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Multiphase patterns in periodically forced oscillatory systems
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Periodic forcing of an oscillatory system produces frequency locking bands within which the system fre-
quency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to
uniform periodic forcing at one quarter of the forcing frequency~the 4:1 resonance!. These systems possess
four coexisting stable states, corresponding to uniform oscillations with successive phase shifts ofp/2. Using
an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions
connecting different phase states. These solutions divide into two groups:p fronts separating states with a
phase shift ofp andp/2 fronts separating states with a phase shift ofp/2. We find a type of front instability
where a stationaryp front ‘‘decomposes’’ into a pair of travelingp/2 fronts as the forcing strength is
decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability
point a continuous family of pair solutions exists, consisting ofp/2 fronts separated by distances ranging from
zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic
nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n
53,4, . . . ) where stationaryp fronts decompose inton traveling p/n fronts. The instabilities designate
transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate
with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the
forcing strength within the 4:1 resonance is increased.@S1063-651X~99!06705-7#

PACS number~s!: 05.45.2a, 82.40.Bj, 82.40.Ck, 47.20.Ma
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I. INTRODUCTION

Periodic forcing of an oscillatory system produces a m
tiplicity of uniform stable phase states. The simplest situat
arises within the 2:1 frequency locking band where the s
tem oscillates at one half of the forcing frequency. In th
case ‘‘two-phase’’ patterns appear, involving alternating d
mains that oscillate with a phase shift ofp @1–3#. The
boundaries between nearby domains, hereafterp fronts, may
undergo a parity breaking bifurcation, rendering a station
front unstable and giving rise to a pair of counterpropagat
fronts @4#. This instability, the so-called nonequilibrium
Ising-Bloch bifurcation~NIB! bifurcation, designates a tran
sition from standing two-phase patterns to traveling tw
phase patterns@5–7#. The instability is demonstrated in Fig
1 as a gray-scale map in the space-time plane. Recent ex
ments on a photosensitive Belousov-Zhabotinsky~BZ! reac-
tion, periodically illuminated, have also revealed a transit
to labyrinthine patterns within the 2:1 band, suggesting
possible existence of a transverse instability ofp fronts @8#.

The situation becomes more complicated within the
band, which has four stable phase states shifted byp/2 with
respect to one another@9#. In addition top fronts, there also

*Electronic address: aric@lanl.gov
†Electronic address: ehud@bgumail.bgu.ac.il
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exist p/2 fronts separating oscillating domains with a pha
shift of p/2. The multiplicity of front solutions increase
with the order of the band. The 6:1 band has three type
fronts: p fronts, 2p/3 fronts, andp/3 fronts. The 8:1 band
has four types of fronts (p, 3p/4, p/2, andp/4), and so on.
In addition to adding new types of fronts, as the band orde
increased the number of front solutions of a given type a
increases.

In this paper we report on an instability ofp fronts, oc-
curring within the 4:1 band. Upon decreasing the forci
strength, a stationaryp front loses stability and decompose
into a pair of travelingp/2 fronts. The instability is demon
strated in Fig. 2. The decomposition into a pair of traveli
p/2 fronts is accompanied by the appearance of an inter
diate ~gray! domain whose phase of oscillation is shifted
p/2 with respect to the adjacent white and black domai
Like the NIB bifurcation, thep-front instability within the
4:1 band designates a transition from stationary pattern
traveling waves. The significant difference is that the tw
phase stationary patterns give place to travelingfour-phase
patterns. This feature of the 4:1 resonance is related
peculiar property of thep front instability to be discussed in
Sec. III. Thep front decomposition instability appears t
exist in higher 2n:1 bands as well. We analyze in detail th
4:1 resonance case and bring numerical evidence for the
istence of this type of instability in the 6:1 and 8:1 res
nances. A brief account of some of the results to be repo
5285 ©1999 The American Physical Society
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here has appeared in Ref.@10#.
We consider an extended system that is close to a H

bifurcation and externally forced with a frequency about fo
times larger than the Hopf frequency. The set of dynam
fields u describing the spatio-temporal state of the syst
~e.g., set of concentrations in the BZ reaction! can be written
asu5u0A exp(ivf t/4)1c.c.1 . . . , whereu0 is constant,A is
a slowly varying complex amplitude,v f is the forcing fre-
quency, and the ellipses denote smaller contributions.
equation for the amplitudeA can be written in the following
standard form~after rescaling and shifting argA by a con-
stant phase! @11–14#:

At5~m1 in!A1~11 ia!Azz2~12 ib!uAu2A1g4A* 3,
~1!

where the subscriptst andz denote partial derivatives with
respect to time and space, and all the parameters are
The proximity to the Hopf bifurcation impliesm!1. We will
also be using the following form of Eq.~1! obtained by res-
caling time, space, and amplitude ast5mt, x5Am/2z, and
B5A/Am:

Bt5~11 in0!B1 1
2 ~11 ia!Bxx2~12 ib!uBu2B1g4B* 3,

~2!

wheren05n/m.

FIG. 1. The NIB bifurcation in the 2:1 resonance: space-ti
plots showing an unstable stationaryp front ~Ising! evolving into
left ~a! and right ~b! traveling p fronts ~Bloch! beyond the NIB
bifurcation.
pf
r
l

e
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II. FRONT SOLUTIONS

First we study the gradient version of Eq.~2!, which is
obtained by settingn05a5b50:

Bt5B1 1
2 Bxx2uBu2B1g4B* 3. ~3!

