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Order parameter equations for front transitions: Planar and circular fronts
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Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts.
Often this results in nonsteady asymptotic motion, such as breathing and domain breakup. Exploiting the time
scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations
of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order
parameter describing transitions between left and right propagating fronts. Perturbations, such as a space
dependent advective field or uniform curvature~axisymmetric spots!, couple these two degrees of freedom. In
both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is
approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.
@S1063-651X~97!09904-2#
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I. INTRODUCTION

Pattern dynamics in reaction-diffusion systems often
volve nonsteady front motions. These motions can be dri
by curvature@1,2#, front interactions@3,4#, convective insta-
bilities @5,6#, and external fields@7–9#. In some cases, front
reverse their direction of propagation, as, for example,
breathing pulses@10–18#, where the reversal is periodic i
time, and nucleation of spiral-vortex pairs, where the reve
is local along the extended front line@19–23#.

Earlier studies demonstrated that front reversals, as
scribed above, become feasible near a nonequilibrium Is
Bloch ~NIB! bifurcation @15,24#, that is, a parity breaking
bifurcation where a single stationary front loses stability t
pair of new, counterpropagating fronts. The reversal p
nomenon can be regarded as a dynamic transition betw
the left and right propagating fronts that appear beyond
front bifurcation. It is induced by intrinsic perturbations, lik
curvature and front interactions@19,25#, or weak space de
pendent external fields@20#. Since the left and right propa
gating fronts differ in internal structure@15#, such a transi-
tion involves a new degree of freedom, in addition to t
translation mode: the order parameter associated with
bifurcation @20#. The effect of the perturbations is to coup
these two degrees of freedom in a way that allows for fr
reversal.

Our objective is to derive equations for front motion th
capture front reversal. Progress toward that goal has alre
been made in Refs.@20,26# for a nondiffusing inhibitor.
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Since inhibitor diffusion is essential for spontaneous fro
reversals induced by curvature, in this work we study
more difficult case of a diffusing inhibitor. This calls for
different approach as described in Secs. III and IV. In Sec
we study front reversals induced by two types of pertur
tions of planar fronts, an external advective field and unifo
curvature. In this case, only planar and circular fronts
studied; the derivation of the more general equations for n
uniformly curved fronts can be found in Ref.@27#. Some of
the results presented here have been briefly reported in
@28#.

II. REACTION-DIFFUSION MODEL

The model we consider is an activator-inhibitor reactio
diffusion system describing a bistable medium. Models
this type have been studied in various physical and chem
contexts@1,2,29–32#. The specific form chosen here is

ut5e21~u2u32v !1d21uxx , ~1!

v t5u2a1v1vxx .

The variablesu andv are scalar real fields representing t
activator and the inhibitor, respectively, with the subscri
x and t denoting partial derivatives with respect to the
variables. Fora1.1 system~1! has two stationary uniform
states, (u6 ,v6)5(6A121/a1,6a1

21A121/a1). Note that
the parity symmetry (u,v)→(2u,2v) of Eqs. ~1! is re-
flected in these solutions. Generalizations of Eqs.~1! to non-
symmetric forms in one and two space dimensions will
considered in Sec. V.
4450 © 1997 The American Physical Society
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55 4451ORDER PARAMETER EQUATIONS FOR FRONT . . .
In addition to the spatially uniform solutions there a
also front solutions connecting them. In the following w
will consider front solutions that connect (u1 ,v1) at
x52` to (u2 ,v2) at x5`. The number and type of thes
front solutions is determined by the two parameterse and
d. Forh.hc53/2A2q3, whereh5Aed andq25a111/2, a
single stable stationary~Ising! front solution exists. This so
lution loses stability in a pitchfork bifurcation, ath5hc , to
a pair of counterpropagating~Bloch! front solutions@15,31–
33# as shown in Fig. 1. The two Bloch front solutions diff
not only in their propagation direction but in their intern
structure. This difference can be represented by an orde
rameter associated with the bifurcation, which f
m5e/d!1 can be taken to be the valuev f of the v field at
the front position. For simplicity we define the front positio
to be atu50. With this choice,v f50 for the Ising front~the
inset forh.hc in Fig. 1!. Beyond the front bifurcation,v f is
nonzero and the sign indicates the direction of front pro
gation: v f,0 for the front propagating to the right an
v f.0 for the front propagating to the left (h,hc in Fig. 1!.

