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Linear and nonlinear front instabilities in bistable systems
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Abstract

The stability of planar fronts to transverse perturbations in bistable systems is studied using the Swift–Hohenberg model and an urban
population model. Contiguous to the linear transverse instability that has been studied in earlier works, a parameter range is found where planar
fronts are linearly stable but nonlinearly unstable; transverse perturbations beyond some critical size grow rather than decay. The nonlinear front
instability is a result of the coexistence of stable planar fronts and stable large-amplitude patterns. While the linear transverse instability leads to
labyrinthine patterns through fingering and tip splitting, the nonlinear instability often evolves to spatial mixtures of stripe patterns and irregular
regions of the uniform states.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern formation phenomena in bistable systems are
determined to a large extent by front instabilities. Fronts
which are bi-asymptotic to a pair of stable uniform
states can go through transverse instabilities leading to
stationary labyrinthine patterns, or through non-equilibrium
Ising–Bloch (NIB) bifurcations resulting in traveling wave
phenomena such as Bloch spiral waves. The coupling of
the two type of instabilities can induce irregular spatio-
temporal behaviors (“Bloch-front turbulence”) involving
recurrent events of vortex-pair nucleation and annihilation.
Labyrinthine patterns arising from transverse front instabilities
have been observed in the FIS reaction [1] and in the
periodically forced oscillatory Belousov–Zhabotinsky (BZ)
reaction [2]. The forcing in this case was provided by periodic
uniform illumination at a frequency twice as large as the
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system’s oscillation frequency (2:1 forcing). Bloch spiral
waves have been observed in the periodically forced BZ
reaction and in liquid crystals [3,4]. Recent experiments on
the periodically forced BZ reaction have also demonstrated
Bloch-front turbulence [5]. These front instabilities have
been found and analyzed in various models including the
FitzHugh–Nagumo (FHN) model and a variant of the complex
Ginzburg–Landau equation (FCGL) that describes 2:1 periodic
forcing of uniform oscillations [6–9].

Another factor affecting pattern formation in bistable
systems is the possible pinning of fronts between a pattern and
a homogeneous state. Studies of the Swift–Hohenberg (SH)
model in one space dimension showed that self-induced
pinning, due to the oscillatory shape of the front tails, may
prevent a front between a patterned state and a uniform state
from propagating [10,11]. The result is that the evolution of a
pattern in the SH model might not result in a final state with the
lowest free energy.

Bistable systems often arise as a result of symmetry breaking
instabilities of uniform states. This is the case with the FHN
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and the SH models where uniform states lose stability in
pitchfork bifurcations. A different case is the FCGL equation
for 2:1 forcing. The unforced oscillations appear in a Hopf
bifurcation of a stationary uniform solution and correspond
to a continuous family of solutions whose phases span the
whole circle. The 2:1 forcing induces a pair of saddle-node
bifurcations which fix the oscillation phases at two stable
values shifted by π with respect to one another. Quite often
the stationary uniform states, undergoing the zero-wavenumber
pitchfork or Hopf bifurcations, go through finite-wavenumber
instabilities as well. Resonant coupling of the zero and finite-
wavenumber modes can lead to large amplitude patterns
[12–15] observed in various systems [16–19].

In this paper we introduce and study another possible
outcome of the coupling between zero and finite-wavenumber
instabilities — a nonlinear transverse front instability. The
asymptotic patterns that develop differ from those developing
from linear transverse instabilities in that they often contain
regions of uniform states coexisting with stripe domains.
We first demonstrate the nonlinear front instability in two
different models, the SH equation and a population model [20]
(Section 2). We then use the SH equation to study both the
linear and nonlinear transverse front instabilities and map
them along the bifurcation parameter axis (Section 3). We
also find (Section 4) that depinning of a front between a
homogeneous state and a pattern occurs via a zigzag instability
mechanism, which works far more efficiently than one-
dimensional nucleation [10] and greatly reduces the pinning
range.

