M, fBrO3

−g=0.230 M [27].
(b) Spiral waves with a longer period,fBrMAg=0.300 M, fBrO3

−g
=0.136 M [29]. The images show a 939 mm2 region of the pat-
tern. Dark regions correspond to high concentrations of Ru(II ).
Taken from Ref.[12]. All data reported in this paper are taken under
the conditions for the spirals on the left, except for Fig. 4(b).
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[12,13,21]; the durations of the illuminated and blocked por-
tions of each cycle are equal, i.e., the intensity modulation is
a square wave. To investigate the temporal response of the
patterns to the forcing we varied the intensityI and fre-
quency of the periodic light forcingf f. The light intensityI is
the control parameter for the forcing amplitude. We exam-
ined the temporal response to determine which, if any,
tongue the pattern belonged to, and examined the existence,
shape, and ordering of the resonance tongues(see Sec. III).

A. Determining temporal resonance

The experimental data were collected as a time sequence
of pattern snapshots. The natural oscillation period of the
reaction for the conditions used was about 50 s. Typically,
images were recorded every 2 s for 1 h and a central 240
3240 pixel s23323 mm2d region of the pattern was ana-
lyzed. The Fourier transform of the time series for each pixel
was calculated to obtain an average power spectrum for the
pattern. Figure 3 shows a typical averaged power spectrum
for a resonant pattern when the forcing frequencyf f was
twice the uniform oscillation frequencyf0. The largest sub-
harmonic frequency peak appears atf = f f /2, as indicated by
the vertical line.

B. Tongues

Using the method described in the preceding section, we
found tongues in the forcing parameter space where the pat-
tern responds at or nearm:n resonances. We obtained a
phase diagram for each of the two chemical conditions
[27,29], shown in Figs. 4(a) and 4(b). If the peak of the
strongest mode subharmonic to the forcing was within ±3 %
of the forcing frequency, we considered the pattern to be
responding to the forcing, and it is included within anm:n
resonance region in Fig. 4. This criterion is consistent with
the observation ofm-peaked distributions of the oscillation
phase. Some of the patterns meeting this criterion are reso-

nant while others are near resonant, i.e., they are quasiperi-
odic patterns with anm-peaked phase distribution. In the
white space in Fig. 4 there exist either otherm:n resonances,
or quasiperiodic patterns with uniform phase histograms.

We varied the forcing frequency and intensity in the ex-
periments and explored the temporal resonant response as we
moved through the parameter space, and the results are
shown in Fig. 4. Each symbol type represents a differentm:n
resonance. The curves in Fig. 4 are drawn to guide the eye to
the tongues in thef f-I plane with differentm:n responses.
Only the largest resonance tongues are plotted. In addition to
the m:1 tongues(and the 4:3 and 3:2 tongues) shown, we
observed several higher-orderm:n states(e.g., 5:7, 5:1, 6:1,
10:1), which spanned control parameter ranges too narrow to

FIG. 3. Averaged power spectrum for a 2:1 resonant labyrin-
thine pattern. The response frequency has been normalized to the
forcing frequencyf f. The peak at 0.5 is the subharmonic response to
the forcing. The large peak at the forcing frequencysf = f fd is due to
our imaging method, which captures part of the forcing light output.
In this paper we only consider responses subharmonic to the forcing
frequencysf / f f ,1d.

FIG. 4. (Color online) (a) The largestm:n tongues observed in
the frequency-intensity plane of the spatially extended BZ system.
Chemical conditions are those used in Fig. 2(a) [27]. (b) The largest
m:n tongues observed for the chemical conditions used in Fig. 2(b)
[29]. The homogeneous frequency in both cases isf0=0.020 Hz,
while the spiral frequency is(a) 0.072 Hz,(b) 0.020 Hz. Each sym-
bol type represents a differentm:n response. The patterns(points)
within the solid curves respond subharmonically with the forcing
frequency. The bottom plot is taken from Ref.[33].
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be maintained. In all cases the differentm:n tongues were
ordered in a Farey sequence, similar to the Devil’s staircase
ordering of resonance tongues for two coupled oscillators
[30] and for the homogeneous BZ reaction[31,32].