III. FORMULATION OF THE FREE BOUNDARY
PROBLEM

In the following we confine ourselves to the regio
e!1, d}e21 and we choose d values such tha
ed;O(hc

2). The small parametere allows the use of singu
lar perturbation methods to study front solutions to Eqs.~1!.
The first step is to transform to a moving coordinate fram
x→r5x2xf(t), t→t, wherexf is the position of the front.
In this frame Eqs.~1! become

ut2 ẋfur5e21~u2u32v !1d21urr , ~2!

v t2 ẋfv r5u2a1v1v rr ,

where the dot overxf denotes the derivative with respect
t. The front solution,u(r ,t), v(r ,t), is characterized by a
strong variation of theu field over a distance of orde

FIG. 1. The NIB ~or nonequilibrium Ising-Bloch! bifurcation
and internal structure of front solutions. The pitchfork diagram r
resents the speed of front solutions vs the parameterh. For
h.hc , the Ising front is the single solution andv f , the order
parameter representing the value of thev field at the front position
u50, is zero. Beyond the bifurcation,h,hc , a pair of counter-
propagating Bloch fronts appears. The order parameterv f is nega-
tive ~positive! for rightward ~leftward! propagating fronts.
a-

-

,

Am5Ae/d. Stretching the spatial coordinate,z5r /Am, to
expand this region Eqs.~2! become

e~ut2 żfuz!5u2u32v1uzz, ~3!

m~v t2 żfvz2u1a1v !5vzz,

wherezf5xf /Am and we recall thatm}e2. Expanding ine

u5u01eu11e2u21•••,

v5v01ev11e2v21•••,

and inserting into Eq.~3! we find at order unity the front
solution

u052tanh~z/A2!, v050 .

Collecting terms of ordere gives

Lu15v12 żfu0z , L5]z
21123u0

2 , ~4!

wherev1 is a yet undetermined function of time. Since

Lu0z50 ,

solvability of Eq.~4! requires

żf52
3

A2
v1~ t !.

The narrow front region becomes infinitely thin in the lim
e→0. Therefore,v(t) may be associated with the value
v(r ,t) at the front position, that isv(0,t). With this notation
the leading order relation is

ẋf52
3

hA2
v~0,t !. ~5!

Away from xf , u2u32v;O(e), and u varies on the
same time and length scales asv. Going back to Eqs.~2!, we
find at order unity

v t2 ẋfv r5u1~v !2a1v1v rr , r<0 , ~6!

v t2 ẋfv r5u2~v !2a1v1v rr , r>0 ,

whereu6(v) are the outer solution branches of the cub
equationu2u32v50. Fora1 sufficiently large we may lin-
earize the branchesu6(v) aroundv50

u6~v !'612v/2. ~7!

Substituting the linearization~7! and the relation from the
inner problem~5! into Eq. ~6! produces the free boundar
problem

v t1q2v2v rr512
3

hA2
v~0,t !v r

v~2`,t !5v1'q22
J r<0 , ~8!

-
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4452 55A. HAGBERG, E. MERON, I. RUBINSTEIN, AND B. ZALTZMAN
v t1q2v2v rr5212
3

hA2
v~0,t !v r

v~`,t !5v2'2q22
J r>0 ,

@v# r505@v r # r5050 , ~9!

where the square brackets in Eq.~9! denote jumps across th
free boundary. The solution to Eq.~8! leads to a dynamic
equation forv f(t)5v(0,t), the value of the inhibitor at the
front positionxf(t), which will complement Eq.~5!.

IV. SOLUTION OF THE FREE BOUNDARY PROBLEM

Near the front bifurcation (h close tohc), the front speed
c is small and propagating front solutions can be expan
as power series inc around the stationary front solution. Th
stationary front solution satisfies the boundary value prob

v rr2q2v1150

v~2`!5q22

v~0!50
J r<0 , ~10!

v rr2q2v2150

v~`!52q22

v~0!50
J r>0 ,

with @v r # r5050. The solution to Eq.~10! is

v ~0!~r !5q22~12eqr!, r<0 , ~11!

v ~0!~r !5q22~e2qr21!, r>0 .

Note that v r
(0)52q21exp(2quru) is not differentiable at

r50.
In terms of the deviation from the stationary solutio

v̄5v2v (0), Eqs.~8! are

v̄ t1q2v̄2 v̄ rr52
3

hA2
v~0,t !~ v̄ r1v r

~0!!, ~12!

v̄~6`!50 .