2. Numerical demonstrations of linear and nonlinear
transverse front instabilities

We consider here two examples of bistable systems, the SH
equation and a population model describing urban segregation
phenomena [20]. In both models front solutions bi-asymptotic
to a symmetric pair of uniform states can become linearly
unstable to transverse perturbations. The asymptotic patterns
resulting from these linear transverse instabilities are stationary
labyrinthine patterns as found in other models such as the
FHN and FCGL. Contiguous to these instabilities in parameter
space, however, there exist parameter ranges where the fronts
are linearly stable but finite-size transverse perturbations still
grow. Depending on initial conditions, the asymptotic patterns
in this case may look like labyrinths that develop from linear
instabilities, or mixtures of stripes and regions of the two
uniform states. We demonstrate these behaviors by numerically
solving the SH equation and the population model.

2.1. The Swift–Hohenberg equation

The SH equation we consider has the form [10,21]

ut = εu − (∇2
+ 1)2u − u3, (1)

where u is a real scalar field and ε is the bifurcation control
parameter. The zero solution u = 0 loses stability to finite-
wavenumber perturbations at ε = 0, and goes through a
Fig. 1. Bifurcation diagram of uniform solutions to the Swift–Hohenberg Eq.
(1). The solution u = 0 for ε < 0 becomes unstable to finite wavenumber
perturbations at ε = 0 and then bifurcates to a pair of nonzero unstable solutions
at ε = 1. At ε = 1.5 the two nonzero solutions stabilize but fronts between
the two solutions have a linear transverse instability. For ε ∈ [εT , εM ] fronts
are linearly stable to transverse perturbations but large perturbations grow and
create a patterned state. Above εM the fronts are globally stable.

pitchfork bifurcation at ε = 1. The two uniform states, u±

= ±
√

ε − 1, that appear above ε = 1 are unstable to finite-
wavenumber perturbations but become stable above ε = 3/2.
Fig. 1 shows a bifurcation diagram of the uniform solutions
and the finite-wavenumber instabilities they go through (with
additional thresholds to be discussed below).

The bistability of uniform states in the range ε > 3/2
allows for front solutions approaching u± asymptotically
as x → ±∞ or x → ∓∞. These front solutions
are linearly unstable to transverse perturbations up to a
threshold ε = εT to be calculated in the next section. This
linear instability is demonstrated in Fig. 2(a). Beyond εT ,
the linear transverse instability disappears; small transverse
perturbations of the front decay out as Fig. 2(b) shows. The
front, however, remains unstable to finite-size perturbations,
implying a nonlinear transverse instability. The instability is
demonstrated in Fig. 2(c) which also shows the asymptotic
pattern that develops — a spatial mixture of parallel stripes
and regions of the two stable uniform states. The nonlinear
transverse instability disappears at a yet higher threshold, εM ,
to be calculated in the next section. Fig. 2(d) demonstrates the
global front stability above εM by showing the retraction of a
pattern state to a planar front.

2.2. A population model

The population model we consider here has been introduced
and studied in the context of segregation phenomena in
residential neighborhoods [20]. It consists of three dynamical
variables, u, v, and s, representing, respectively, the densities
of two distinct populations and the socio-economic status. A
simple version of the model equations, not including non-local
migration, is [20]:

ut = u − u2
+ us + ∇

2u − δ1∇
2s,

vt = αv − v2
− βvs + δ2∇

2v + δ3∇
2s,

st = ε(u − γ v − µs) − ξs3
+ δ4∇

2s.

(2)
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(a) ε = 2.

(b) ε = 5.

(c) ε = 5.

(d) ε = 7.

Fig. 2. Numerical solutions of the Swift–Hohenberg Eq. (1) demonstrating the
linear and nonlinear front instabilities. (a) In the parameter region of linear front
instability small perturbations on a front grow and form a labyrinthine pattern.
In the parameter region of nonlinear front instability, (b) small perturbations do
not grow, but (c) large perturbations are sufficient to create a patterned state. (d)
In the stable parameter range fronts are globally stable. An initial pattern state
returns to a front. All frames of SH solutions are of a 64 × 64 spatial region
with no-flux boundary conditions. Time increases in the frames from left to
right [22].

