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Propagation failure in excitable media
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We study a mechanism of pulse propagation failure in excitable media where stable traveling pulse solutions
appear via a subcritical pitchfork bifurcation. The bifurcation plays a key role in that mechanism. Small
perturbations, externally applied or from internal instabilities, may cause pulse propagation failure~wave
breakup! provided the system is close enough to the bifurcation point. We derive relations showing how the
pitchfork bifurcation is unfolded by weak curvature or advective field perturbations and use them to demon-
strate wave breakup. We suggest that the recent observations of wave breakup in the Belousov-Zhabotinsky
reaction induced by either an electric field@J.J. Taboadaet al.. Chaos4, 519~1994!# or a transverse instability
@M. Markus, G. Kloss, and I. Kusch, Nature~London! 371, 402~1994!# are manifestations of this mechanism.
@S1063-651X~97!11512-4#

PACS number~s!: 05.45.1b, 82.20.Mj
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I. INTRODUCTION

Failure of wave propagation in excitable media very oft
leads to the onset of spatiotemporal disorder. In the con
of electrophysiology it may lead to ventricular fibrillation
Numerous studies have appeared in the past few years
onstrating conditions and mechanisms for failure of propa
tion in excitable and bistable media@3–9#. Failure may occur
by external perturbations or spontaneously by intrinsic ins
bilities. Experimental examples include wave breakups in
excitable Belousov-Zhabotinsky~BZ! reaction induced by an
electric field@1# and by a transverse instability@2#.

Recently we have attributed domain breakup phenom
in bistable media to the proximity to a pitchfork front bifu
cation illustrated schematically in Fig. 1~a! @10,11#. As
shown in Fig. 1~b!, near the bifurcation small perturbation
such as an advective field or curvature, unfold the pitchf
bifurcation to anS-shaped relation. If the perturbation
large enough to drive the system past the end point o
given front solution branch the front reverses direction.
local reversal event along an extended front line in a tw
dimensional system involves the nucleation of a pair of sp
waves and is usually followed by domain breakup. The fr
bifurcation illustrated in Fig. 1~a! has been referred to in th
literature as a nonequilibrium-Ising-Bloch~NIB! bifurcation
@12,13#.

In this paper we extend these ideas to wave breakup
excitable media. The NIB bifurcation is replaced in this ca
by a subcritical pitchfork pulse bifurcation as shown in F
2~a!. The typical unfolding of that bifurcation is shown i
Fig. 2~b!. Similar to the case of front solutions in bistab
systems, perturbations that drive the system beyond the
point of a given pulse branch may either reverse the direc
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of pulse propagation or lead to pulse collapse and con
gence to the stable uniform quiescent state@not shown in Fig.
2~b!#. The convergence to a uniform attractor is more like
to occur for pulse structures than for fronts and has alw
been observed in our simulations. Thus, in our study,

FIG. 1. Bifurcation diagrams for fronts in the bistable FH
reaction-diffusion system.~a! At the Nonequilibrium Ising-Bloch
bifurcation a stationary front becomes unstable to a pair of coun
propagating fronts as a control parametere is varied. The solid lines
represent a branch of front solutions with speedc. ~b! Unfolding the
bifurcation near the critical pointec gives anS-shaped relation in
the unfolding parameterP.
299 © 1998 The American Physical Society
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300 57A. HAGBERG AND E. MERON
critical value of the bifurcation parametere f , at which the
upper and lower branches in Fig. 2~a! terminate, designate
the failure of propagation. Reversals in the direction
propagation~rather than collapse! have been observed in ex
periments on the Belousov-Zhabotinsky reaction subjecte
an electric field@14#.

In two space dimensions a local collapse of a spatia
extended pulse amounts to a wave breakup. By numeric
integrating a FitzHugh-Nagumo~FHN!–type model, we
demonstrate two scenarios of wave breakups: breakup
duced by an advective field, modeling an electric field in
BZ reaction, and breakup induced by a transverse~or lateral!
instability. The two scenarios, observed in both experime
@1,2# and numerical simulations@1,9#, reflect the same
mechanism: the ability of weak perturbations to drive tran
tions from one of the pulse branches to the uniform attrac
when the system is close to failure of propagation.