We seek propagating solutions of Eq.~12! that involve
two time scales, the original timet and a slow time
T5c2t. The slow time dependence is a result of the sl
evolution ofv f ~the value of the inhibitor at the front pos
tion! near the front bifurcation. It is easy to show that
linear orderv̇ f}(hc2h)v f and for a pitchfork bifurcation
hc2h}c2, hence thec2 scale. Expandingv̄(r ,t,T) in pow-
ers ofc andh in powers ofc2 ~expecting a pitchfork bifur-
cation!,

v̄~r ,t,T!5 (
n51

`

cnv ~n!~r ,t,T!, ~13!

h5hc2c2h11c4h21•••, ~14!

and inserting in Eq.~12! gives the sequence of equations
d

m

,

v t
~n!1q2v ~n!2v rr

~n!52r~n!, n51,2,3 ~15!

where

r~1!5
3

A2hc

v ur50
~1! v r

~0! , ~16a!

r~2!5
3

A2hc
@v ur50

~1! v r
~1!1v ur50

~2! v r
~0!#, ~16b!

r~3!5vT
~1!1

3h1

A2hc
2 v ur50

~1! v r
~0!

1
3

A2hc

@v ur50
~1! v r

~2!1v ur50
~2! v r

~1!1v ur50
~3! v r

~0!#.

~16c!

Equation~15! can be solved using an appropriate Gree
function and assuming that the front motion is independ
of the fast time scalet ast→` @28#. A simplified derivation
of the solution follows from the gradient nature of Eq.~15!
when the source termr (n)(r ,T) becomes independent oft.
For thenv t

(n)→0 as t→` for any r and we can look for
stationary (t independent! solutions.

Consider first v (1). Inserting Eq. ~16a! in
v rr
(1)2q2v (1)5r (1) and solving forv (1) we obtain

v ~1!~r ,T!5
3

2A2hcq
3
v ~1!~0,T!F~r !, ~17!

where

F~r !5~12qr !eqr, r<0 ,

F~r !5~11qr !e2qr, r>0 .

Settingr50 we find

hc5
3

2A2q3
. ~18!

The critical valuehc5h(c50) determines the bifurcation
point where the propagating Bloch front solutions coinci
with the stationary Ising front. The expression~18! is the
same as the one derived earlier using a different met
@15,25#.

Using Eq.~17! to solvev rr
(2)2q2v (2)5r (2) we find

v ~2!~r ,T!5@v ~2!~0,T!1 1
2v ~1!~0,T!2q3r #F~r !, ~19!

and using both Eqs.~17! and ~19! in v rr
(3)2q2v (3)5r (3), we

obtain

v ~3!~r ,T!5v ~3!~0,T!eqr1A1re
qr

2B1r
2eqr2C1r

3eqr, J r<0 ,

~20!

v ~3!~r ,T!5v ~3!~0,T!e2qr1A2re
2qr

2B2r
2e2qr2C2r

3e2qr, J r>0 ,
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55 4453ORDER PARAMETER EQUATIONS FOR FRONT . . .
where

A65q3v ~1!~0,T!v ~2!~0,T!6F 34q vT~1!~0,T!1
1

2
q5v ~1!~0,T!3

2
qh1

hc
v ~1!~0,T!2qv ~3!~0,T!G ,

B65 1
4vT

~1!~0,T!6q4v ~1!~0,T!v ~2!~0,T!,

C656 1
6q

7v ~1!~0,T!3.

Application of the~no! jump condition@v r
(3)# r5050 leads to

hc
2vT

~1!~0,T!5
A2h1

q
v ~1!~0,T!2

3

4
v ~1!~0,T!3. ~21!

Equation ~21! still contains an unspecified paramete
h1. To identifyh1 recall thatc is the speed of a front propa
gating at constant velocity. From Eq.~5!

uẋf u5
3

A2hc

cuv ~1!~0,T!u1O~c2!.

Identifying uẋf u with c givesv (1)252hc
2/9 for a front propa-

gating at constant speed. This value ofv (1)2 should coincide
with the nontrivial stationary solution of Eq.~21!,
v (1)254A2h1/3q. Comparing the two expressions gives

h15
qhc

2

6A2
. ~22!

Equations~22! and ~14! provide the leading order form o
the front bifurcation diagram

c25
6A2
qhc

2~hc2h!,

which coincides for smallc with the earlier result@6,9#,
c254q2(hc

22h2)/h2.
Multiplying Eq. ~21! by c and using the expansions~13!

and~14! gives the equation of motion for propagating fron

v̇ f5
A2
qhc

2~hc2h!v f2
3

4hc
2 v f

3 , ~23a!