The parameter of interest is µ, the inverse of the segregation
strength. Fig. 3 shows a series of bifurcations found in this
model in complete analogy to the bifurcations shown in Fig. 1
for the SH model. A symmetric uniform mixed population state,
M = (u0, v0, s0), loses stability in a pitchfork bifurcation to
a pair of non-symmetric mixed population states, N±, as the
control parameter, µ, is reduced below µ = 2. This bifurcation
is preceded by a Turing bifurcation occurring at µ = µc > 2.
The Turing instability is carried over to the two non-symmetric
states, N±, that appear in the pitchfork bifurcation at µ = 2.
The non-symmetric states become stable only below another
threshold, µnc < 2.

Below µ = µnc, front solutions bi-asymptotic to the two
non-symmetric states, N±, are unstable to transverse pertur-
bations and evolve to labyrinthine patterns. Below another
Fig. 3. Bifurcation diagram for solutions to the u field of the urban population
model (2). The symmetric mixed population state M = (u0, v0, s0) becomes
unstable to finite wavenumber perturbations below µ = µc ≈ 2.029. At
µ = 2 it bifurcates to a pair of asymmetric mixed population states, N±. These
solutions are unstable to finite wavenumber perturbations, but become linearly
stable below µ = µnc ≈ 1.98. In this parameter range the system is bistable
and admits front solutions bi-asymptotic to N±. These solutions, however,
are linearly unstable to transverse perturbations down to µ = µT ≈ 1.84.
Below µT the front solutions are linearly stable to transverse perturbations
but are unstable to finite size (nonlinear) perturbations until µ = µM ≈ 1.6.
Parameters: µ = 1.75, δ4 = 0.1, δ = 1.12; all the other parameters are equal
to 1.

(a) µ = 1.75.

(b) µ = 1.75.

Fig. 4. Nonlinear instability in urban population model. (a) A small
perturbation retracts to a planar front. (b) A large perturbation grows into a
patterned state. All images are of a 50 × 50 region with no-flux boundary
conditions. Time increases in the frames from left to right. Parameters in Eq.
(2): µ = 1.75, δ4 = 0.1, δ = 1.12; all the other parameters are equal to 1.

threshold, µT [23], the fronts become linearly stable but finite
size perturbations do grow, indicating the existence of a nonlin-
ear front instability. Below yet another threshold, µM ≈ 1.6,
the nonlinear front instability disappears. Fig. 4 demonstrates
the nonlinear front instability for µM < µ < µT .

3. Mapping the front instabilities in parameter space

We evaluate the parameter ranges of the linear and nonlinear
front instabilities using the SH model which is simpler to
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analyze. The population model behaves qualitatively in the
same way.

3.1. The linear transverse front instability

Front solutions bi-asymptotic to the two stable states, u±,
exist for ε > 3/2, but are linearly unstable to transverse
perturbations as long as ε is smaller than some threshold value
εT . We evaluate now this threshold.

Denoting the unstable planar front solution by I (x) we write
a more general solution as

u(x, y, t) = I [x − Λ(Y, T1, T2, . . .)] + λu1 + λ2u2 + · · · , (3)

where x = Λ is the front position, λ � 1 is a small auxiliary
parameter, Y =

√
λy is a weakly varying transverse coordinate,

and Tn = λn t are slow multiple time variables. Since we are
interested in deriving the threshold, εT , for the linear transverse
instability, we will assume that Λ is small and neglect nonlinear
terms in Λ. Substitution of Eq. (3) in Eq. (1) yields at order λ:

Lu1 = −ΛT1 I ′
− 2(I ′

+ I ′′′)ΛY Y ≡ J1, (4)

where L = ε − 3I 2
− (∂2

x + 1)2. Solvability of Eq. (4) requires
〈J1, I ′

〉 = 0 or

ΛT1 = 2(D1 − 1)ΛY Y , (5a)

where

D1 =
〈I ′′, I ′′

〉

〈I ′, I ′〉
=

∫
∞

−∞
(I ′′)2dx∫

∞

−∞
(I ′)2dx

. (5b)