In Sec. II we describe the derivation of a pulse bifurcati
diagram for a FHN model. The derivation applies to bo
excitable and bistable media. The information contained
this diagram is used to draw the propagation failure line in
appropriate parameter space. In Sec. III we consider the
folding of the pulse bifurcation by an advective field a
demonstrate wave breakup near the propagation failure.
unfolding by curvature is studied in Sec. IV and wa
breakup induced by a transverse instability is demonstra
We conclude in Sec. V with a discussion.

FIG. 2. Bifurcation diagrams for pulse solutions in the excita
FHN system.~a! A typical relation for the pulse speedc vs the
system parametere gives a subcritical pitchfork bifurcation.~b!
Unfolding the bifurcation near the critical pointec gives a multiple
S-shaped curve forc in the unfolding parameterP.
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II. A BIFURCATION DIAGRAM FOR PULSE SOLUTIONS

We derive the pulse bifurcation diagram using
activator-inhibitor model of the FHN type. We assume th
the activator varies on a time scale much shorter than tha
the inhibitor and use singular perturbation theory@15–17#.
Specifically, we study the pair of equations

ut5e21~u2u32v !1d21¹2u, ~1!

v t5u2a1v2a01¹2v,

wherem5e/d!1 and the subscriptst denote partial deriva-
tives with respect to time. We consider a periodic wave tr
of planar~uniform along one dimension! pulses traveling at
constant speedc in the x direction. Each of the excited~or
‘‘up-state’’! domains occupies a length ofl1 . The recovery
~or ‘‘down-state’’! domains are of lengthl2 . In regions
whereu varies on a scale of order unity Eqs.~1! reduce to

vxx1cvx1u1~v !2a1v2a050, 2l2,x,0

vxx1cvx1u2~v !2a1v2a050, 0,x,l1 , ~2!

wherex5x2ct and u6(v) are the outer solution branche
of the cubic equationu2u32v50. Fora1 sufficiently large
we may linearize the branchesu6(v) aroundv50,

u6~v !'612v/2 . ~3!

We solve Eqs.~2! using the boundary conditions

v~2l2!5vb , ~4!

v~0!5v f ,

v~l1!5vb ,

where v f and vb are yet undetermined, and the linear a
proximation~3!. The solutions are

v5A1exp~s1x!1B1exp~s2x!1v1 , 2l2,x,0

v5A2exp~s1x!1B2exp~s2x!1v2 , 0,x,l1,

with

s1,252
c

2
6Ac2

4
1a111/2,

A65
~vb2v6!2~v f2v6!exp~7s2l7!

exp~7s1l7!2exp~7s2l7!
,

B65
2~vb2v6!1~v f2v6!exp~7s1l7!

exp~7s1l7!2exp~7s2l7!
,

and v65(612a0)/(a111/2). Matching the derivatives o
the solutions atx50, v8(02)5v8(01), and imposing peri-
odicity on the derivativesv8(2l2)5v8(l1), we obtain two
conditions
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57 301PROPAGATION FAILURE IN EXCITABLE MEDIA
s1A11s2B15s1A21s2B2 , ~5a!

s1A1exp~2s1l2!1s2B1exp~2s2l2!

5s1A2exp~s1l1!1s2B2exp~s2l1!. ~5b!