ẋf52
3

hA2
v f , ~23b!

where the slow time derivative ofv f is expressed in terms o
a fast time derivative (v̇ f5c2v f T).

According to Eqs.~23! the dynamics of a propagatin
front involve two degrees of freedom: a translational deg
of freedom,xf , determining the front position, and an ord
parameter,v f , determining the direction of propagation. Th
latter has not been appreciated enough since most work
date@1,2# have focused on conditions far from the front b
furcation. In that case the two stationary stat
v f56@4A2(hc2h)/3q#21/2, representing fronts propaga
ing in opposite directions, are highly stable. Close to
,

e

to

,

e

front bifurcation, however, the eigenvalue associated w
these states,l522A2(hc2h)/q, approaches zero an
small disturbances can drive the system from one stat
another, thereby inducingfront reversals.

V. FRONT REVERSAL: OSCILLATIONS AND REBOUND

Equations~23! describe the motion of a freely propaga
ing front in a uniform medium. In this section we show ho
two different perturbations affect front propagation. The fi
is the addition of a space dependent advective field to
v equation in the original system~1!. This type of differen-
tial advection appears for example in chemical reactions
volving ionic species that are subjected to electric fie
@8,34#. The second is the intrinsic perturbation of unifor
curvature variations on the propagation of two dimensio
fronts. Both perturbations lead to a coupling of the two d
grees of freedom in the order parameter Eqs.~23! and allow
for the nonsteady asymptotic motion of fronts.

A. Space dependent advective field

To study the effect of an external advective fieldJ we add
the termJvx to thev equation in Eq.~1!,

ut5e21~u2u32v !1d21uxx , ~24!

v t5u2a1v2a01Jvx1vxx .

The small parametera0 is also introduced to break the parit
symmetry of Eq.~1!. For simplicity we consider a linea
spatial profile,J52ax, 0,a!1. Proceeding as before, th
inner region analysis remains unchanged and culminate
Eq. ~23b!. The outer analysis leads to the additional term
2a(r1xf)v r2a0, on the right hand side of both partial dif
ferential equations in Eq.~8!. Assuming a5a0c

3 and
a05a00c

3, wherea0 anda00 are of order unity, Eqs.~16a!
and ~16b! remain unchanged, but Eq.~16c! acquires, on the
right hand side, two additional terms:a0(r1xf)v r

(0)1a00.
As a result the order parameter Eqs.~23! are changed to

v̇ f5
A2
qhc

2~hc2h!v f2
3

4hc
2 v f

31
2

3q
axf2

4

3
a0 , ~25a!

ẋf52
3

hA2
v f . ~25b!

Notice that the introduction of aspace dependentadvec-
tive field couples the two degrees of freedom,v f and xf .
This coupling affects the front behavior in two significa
ways: forh.hc ~anda0Þ0) it stabilizes a propagating fron
at a fixed position,xf52qa0 /a, and forh,hc it induces
oscillations between the counterpropagating fronts. The
quency of oscillations close to the Hopf bifurcation
h5hc is

v5
2

A3
qAa. ~26!

We tested the validity of Eqs.~25! by numerically inte-
grating the original system~1! and comparing the oscillating
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front solutions with those of Eq.~25!. The agreement, as Fig
2 shows, is very good. In Fig. 3 we plotted the frequency
front oscillations vs the field gradient according to Eq.~26!
and as obtained from Eq.~1!. Again, the agreement is exce
lent, and remains good even forc of order unity. Note that in
the inner analysis we neglected contributions ofO(e2) to v
at the front position, while in the outer analysis we ke
terms to O(c3). A quantitative comparison as describe
above, therefore, requires thatc is much larger thane2/3.

B. Uniform curvature

In two space dimensions the reaction-diffusion system~1!
becomes

ut5e21~u2u32v !1d21¹2u, ~27!

v t5u2a1v2a01¹2v,

where the small parametera0 has been added again to bre
the parity symmetry of Eq.~1!. In addition to planar front

FIG. 2. Front position,xf , vs time for an oscillating front. The
solid line represents the solution to the order parameter equa
~25! and the diamonds are from the numerical solution of the or
nal partial differential equations ~1!. Parameters:
a153.0, e50.01, d52.77, a050, a50.005.