In obtaining Eq. (5b) we used the front symmetry I (−x)

= −I (x). Using Eq. (5a) in Eq. (4) we find the following form
for u1

u1 = ΛY Y f (x − Λ), (6)

where f is a solution of

L f = −2D1 I ′
− 2I ′′′. (7)

Proceeding to order λ2 we find

Lu2 = −ΛT2 I ′
− (I ′

+ 2D1 f + 2 f ′′)ΛY Y Y Y ≡ J2. (8)

Solvability of Eq. (8) requires 〈J2, I ′
〉 = 0 or

ΛT2 = (2D2 − 1)ΛY Y Y Y , (9a)

where

D2 =
〈D1 f + f ′′, I ′

〉

〈I ′, I ′〉
=

〈D1 I ′
+ I ′′′, f 〉

〈I ′, I ′〉
. (9b)

Inserting Eqs. (5a) and (9a) into Λt = λΛT1 + λ2ΛT2 and
rescaling back to the fast variables t and y we obtain the
evolution equation for the front position,

Λt = 2(D1 − 1)Λyy + (2D2 − 1)Λyyyy . (10)

According to Eq. (10), the growth rate of transverse front
perturbations Λ = Λ0 exp(σ f t + iky) is given by the dispersion
relation

σ f (k) = −2(D1 − 1)k2
+ (2D2 − 1)k4. (11)
Fig. 5. A graph of D1 − 1 vs. the control parameter ε. The zero of D1 − 1
denotes the onset, εT , of the linear transverse front instability. The insets show
dispersion relations for transverse modes in the unstable (ε < εT ) and stable
(ε > εT ) regimes.

The coefficients D1 and D2, given by Eqs. (5b) and (9b)
respectively, have been calculated numerically. Fig. 5 shows
the dependence of D1 on the control parameter ε. The onset of
the linear transverse instability occurs when D1(ε) = 1 which
gives the value εT ≈ 4.825. Below εT (for which D1 < 1)
the front is linearly unstable to wavenumbers within the band
0 < |k| <

√
2(1 − D1)/(1 − 2D2). The fastest growing mode

is given by |k| = (1 − D1)/(1 − 2D2) (numerical calculations
of D2 in the range 3/2 < ε < εT yield positive values for
1 − 2D2). Graphs of the dispersion relation (11) below and
above εT are given in the insets of Fig. 5.

3.2. The nonlinear transverse front instability

Above εT the front is linearly stable but nonlinearly unstable
as Fig. 2(b),(c) demonstrate. The nonlinear instability follows
from the coexistence of stable planar fronts and stable large-
amplitude patterns. A prerequisite for that is coexistence of
the stable symmetric uniform states, u±, with stable large-
amplitude patterns. Such coexistence can result from the
resonant coupling of the finite-wavenumber mode, associated
with the instability of the u = 0 state at ε = 0, and the zero-
wavenumber mode, associated with the pitchfork bifurcation at
ε = 1 [12–14]. The growth of both modes for ε > 1 is shown
by the dispersion relation displayed in Fig. 6.

In the range 1 < ε < 3/2 large-amplitude patterns appear
to be the only attractor of the system. The symmetric uniform
states, u±, are unstable in this range, and the finite-wavenumber
modes that grow do not saturate at small amplitudes, but rather
grow to form large-amplitude patterns spanning the whole
range between u+ and u−. The large-amplitude patterns persist
beyond ε = 3/2, where the symmetric uniform states, u±,
become stable and, as Fig. 7 demonstrates, also beyond ε = εT ,
where the front solutions that asymptote to u± become linearly
stable [24].