Two more conditions are obtained by studying the ‘‘fron
and the ‘‘back,’’ that is, the leading and trailing border r
gions between the excited and recovery domains. Stretc
the spatial coordinate according toz5x/Am gives the non-
linear eigenvalue problems

uzz1chuz1u2u32v f50, ~6!

u~z!→u2~v f ! as z→`,

u~z!→u1~v f ! as z→2`,

for the narrow front region and

uzz1chuz1u2u32vb50, ~7!

u~z!→u1~vb! as z→`,

u~z!→u2~vb! as z→2`,

for the narrow back region. Hereh5Aed. Solutions of Eqs.
~6! and ~7! yield

ch52
3

A2
v f , ~8!

ch5
3

A2
vb , ~9!

respectively.
Substituting relations~8! and~9! into Eqs.~5! leaves two

equations for the three unknownsl1 , l2 , andc. The one-
parameter family of solutions describes periodic wave tra
of pulses traveling with speed

c5C~l;h,a0 ,a1!, ~10!

wherel5l11l2 is the varying wavelength of the family
The graph ofc versusl provides the dispersion relatio

FIG. 3. Pulse failure propagation boundary in thee-d parameter
plane for the excitable FHN model. To the right of the line puls
fail to propagate. The parameters area151.25 anda0520.2.
ng

s

curve obtained in earlier studies@15,16#. Our interest here is
with the behavior of a single pulse and therefore only
limit of large l will be considered. We remind the read
that in deriving these equations we have assum
m5e/d!1, which excludes very smalld values.

We solved Eqs.~5! numerically for both excitable and
bistable systems at large values of the periodl. The solu-
tions were computed by numerical continuation of know
solutions whena050 andl15l2 . They yield the typical
bifurcation diagram for the speedc in terms of the paramete
e as shown in Fig. 2~a!. At some critical valuee f , the branch
of solutions terminates and past that point pulses fail
propagate. The value ofe f depends on the other system p
rameters as well. Figure 3 shows a graph ofe5e f(d) for an
excitable system.

Note the inherent subcritical nature of the bifurcati
@18,19#. The bifurcation becomes supercritical only in th
limit a0→0 ~pertaining to a bistable medium! where the
pulse size tends to infinity. In that limit Eqs.~5! can easily be
solved. The solutions arec50 and c56(2q/h)Ahc

22h2

for h,hc and coincide with the nonequilibrium Ising-Bloc
bifurcation for front solutions@20#.

III. WAVE BREAKUP BY AN ADVECTIVE FIELD

Application of an electric field to a chemical reaction i
volving molecular and ionic species, like the BZ reactio
results in a differential advection@21#. Differential advection
in the FHN equations can be modeled~without loss of gen-

s

FIG. 4. Solutions of the speedc vs advectionJ relation~12!. ~a!
Away from the bifurcation point, variations inJ have little effect on
the pulse speed (e50.01). ~b! Near the bifurcation point, smal
variations in J may drive the system past the end point of t
solution branch and cause pulse collapse (e50.05). Other param-
eters area151.25,a0520.2, andd51.0.
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302 57A. HAGBERG AND E. MERON
erality! by adding an advective term to the inhibitor equati

ut5e21~u2u32v !1d21¹2u, ~11!

v t5u2a1v2a01J•¹v1¹2v,

where J is a constant vector. Looking for planar solutio
propagating at constant speeds in theJ direction and rescal-
ing e andd by the factorc/(c1J) we find the influence on
the pulse speed by the advection

c1J5CS l;
c

c1J
h,a0 ,a1D , ~12!

whereC is defined in Eq.~10!. Figure 4 shows the depen
dence of the pulse speedc on the advection constantJ ob-
tained by numerically solving Eq.~12! for large l. Away
from failure of propagation (e is significantly smaller than
e f) small variations ofJ have little effect on the pulse mo
tion @Fig. 4~a!#. However, close to failure, such variation
can induce wave breakup by driving the system past the
point J5Jc @Fig. 4~b!#.

Figure 5 shows a numerical simulation of Eqs.~11! with
J5Jx̂ and an initial condition of a curved pulse. Along th
pulse the effective advection field is the projection ofJ onto
the direction of propagation at that point. WithJ50 the
curved pulse propagates uniformly outward in a circular ri
ChoosingJ slightly greater thanJc , a wave breakup results
The part of the pulse propagating in thex̂ direction fails to
propagate. Those parts propagating in significantly differ
directions still propagate. These results explain earlier ob
vations of wave breakup induced by electric fields@1#.