FIG. 3. A log-log plot of the oscillation frequencyv vs the
external field gradienta. The solid line is the relation of Eq.~26!
and the diamonds represent numerical solutions of Eqs.~1!. Param-
eters:a153.0, e50.01, d52.77, a050.
f

t

solutions, there are now new types of solutions, includ
fronts with uniform curvature~circular fronts or spots!.
These spots may be stationary or, for parameters near a
bifurcation, may collapse, expand indefinitely, or oscilla
periodically in time.

To derive equations for the motion of circular fronts, th
first step is to transform into polar coordinate
r5r2r f(t), that move with the front. In this frame an
assuming the radius of curvaturer f is much larger than the
front width, Eqs.~27! are

ut2~ ṙ f1d21k!ur5e21~u2u32v !1d21urr ,

v t2~ ṙ f1k!v r5u2a1v2a01v rr ,

wherek5r f
21 is the front curvature. As before we assum

e!1 andd}e21 and use singular perturbation theory.
Analysis of the inner, or front, region yields a relatio

analogous to Eq.~23b!

ṙ f1d21k52
3

hA2
v f . ~28!

In the outer region, instead of Eq.~8! we must solve

v t1q2v2v rr5612
3

hA2
v~0,t !v r1P,

whereP5(12d21)v r /r f2a0. Assuming thatP is a small
perturbation~of orderucu3) and proceeding as in Sec. IV w
obtain the order parameter equation

v̇ f5
A2
qhc

2~hc2h!v f2
3

4hc
2 v f

32
2

3q

~12d21!

r f
2
4

3
a0 .

~29!

Writing Eqs. ~28! and ~29! in terms of the curvature
k5r f

21 gives the equations

v̇ f5
A2
qhc

2~hc2h!v f2
3

4hc
2 v f

32
2

3q
~12d21!k2

4

3
a0 ,

~30a!

k̇5
3

hA2
v fk

21d21k3, ~30b!

that describe the dynamics of large circular spots. The in
duction of curvaturecouplesthe two equations. Equation
~23!, for planar fronts, are decoupled and only describe
relaxation to steadily propagating fronts. The equations
circular fronts additionally allow front reversals and no
steady asymptotic motion such as oscillations.

Consider first the fixed point solutions obtained by t
intersections of the linear nullclines k50 and
k52(3d/hA2)v f of Eq. ~30b! with the cubic nullcline of
Eq. ~30a!. The solutions corresponding tok50 describe pla-
nar fronts propagating at constant velocities. Solutions w
positive and negativev f values pertain to down states inva
ing up states and up states invading down states, res
tively. The number ofk50 solutions varies withh. Below

ns
i-
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55 4455ORDER PARAMETER EQUATIONS FOR FRONT . . .
the front bifurcation,@h.hc(a0)#, there is a single intersec
tion point representing an Ising front as shown by the t
lines in Figs. 4~a! and 4~b!. Beyond the front bifurcation
@h,hc(a0)#, two more intersection points appear corr
sponding a stable and unstable pair of planar front soluti
@Fig. 4~c!#. The fixed point solutions forkÞ0 represent cir-
cular fronts. Fora0,0 they describe spots of an up sta
domain and fora0.0 spots of a down state domain. F
d.1, depending on the choice ofe, these fixed points may
or may not be stable. Ford,1, all thekÞ0 fixed points are
unstable.

Figure 4 shows three different possibilities for the dyna
ics of circular fronts. The thick trajectories represent dyna
ics computed by numerical solution of the coupled equati
~30!. The initial conditions correspond to a large shrinki
up state spot. Far into the Ising regime@Fig. 4~a!# the initial
spot converges to a stationary spot. Moving closer to
front bifurcation and past a criticalh value,hH.hc(a0), a
Hopf bifurcation to a breathing spot occurs@Fig. 4~b!#.

FIG. 4. Three types of solutions to the order parameter eq
tions ~30! starting with initial conditions representing a larg
shrinking spot. The thin lines are the isoclines and the thick li
are numerically computed trajectories.~a! Convergence to a station
ary spot (e50.0063).~b! An oscillating spot (e50.006).~c! Spot
rebound and expansion of the spot to infinite size (e50.0052).
Parameters:a154.0,a0520.01, andd52.0.
n

-
s

-
-
s

e

Crossing the front bifurcation,h,hc(a0), the spot re-
bounds, i.e., the shrinking spot reaches a minimal size
expands again indefinitely@Fig. 4~c!#. For largerua0u, there is
another possibility for the dynamics of spots. In this ca
shown in Fig. 5, the amplitude of oscillations grows in tim
until the spot eventually collapses as the curvature diver
to infinity.