We investigated two different chemical conditions. The
chemical conditions that yield 0.072 Hz spirals havem:n
tongues that bend toward higher frequency as the light inten-
sity I is decreased[Fig. 4(a)]. For the chemical conditions
that yield 0.020 Hz spirals, the tongues do not bend much at
low frequency[Fig. 4(b)]. The bending of the tongues is
caused by a shifting fromf0=0.02 Hz resonance at high
forcing intensity(the uniform oscillation frequency) to the
near-resonant response of the spiral wave frequencyfs for
lower forcing intensity. Since the spiral wave frequency for
the data in Fig. 4(b) is the same as the uniform oscillation
frequency, the tongues do not bend in that case[12,33].

C. A quantitative measure of patterns

Spatial Fourier transforms and correlation functions do
not capture the temporal aspects of the patterns and did not
differentiate the data well because the patterns often com-
prise multiple wavelengths and orientations. Therefore, in-
stead of computing spatial Fourier transforms, we analyzed
the temporal Fourier transform calculated for each point in
the pattern[12,13,21]. The power spectrum of the signal,
averaged over the spatial pattern, gives information about the
strongest frequency response. Additionally, the data were fil-
tered to keep the strongest response and then inverse Fourier
transformed. The complex amplitudes of the filtered system
give information about the phase distribution of the pattern.
Qualitatively different patterns were found to exhibit differ-
ent shapes in the complex phase-plane representations[34]
[see Figs. 1(e)–1(h)].

IV. PATTERN FORMATION

We now describe the asymptotic patterns observed(after
the decay of transients) in them:1 tongues for different forc-
ing frequencies and amplitudes. The patterns can be divided
into two categories: those which are resonant with the forc-
ing and those which are near resonant. The resonant patterns
are standing waves which lock to the forcing frequency and
showm peaks in the phase response. The near-resonant pat-
terns are traveling waves and spiral waves which do not lock
to the forcing but still showm peaks in the phase response.

We differentiate the two types of responses using their
power spectra. If the system is resonant, the response fre-
quency will adjust to be a rational ratio of the forcing fre-
quency. For near-resonant response, however, the frequency
does not adjust to be a rational ratio of the forcing frequency.
Figure 5 shows the power spectra and corresponding histo-
grams of phase angle for 2:1 near-resonant patterns(spirals)
at three forcing frequencies near exact resonance with the
spiral wave frequency. The peak of the subharmonic re-
sponse does not adjust tof f /2 (vertical line) as the frequency
is varied. The histograms of the phase, however, indicate that
there is a two-phase response to the forcing even though
there is not exact resonance. In contrast, Fig. 6 shows the

power spectra of resonant patterns(standing waves) for three
forcing frequencies near exact resonance with the uniform
oscillation frequency. In this case the patterns lock tof f /2
(shown by the vertical line) even when the forcing is detuned
from exact resonance.

We now discuss the different types ofm:1 patterns that
we observed.

A. 1:1 and 2:1 patterns

In the 1:1 region we observe a resonant response. In this
case the entire pattern of chemical concentration oscillates
uniformly in space with the forcing frequency, as measured

FIG. 5. Power spectra and phase histograms for near-resonant
2:1 spiral wave patterns. Frames(a)–(c) show power spectra of the
response as the forcing frequency is varied across the tongue. The
power spectra, normalized to the forcing frequencyf f, show that the
largest response is nearly half(but not exactly half) the forcing
frequency when the forcing is detuned from exact resonance(f / f f

=0.5 as indicated by the vertical line); thus the spiral wave pattern
does not lock to the forcing frequency. The peaks atf / f f =1 in (a)
and (c) include power from the forcing light reflected from the
reactor face into the camera. Frames(d)–(f) show histograms of the
phase of the pattern near the peak response. The histograms have
two peaks which indicates that the pattern is mostly concentrated
near one of two phases; the two phases are separated byp. Forcing
frequency:(a) and(d) f f =0.0500 Hz,(b) and(e) f f =0.0556 Hz,(c)
and (f) f f =0.0625 Hz.
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for a range off f andI values centered atf0. The shape of the
1:1 tongue in Fig. 4(a) is different than the shape of the other
tongues. The other tongues bend toward higher frequency at
low forcing intensities. Instead we find 1:1 uniform patterns
at frequencies nearf0 even at very low forcing intensities.
We do find spiral patterns at slightly higher frequencies near
the bottom of the tongue, but we cannot distinguish 1:1 spiral
waves from unforced spiral waves.