FIG. 5. Numerical solution of Eqs.~11! with a weak advective

field J5Jx̂. The thick and thin lines pertain tou50 and v50
contour lines, respectively. The initial circular pulse fails to prop
gate along the direction of the advective field and the pulse bre
The pulse continues to propagate in directions different from
advective field. The equation parameters are the same as in F
nd

.

t
r-

IV. WAVE BREAKUP INDUCED
BY A TRANSVERSE INSTABILITY

Spatially extended pulses, such as stripes or disks, ma
unstable to transverse perturbations along the pulse
Ohta, Mimura, and Kobayashi studied the case of deform

FIG. 6. Solutions to the speed vs curvature relation~14!. ~a!
Away from the bifurcation point~top!, the speedc varies approxi-
mately linearly with the curvaturek (e50.003).~b! Near the bifur-
cation point, small curvature variations may drive the system p
the end point of the solution branch and cause pulse colla
(e50.022). Other parameters area151.25,a0520.2, andd52.5.

FIG. 7. Breakup of a pulse by transverse instability. The th
and thin lines pertain tou50 andv50 contour lines, respectively
The initial almost planar pulse is unstable to transverse pertu
tions and forms a dent. The dent grows and the pulse breaks a
region of high curvature. The equation parameters are the sam
in Fig. 6.
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57 303PROPAGATION FAILURE IN EXCITABLE MEDIA
tions of planar and disk-shaped stationary patterns in a pi
wise linear FitzHugh-Nagumo model@22#. Kessler and Le-
vine derived conditions for the transverse instability
traveling stripes in a piecewise linear version of the Ore
nator @23#. The curvature induced by a transverse instabi
can lead to the formation of labyrinthine patterns@8,24,25# or
cause spontaneous breakup of a pulse as we will now sh

For the model of Eqs.~1!, the effect of curvaturek on
pulse propagation can be obtained from Eq.~10! by rewriting
the equations in a frame moving with the pulse@26#. Assum-
ing that the radius of curvature is much larger than the pu
width and assuming a negligible dependence ofu andv on
arclength and time~in the moving frame! we obtain

d21u91~c1d21k!u81e21~u2u32v !50, ~13!

v91~c1k!v81u2a1v2a050,

where the prime denotes differentiation with respect to a
ordinate normal to the front line. Rescalinge and d by the
factor (c1d21k)/(c1k) Eq. ~10! becomes

c1k5CS l;
c1d21k

c1k
h,a0 ,a1D . ~14!

Figure 6 shows numerical solutions of Eq.~14! for c in terms
of k. Far away from the failure of propagation@Fig. 6~a!# we
find the usual approximate linearc-k relations for right
(c.0) and left (c,0) propagating pulses@15,17#. Close to
failure @Fig. 6~b!#, small realizable curvature variations ma
cause collapse.
os
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Equation~14! contains information also about the tran
verse stability of a pulse line. A positive slope of ac-k
relation atk50 indicates an instability of a planar puls
Figure 7 shows a simulation of Eqs.~1! at parameter values
pertaining to thec-k relation in Fig. 6~b!. Starting with a
near planar pulse, dents grow due to a transverse instab
The negative curvature that develops induces a w
breakup.

V. CONCLUSION

We have identified a mechanism for breakup of waves
an excitable media. The key ingredient of this mechanism
the proximity to a subcritical pitchfork pulse bifurcation@as
shown in Fig. 2~a!#. Near the bifurcation small perturbation
become significant and may induce the failure of propa
tion. The nature of the perturbation is of secondary imp
tance. As illustrated in Figs. 4~b! and 6~b!, the effects of an
advective field and curvature are similar; they both indu
wave breakup by driving the system past the end points
propagating pulse branches. A perturbation inducing brea
can be externally applied, such as an electric field in the
reaction, or spontaneously formed, such as curvature gro
by a transverse instability. An interesting question not
solved in this study is the observed preference of propaga
failure or collapse rather than reversal in the direction
propagation.
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