All three behaviors discussed above have been obse
in direct numerical solutions of Eq.~27!. The quantitative
accuracy of the order parameter equations was tested
computing numerical solutions to the circularly symmet
version of Eqs.~27!

ut5e21~u2u32v !1
d21

r
ur1d21urr , ~31!

v t5u2a1v2a01
1

r
v r1v rr ,

and comparing them to solutions of Eqs.~30! for spot dy-
namics. Spot solutions of Eqs.~31! produce the same quali
tative behavior as the pair of coupled equations for the s
dynamics. When the parameters are chosen to satisfy
assumptions made in the derivation of Eqs.~30!, there is also
quantitative agreement between the two solutions. Figur
shows the curvature of an oscillating spot as a function
time computed using both Eqs.~30! and~31!. The two solu-
tions agree within an accuracy of approximately 1% for t
amplitude and 2% for the phase.

In addition to the oscillatory instability spot, solution
may also be unstable to transverse perturbations@35–37#.
Numerical solutions of the fully two-dimensional model~27!
show that for the parameters of Fig. 6 spots are unstable
form nonuniformly curved fronts leading to a labyrinthin
pattern. Since the order parameter equations derived
apply only for the case when the spots do not break per
circular symmetry, for this choice of parameters they on
capture the dynamics of the circular spot during the init
evolution. Order parameter equations for the dynamics
nonuniformly curved fronts are presented in Ref.@27#.

a-

s

FIG. 5. A trajectory of the order parameter equations~30! for a
spot that oscillates with growing amplitude until collapse~the cur-
vature k diverges to infinity!. Parameters:a154.0, a0520.1,
e50.006, andd52.0.
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VI. CONCLUSION

We derived the equations that govern the dynamics
planar fronts in bistable systems near a parity breaking fr
bifurcation ~the NIB bifurcation!. In this case the context i
an activator-inhibitor model, but the normal form

Ẋ5C, ~32!

Ċ5~ac2a!C2bC3,

is general. Here,X is the front position,C is the front veloc-
ity, and ac is a critical parameter value for which a NI
bifurcation occurs. Similar equations should apply, for e
ample, to liquid crystals subjected to rotating magnetic fie
@38–40# and have also been proposed in the context of pa
breaking traveling-wave bifurcations@41#.

Uniform front curvature, or space dependent exter
fields, couple the two degrees of freedom,X and C, and

FIG. 6. An oscillating circular spot solution. The solid line is th
solution of the order parameter equations~30!, and the diamonds
represent the spot curvature vs time from the numerical solutio
the circularly symmetric equations~31!. The equation parameter
aree50.006, d52.0, a154.0, a0520.01.
h.

. E
f
nt

-
s
ty

l

allow nonsteady asymptotic behavior. The coupled sets
equations~25! and ~30! exhibit Hopf bifurcations from sta-
tionary to oscillating fronts~breathing spots!. Equations~30!
exhibit two additional behaviors pertaining to reboundi
and collapsing spots in the full equations.

Curvature effects on front dynamics near a NIB bifurc
tion were also studied in Refs.@20,25# using a ‘‘quasistatic’’
approximation. This approximation, where the front veloc
is assumed to adiabatically follow slow curvature variatio
@1,2#, yields analgebraicrelation between the front velocity
C and its curvaturek. As the bifurcation is approached th
C2k relation becomes multivalued, or hysteretic. The m
tivalued relations correctly predict spontaneous front tran
tions induced by curvature@20,25#, but cannot describe dy
namics during front transitions. Differential order parame
equations, like Eqs.~30!, give a more accurate characteriz
tion of the dynamics. These differential equations reduce
an algebraicC2k relation when the time scale of front tran
sitions becomes much shorter than the time scale of cu
ture changes. Such a condition is realized, for example, w
very large spots away from the front bifurcation. Then t
right hand side of Eq.~30a! can be set to zero, an expressio
which together with Eq.~28! gives an algebraicC2k rela-
tion, whereC5 ṙ f .

The phenomena of breathing, oscillating, and collaps
spots appear to be quite general and can be induced by o
perturbations that coupleX and C. Reference@42#, which
studies the effect of boundaries on spot dynamics, report
the observation of stationary, breathing, and rebound
spots. Interaction between fronts may similarly lead to s
tionary, oscillating, and collapsing domains@10–18#. Recent
experiments on the ferrocyanide-iodate-sulfite reaction sh
small oscillating chemical spots away from the reac
boundary that are most likely due to front interactions and
curvature@43#.
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