Unlike the 1:1 resonant response, for which we observed
only a single qualitative pattern, several qualitatively differ-
ent patterns were observed inside the 2:1 region. In this re-
gion, the oscillation phase responds to either the first or the
second forcing cycle, which occurs within a single oscilla-
tion cycle of the pattern. The 2:1 patterns are therefore
formed from spatial arrangements of regions oscillating at
the same frequency but which differ in phase byp. A de-
scription of the different 2:1 patterns observed in the BZ

system and in a forced reaction-diffusion model with Bruss-
elator kinetics was given in Ref.[21].

B. 3:1 patterns

In the 3:1 region we observe two qualitatively different
types of patterns. At low forcing the 3:1 patterns are rotating
spirals, such as those shown in Fig. 7. At low forcing inten-
sity, the spirals have a fairly evenly distributed phase angle
and a nearly circular shape in the complex phase plane. At
higher forcing intensity, the phase becomes more concen-
trated in three phases, and the shape in the complex phase
plane becomes more triangular. This trend is observable in
Figs. 7(d) and 7(f).

An abrupt transition from traveling-wave patterns to what
appear to be standing-wave patterns is observed in the 3:1

FIG. 6. Power spectra and phase histograms for resonant 2:1
standing-wave patterns. Frames(a)–(c) show the power spectra of
the response as the forcing frequency is varied across the tongue.
The power spectra, normalized to the forcing frequencyf f, show
that the largest response is at exactly half the forcing frequency
sf / f f =0.5d, as indicated by the vertical line. Frames(d)–(f) show
histograms of the phase of the pattern near the peak response. The
histograms have two peaks corresponding to concentrations of the
pattern in regions that are separated in phase byp. Forcing fre-
quency:(a) and (d) f f =0.0333 Hz,(b) and (e) f f =0.0357 Hz,(c)
and (f) f f =0.0416 Hz.

FIG. 7. Patterns observed in the 3:1 resonance region for differ-
ent forcing amplitudes(the patterns are shown after filtering). The
response is shown in thex-y plane(left) and complex phase plane
(right). (a) and (b) Spiral waves in the bottom of the 3:1 region,I
=269 W/m2, f f =0.1251 Hz.(c) and(d) Spiral waves in the middle
of the 3:1 region, I =382 W/m2, f f =0.0667 Hz. (d) and (e)
Standing-wave patterns found at the top of the 3:1 region,I
=863 W/m2, f f =0.0769 Hz.

RESONANCE TONGUES AND PATTERNS IN… PHYSICAL REVIEW E 69, 066217(2004)

066217-5



resonance region as the forcing amplitude was increased.
The transition between these pattern types was observed at a
fixed forcing frequency of 0.075 Hz asI was increased past
roughly 460 W/m2, and was also observed for fixed forcing
amplitudes in a range of 300–400 W/m2 when f f was in-
creased past roughly 0.065 Hz. The experimental resolution
is not enough to determine the functional form of the transi-
tion.

The 3:1 standing-wave patterns with stationary or nearly
stationary fronts consist of irregularly shaped domains differ-
ing in phase by 2p /3 (see Fig. 7). Often the fronts are rough,
i.e., have short wavelength modulations that appear stable
over a hundred oscillation cycles of the pattern, as can be
seen in the standing-wave pattern pictured in Fig. 1(c).

The fronts in the standing-wave patterns are either station-
ary or propagate on a time scale orders of magnitude larger
than the unforced spiral period. If the latter is the case, the
patterns are not precisely standing waves, and over a longer
time could evolve to other patterns such as large and slowly
rotating three-phase spiral waves. If so, these patterns could
be understood to be observations of the 3:1 patterns pre-
dicted by the forced complex Ginzburg-Landau(CGL) equa-
tion [18,35].

C. Other patterns

Rotating four-phase spiral patterns, e.g., Figs. 1(d) and
1(h), are the only pattern type observed in the 4:1 resonance
region of the BZ experiments. A detailed description of 4:1
resonance in the forced CGL equation and in the FitzHugh-
Nagumo and Brusselator reaction-diffusion models was

given in Ref.[34]. In those models a bifurcation from four-
phase traveling patterns to two-phase 4:1 resonant standing-
wave patterns was found[13]. This bifurcation has not been
observed in our experiments, perhaps because the forcing
light intensity I available may be insufficient to reach the
bifurcation. Another possibility is that the patterns observed
were at a frequency near four times the spiral wave fre-
quencyfs instead of near four times the uniform oscillation
frequencyf0. In the experimentally accessible range ofI, we
have observed only 4:1 spiral wave patterns and none of the
more complicated pattern behavior found in the 4:1 forced
CGL model[36].