The nonlinear front instability that appears at εT persists
up to a second threshold εM , beyond which arbitrarily large
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Fig. 6. Example dispersion relations for the u = 0 solution of the
Swift–Hohenberg model, σo = ε − (1 − k2)2, calculated for ε = 0.5 (dashed
curve) and ε = 2 (solid curve). For ε = 0.5 the u = 0 solution is unstable to
finite wavenumber perturbations. For ε > 1 it is unstable to finite-wavenumber
and zero-wavenumber perturbations.

Fig. 7. Development of labyrinthine pattern from random initial conditions. (a)
The spatial pattern evolves quickly into a labyrinth. (b) A cross section of the
pattern (at the position indicated in (a) by the horizontal line) shows that the
labyrinthine pattern is a large-amplitude pattern which approaches the value of
the uniform states u±. Parameters: ε = 5, u± =

√
ε − 1 = 2, x = y = [0, 64],

t = 0, 1, 2, 480.

perturbations decay in time as Fig. 2(d) demonstrates. To
evaluate εM we consider front solutions that are bi-asymptotic
to one of the two uniform states, u±, and to a pattern state with
stripes oriented perpendicularly to the front line. We identify
the threshold εM with the ε value at which neither state invades
the other, that is, the front solution is stationary. Fig. 8 shows
numerical solutions of the SH equation suggesting the existence
of a unique value, εM ≈ 5.7, at which the front separating
a uniform state and a pattern state, with stripes perpendicular
to the front line, is stationary. Below that value, ε < εM ,
the pattern state invades the uniform state [Fig. 8(a)] and,
consequently, large enough perturbations of a planar front, that
locally converge to the pattern state, will grow. Above εM the
uniform state invades the pattern state [Fig. 8(b)] and front
perturbations of arbitrary size decay.

The value of εM can also be calculated using the fact that
the SH model is a gradient system having a Lyapunov or energy
(a) ε = 5.65.

(b) ε = 5.75.

Fig. 8. Numerical solutions of the SH equation with a uniform state and pattern
state in the same domain. The nonlinear front instability boundary εM ≈ 5.7
can be estimated by finding the value of ε where the interface between the
uniform and pattern state is stationary. (a) For ε < εM , the pattern state
invades the uniform state. (b) For ε > εM , the uniform state invades the pattern
state. Parameters: x = y = [0, 65.5]. The wavelength of the stripe pattern is
k ≈ 0.96. Time increases in the frames from left to right.

functional

F(u) =

∫
dr

[
−

ε

2
u2

+
1
4

u4
+

1
2

(
∇

2u + u
)2

]
, (12)

satisfying Ḟ = −
∫

dr (δF/δu)2
≤ 0. The value of εM is

determined by requiring the energy of the pattern state to be
equal to that of the uniform state. Such a calculation has been
previously done but not with good accuracy; in Ref. [25] the
energy is estimated from two-dimensional numerical solutions
(εM ≈ 6.3) and in Ref. [10] by numerically solving a
stationary, one-dimensional version of Eq. (1) (εM ≈ 6.287).
We calculated the energy of a stripe pattern by numerically
solving a one-dimensional version of the SH equation (1) and
Eq. (12). The energies of pattern and uniform solutions, shown
in Fig. 9, are equal at εM ≈ 5.7 where the minimum energy
stripe pattern has wavenumber k ≈ 0.96. This is consistent with
our observations of the interface propagation between the stripe
and uniform states shown in Fig. 8.

4. Pinning of front motion

Estimating εM by energy considerations is not applicable
when the front motion is pinned by the periodic structure of
the pattern state. Pinning effects have indeed been found in
the one-dimensional SH model [10,11]; the pattern state does
not invade the uniform states in the range εP < ε < εM ,
where εP ≈ 1.7574, despite the lower energy of the pattern
state. In two space dimensions no pinning can occur, unless
the stripes are parallel to the front line. In that case, which
imitates the one-dimensional setup, we found a reduced pinning
range, εD P < ε < εM where εD P > εP is rather close to
the linear instability limit εT . The depinning mechanism via
nucleation of new stripes of the pattern state, which operates in
one dimension, turns out to be ineffective in a two-dimensional
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Fig. 9. The energy of solutions to the SH equation for a spatially uniform
solution, (ε − 1)2/4, and for a stripe pattern with wavenumber k ≈ 0.96.
The stripe pattern has lower energy for ε < εM ≈ 5.7. The energy of the
stripe pattern is computed by solving the one-dimensional version of Eq. (1)
for a periodic stripe pattern and evaluating the Lyapunov functional (12). The
pattern with wavenumber k ≈ 0.96 is the minimum energy pattern in this range
of ε. The energy values are normalized to unit area.