Patterns such as the 2:1 Bloch fronts and spiral waves
discussed in Refs.[35,37,38] and the 4:1 rotating spirals dis-
cussed in Ref.[13] are not resonant since they are all trav-
eling patterns.

Finally, we present examples of near resonant 5:1 and 6:1
patterns in Figs. 8 and 9, respectively.

V. REACTION-DIFFUSION MODEL

As a model for a periodically forced oscillatory system
we use a version of the FitzHugh-Nagumo(FHN) reaction-
diffusion equations

ut = u − u3 − n + ¹2u, s1ad

nt = «fu − sa1 + g sin v ftdng + d¹2n, s1bd

where the fieldsusx,yd and nsx,yd represent concentrations
of chemicals in a simple model of a chemical system. We
add explicit time dependence to the FHN system as paramet-

FIG. 8. BZ spirals observed in the 5:1 resonance region atI
=661 W/m2, f f =0.100 Hz. The patterns are filtered to keep only
the frequencies shown by the gray band in(c). (a) Phase patterns in
x-y plane.(b) Phase in complex plane.(c) Average temporal power
spectrum.(d) Histogram of phase angle.

FIG. 9. BZ spirals observed in the 6:1 resonance region atI
=475 W/m2, f f =0.1001 Hz. The patterns are filtered to keep only
the frequencies shown by the gray band in(c). (a) Phase patterns in
the x-y plane. (b) Phase in complex plane.(c) Average temporal
power spectrum.(d) Histogram of phase angle.
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ric sinusoidal forcing with amplitudeg and frequencyv f.
The parameter« is the ratio of the time scales ofu andn and
d is the ratio of the diffusion rates ofu andv. In the follow-
ing we fix the parameters«=0.1, d=0.1, a1=0.5, and vary
the forcing frequency and amplitude.

In the absence of forcing,g=0, the equations have a spa-
tially uniform solutionu=n=0. The parameter« controls the
stability of this solution. When«.2, u=n=0 is stable, and
at «=2, there is a Hopf bifurcation to uniform oscillations.
Beyond the Hopf bifurcation Eqs.(1) also support traveling
phase waves. Our numerical investigations are conducted in
the parameter range where uniform oscillations and phase
waves both exist. In two space dimensions phase waves typi-
cally form into rotating spirals, each one organized around a
core where the amplitude of oscillations is zero. For the pa-
rameters above, the spiral wave frequencysvs<0.237d is
faster than the homogeneous oscillation frequencysvs

<0.215d; once formed, spiral waves spread to fill the entire
system.

A. Periodic forcing and data analysis

A sinusoidal parametric forcing, homogeneous in space, is
applied by choosing a nonzerog parameter in Eq.(1). As in
the BZ experiment, when the forcing amplitude is high
enough the system can lock at rational ratios of the forcing
frequency. Frequency locking of spatially uniform solutions
to Eq. (1) occurs in tongue-shaped regions in thev f-g pa-
rameter plane. A complete diagram of the pattern-forming
tongues was not computed for the FHN equation with this
forcing scheme. We have only investigated certain reso-
nances to compare with the BZ chemical experiment. Our
numerical investigations show that the size and shape of dif-
ferentm:n tongues depend on the exact form of the paramet-
ric forcing in Eqs.(1) [39]. Tongue diagrams obtained by
forcing other terms of the FHN model were presented in
studies of locking to uniform oscillations in the oscillatory
FHN model[40,41]. A diagram for the 2:1 tongue of a peri-
odically forced Brusselator reaction-diffusion system was
given in Ref.[21].

The data from the numerical solutions of the forced FHN
equation are processed to extract phase information, as in the
experimental system. Every 1.4 time units, we store the val-
ues of usx,yd and nsx,yd at each computational grid point
xi ,yj. The discrete Fourier transform is applied to the time
variable ofusx,y,td to get the frequency responseûsx,y,vd
for each point in the pattern. The averaged power spectrum
of the signal,

Psvd =
1

NxNy
o
i,j

uûsxi,xjdu2, s2d

whereNx andNy are the number of grid points in thex andy
directions, is then examined to determine the system re-
sponse. The response frequency is isolated from the signalû
using a box filter centered at the response frequency,vr with
width D. The filtered signal is then inverse Fourier trans-
formed, which gives the response in time,asx,y,td.

Figure 10 shows an example of a 2:1 spiral wave with the
peak frequency response atv f /2 displayed clearly in the

power spectra. The filtered signala in x-y domain is shown
in Fig. 10(a), and Fig. 10(b) shows the same data plotted in
the complex phase plane. The width of the filter is shown in
the power spectrum by the gray band[see Fig. 10(c)]. The
phase plane shows that different parts of the spatial domain
are in different relative phases, all oscillating at the same
frequency. The phase is not uniformly distributed but has
peaks near two phases that become apparent in the histogram
of the phase angle shown in Fig. 10(d).

B. Pattern Formation

The FHN equations(1) have two intrinsic frequencies, the
uniform oscillation frequencyv0 and the spiral wave fre-
quencyvs. For some choices of parameters(e.g.,d=1) these
two frequencies are the same, but for the parameters chosen
in this study the two frequencies differsvs.v0d. Because of
this there are two possible different resonant response condi-
tions: when the forcing is a rational multiple of eitherv0 or
vs. In the following we will show how the FHN equations
(1) respond to forcing in both of those cases. In the BZ
experiment this distinction is harder to make.

C. Patterns at m: n response of the uniform oscillation
frequency

When the forcing is a rational multiple of theuniform
oscillation frequencyv0, spatially uniform solutions of Eq.
(1) are found for a range of forcing frequencyv f and ampli-
tude g. The m:n frequency-locked solutions form tongue
shaped regions in thev f-g parameter plane(Arnol’d

FIG. 10. Spiral wave in Eq.(1) with periodic forcing at nearly
twice the spiral wave frequency. The patterns are filtered to keep
only the frequencies shown by the gray band in(c). (a) Phase pat-
tern inx-y plane.(b) Phase in complex plane.(c) Average temporal
power spectrum.(d) Histogram of phase angle. Parameters:g
=0.5, v f =0.474,x=f0,256g, y=f0,256g.
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tongues). The shape of the resonant tongues depends on the
exact form of the forcing[39].

As in the BZ experiment, patterns may form in the
frequency-locked tongues. Resonant pattern solutions consist
of standing waves connecting regions of different phases.
For example, in the 2:1 resonance, standing waves consist of
fronts between regions in space that are oscillating at the
same frequency but out of phase byp. The fronts must be
stationary for the pattern to be strictly frequency locked,
since any motion indicates that the phase is drifting and thus,
at least in the vicinity of a front, the frequency is also slowly
changing.

A 2:1 resonance is found when the forcing frequency is
nearly twice the uniform oscillation frequency,v f ,2v0
(Fig. 11). For sufficiently high forcing amplitude, the system
frequency locks atv f /2, in one of two phases separated by
p. Patterns form from the two phases. At low forcing ampli-
tude the pattern is a two-phase rotating spiral wave and thus

is near resonant but not strictly frequency locked since the
spiral rotates slowly(relative to the forcing period). At
higher forcing amplitude the pattern is standing waves. The
spiral waves and standing waves are similar to those found in
the BZ experiment and in forced complex Ginzburg-Landau
and Brusselator models[14,21,22,42].

In the 3:1 resonance the system responds at one-third the
forcing frequency,vr =v f /3, and the patterns consist of spa-
tial regions of three locked phases. In our exploration in
forced FHN model we find that the three locked phases or-
ganize into rotating spiral waves.

Patterns in a forced 4:1 FHN model consist of four-phase
spiral waves and two-phase standing waves and are dis-
cussed in detail in Ref.[13].

The domain in parameter space where frequency-locked
patterns (standing waves) exist is different from that of
frequency-locked uniform solutions. Recently it was discov-
ered that frequency-locked standing-wave patterns can exist
outside the resonant tongue of spatially uniform solutions or
that spatial instabilities can reduce the range of resonant pat-
terns[43].