Fig. 10. Depinning of the pattern state in the SH equation. In a one dimensional
system the stripe pattern is stationary (pinned). In two dimensions the zigzag
instability causes depinning of the stripes. The wavelength of the zigzag
instability is somewhat larger than that of the stripe pattern. The pattern evolves
into a labyrinth by nucleating convex–concave disclination pairs. Parameters:
ε = 4, x = y = [0, 64], t = 0, 950, 1150, 2450.

setting. The mechanism of depinning in the range εP < ε <

εD P is shown in Fig. 10. It consists of a zigzag instability of
the pattern states followed by the nucleation of convex–concave
disclination pairs [26] with the convex disclinations moving
toward the uniform states as the pattern spreads out. The
parameter range of pinning shrinks considerably due to the
more effective two-dimensional depinning.

5. Discussion

We considered here front solutions which are bi-asymptotic
to pairs of stable, symmetric uniform states, and studied their
stability to transverse perturbations using the SH equation
and a population model. We demonstrated in both models the
existence of a nonlinear transverse front instability whereby
small transverse perturbations along the front line decay while
perturbations beyond some critical amplitude grow and evolve
towards a stationary pattern state. The following conditions
appear necessary for a nonlinear transverse front instability
to occur: (i) coexistence of a stable planar front and a stable
large-amplitude stripe pattern, and (ii) dominance of the pattern
state over the uniform states (pattern state invades the uniform
states).
Condition (i) requires the coexistence of a stable large-
amplitude pattern with a symmetric pair of stable uniform
states (e.g. u± in the SH model). Such state coexistence can
result from resonant coupling of zero and finite-wavenumber
modes [12,14]. Dispersion relations which show the growth
of both modes, as in Fig. 6, may therefore serve as indicators
for the possible coexistence of large-amplitude patterns and
uniform states. Our numerical studies show that both the FHN
and FCGL models have a parameter range where the dispersion
relations of the trivial states are as in Fig. 6, and that in
this range large-amplitude patterns indeed coexist with the
symmetric pairs of uniform states. In the case of the FHN
model, however, condition (i) is not satisfied as planar fronts
in this range appear to be linearly unstable. In the range
where planar fronts are linearly stable the dispersion relation
shows a maximum at k = 0. The pattern states that develop
consists of large coarsening domains of the two uniform states,
and condition (i) is again not satisfied. Indeed our attempts
to identify a nonlinear front instability in the FHN model
have not succeeded. Our studies of the FCGL equation are
less conclusive and further studies exploring wider parameter
ranges are needed.

Condition (ii) can be violated by pinning effects which
render the fronts (separating the pattern state and the uniform
states) stationary over some parameter ranges. This is the case
with the SH model in one space dimension [10]. Our two-
dimensional studies of the SH model do not reveal pinning
effects when the stripes are perpendicular to the front line.

The asymptotic patterns that develop from nonlinear
transverse front instabilities can differ considerably from the
labyrinthine patterns that develop from linear front instabilities.
The linear stability of the fronts along with the stability of
the symmetric uniform states often favor the formation of
uniform solution regions intermingled with stripes, as Fig. 2(c)
(rightmost frame) shows. In this particular simulation the
uniform solution regions result from a significant mismatch
between the wavenumber of the transverse front perturbation
and the wavenumber of the stripe pattern. The results of this
study may be relevant to observations of oscillation-phase
interfaces in vibrated granular layers [27,28].
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