D. Patterns at m: n response of the spiral wave frequency

When the forcing frequency is close to a rational multiple
of the spiral wave frequency, the spiral does not frequency
lock to the forcing but still shows a near-resonant response.
This can be seen in the nonuniform phase distribution of the
forced spiral waves, withm peaks for waves forced near an
m:n resonance. For example, forcing the spiral wave at ap-
proximately twice the spiral frequency,v f <2vs, causes the
spiral to respond by shifting the relative oscillation phases
within the spiral to be concentrated near two phases, as
shown in Figs. 12(d)–12(f).

Figure 12 shows the spiral wave response when the forc-
ing frequency is scanned through the spiral frequency. The
maximum response in the power spectrum is notv f /2 when
the forcing frequency is not exactly twice the spiral wave
frequency; the pattern is not frequency locked but it is near
resonant. In contrast to a quasiperiodic response farther away
from resonance[21], near-resonant patterns exhibit a nonuni-
form distribution in the histograms of the phase angle. This
distribution is farthest from uniform when the forcing is clos-
est tov f /2, see Figs. 12(d)–12(f).

Forcing near other resonances of the spiral wave fre-
quency also results in a near-resonant response, with the
number of peaks in the phase histogram corresponding to the
m:n resonance. In the 3:1 resonance we observe three peaks
and in the 4:1 resonance we find four peaks. Other spiral
resonances such as 5:1 and 6:1 can also be found. These
results are similar to observations near-resonant spirals in the
of the BZ experiment.

To characterize the effect of the forcing on the spiral wave
pattern, we measured the deviation of the phase from a uni-
form distribution. For an unforced spiral wave, the histogram
of the phase near the spiral frequency is flat, indicating that
the phase is uniformly distributed between −p andp. When
the spiral wave is nearly 2:1 resonant, the histogram shows
two peaks that are separated byp in the phase distribution.
They are shown in Figs. 12(d)–12(f).

FIG. 11. Resonant standing-wave response in the 2:1 forced
FHN Eq. (1). (a)–(c) Power spectra for three different forcing fre-
quencies near 2v0. The frequencies are normalized to the forcing
frequencyv f. The peak subharmonic response is exactly at half the
forcing frequency, even when the forcing is not exactly 2v0, as
indicated by the vertical line atv /v f =0.5. (d) and (e) Histograms
of the distribution of phase angle for the spiral waves in(a)–(c). The
two peaks in the distribution show that the pattern response is pri-
marily in two phases separated by an angle ofp. Parameters:g
=3.0, (a) v f =0.349,(b) v f =0.370,(c) v f =0.419.
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The nonuniform phase response was measured by the chi-
square statistic relative to the uniform distribution. The phase
data atk=2563256 computational grid points was binned
into 100 equal size bins between −p andp. The chi-square
statistic is

x2 = o
i

sNi − Ed2

E
, s3d

whereNi is the value in bini andE=k/100 is the expected
value. Figure 13 shows the dependence ofx2 on the forcing
amplitudeg when the forcing frequency is near 2vs. Thex2

value increases exponentially as the forcing amplitude is in-
creased from near zero. The nonzero value ofx2 at g=0 is
due to small fluctuations in the phase of our finite size
sample.

VI. DISCUSSION

The BZ chemical system in an open gel reactor was used
to identify multiple tongues, each with a differentm:n reso-
nance, in the forcing frequency-amplitude parameter plane.
Such a phase diagram has not been previously reported for a
spatially extended oscillatory system. The resonance tongues
are found to be ordered in a Farey sequence, similar to the
Devil’s staircase ordering of resonance tongues for two
coupled oscillators[30] and for the homogeneous BZ reac-
tion [31,32].

The diffusively coupled oscillations we measure respond
to external forcing either resonantly or at near resonance
(quasiperiodically but with anm-peaked phase distribution).
The resonant patterns are standing waves that frequency lock
to am:n ratio of the forcing frequency. In this case, a power
spectrum of the resulting resonant pattern shows a single
primary peak atf f /m, along with its higher harmonics, and
the phase distribution hasm peaks shifted by 2p /m. The
near-resonant patterns are traveling waves which do not lock
to a ratio of the forcing frequency but have a response near
f f /m. However, the phase distribution still showsm peaks.
This near-resonant quasiperiodic behavior is different from
quasiperiodicity farther away from resonance, where patterns
have a flat phase distribution[21,42].

Both the resonant and near-resonant behavior are also ob-
served in a FitzHugh-Nagumo reaction-diffusion model with
sinusoidal periodic forcing, similar to the experiments.
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