Equation ~3! has four stable phase states for 0,g4,1
shown by solid circles in Fig. 3:B6156l andB6 i56 il,
where l51/A12g4. Front solutions connecting pairs o
these states divide into two groups,p fronts andp/2 fronts.
The p fronts, shown in Fig. 3 as solid lines, are given by

B21→115B11 tanhx,

B2 i→1 i5B1 i tanhx. ~4!

Thep/2 fronts are shown in Fig. 3 by the dashed curves.
the particular parameter valueg451/3 they have the simple
forms

B11→1 i5
1

2
A3

2
@11 i 2~12 i !tanhx#,

e FIG. 2. The decomposition instability in the 4:1 resonan
Space-time plots@solutions of Eq.~1!# showing the decomposition
of an unstablep front into a pair ofp/2 fronts traveling to the left
~a! or to the right~b!. The pairs ofp/2 fronts enclose grey colored
domains whose oscillation phases are shifted byp/2 with respect to
the black and white domains. Parameters in Eq.~1!: m51.0, n
50.02, g450.3.
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B2 i→115
1

2
A3

2
@12 i 1~11 i !tanhx#,

B1 i→2152B2 i→11 ,

B21→2 i52B11→1 i . ~5!

Additional front solutions follow from the invariance of Eq
~3! under reflection,x→2x. For example, the symmetri
counterparts ofB1 i→11(x) andB11→2 i(x) areB11→1 i(x)
5B1 i→11(2x) andB2 i→11(x)5B11→2 i(2x).

Consider now the nongradient system~2!. The main effect
of the nongradient terms is to make thep/2 fronts traveling.
The nongradient terms have no effect on thep fronts, which
remain stationary. To see this we assume a traveling solu
B(x2ct) of Eq. ~2! and project this equation on the transl
tional modeB8. For p fronts we obtain

c^B08
2&50, B0~z!5ltanhz, ~6!

implying c50 ~the brackets denote integration over t
whole line!. For p/2 fronts withg451/3, we find

ucu5
l

^B08
2&

@~n01 1
2 l2b!^B08&1 1

2 b^B0
2B08&#5 3

2 ~n01b!,

~7!

where l5A3/2. A perturbation analysis aroundg451/3
shows that expression~7! for the speed remains valid fo
small deviations ofg4 from 1/3.

III. A p-FRONT INSTABILITY

The p fronts ~4! are similar to the Ising front in the 2:1
band but as we will see shortly the instability they undergo
not a pitchfork bifurcation like the NIB. It is rather a dege
erate instability leading to asymptotic solutions that are
smooth continuations of the unstable stationaryp fronts in a
sense to be made clear in the following. A stability analy
of the p fronts indicates that they lose stability atg451/3.
To analyze the instability, we study Eq.~2! near that critical
value.

FIG. 3. Phase portrait in the complex plane of solutions to
~3!. The dots represent the four spatially uniform phase-locked
lutions. The solid lines are thep-front solutions and the dashe
lines are thep/2 fronts. The thin lines in the circle are the pha
portrait showing the collapse of ap front into two p/2 fronts.
on
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A. Gradient system

We begin with the gradient version~3!. Introducing the
new variables,

U5Re~B!1Im~B! V5Re~B!2Im~B!, ~8!

we rewrite Eq.~3! as

Ut5U1
1

2
Uxx2

2

3
U32

d

2
~U223V2!U, ~9a!

Vt5V1
1

2
Vxx2

2

3
V32

d

2
~V223U2!V, ~9b!

where

d5g421/3 .

At the instability point,g451/3, the two equations decoupl
~sinced50) and admit solutions of the form

U5s1B0~x2x1!,

V5s2B0~x2x2!, ~10!

where B0(x)5A(3/2)tanhx, s1,2561, and x1 and x2 are
arbitrary constants. An intuitive understanding of this fam
of solutions can be obtained by expressing these solut
back in terms of the complex amplitudeB. For s152s2
51, for example, the solution~10! is equivalent to

B~x;x1 ,x2!5B2 i→11~x2x1!1B11→1 i~x2x2!2l.

When ux22x1u→` this form approaches a pair of isolate
p/2 fronts:

B'B2 i→11~x2x1!, x'x1

and

B'B11→1 i~x2x2!, x'x2 .

Whenx22x150 it reduces to thep front B2 i→1 i . Defining
a ‘‘center-of-mass’’ coordinatez and an order parameterx
by

z5 1
2 ~x11x2!, x5 1

2 ~x22x1!,

the one-parameter family of solutions,$B̃(x;z,x)uxPR%,
where B̃(x;z,x)5B(x;x1 ,x2), representsp/2-front pairs
with distances 2x ranging from zero to infinity.

For ug421/3u5udu!1, the weak coupling between Eq
~9a! and ~9b! induces slow drift along the solution famil
B(x;x1 ,x2). We now write a pair solution as

U5s1B0@x2x1~ t !#1u,

V5s2B0@x2x2~ t !#1v, ~11!

where u and v are corrections of orderd. Inserting these
forms in Eqs.~9! we obtain,

.
o-
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H1u5s1ẋ1B08~x2x1!2 1
2 ds1@B0

2~x2x1!

23B0
2~x2x2!#B0~x2x1!, ~12!

H2v5s2ẋ2B08~x2x2!2 1
2 ds2@B0

2~x2x2!

23B0
2~x2x1!#B0~x2x2!, ~13!

where H1,25212 1
2 ]2/]x212B0

2(x2x1,2). Projecting the
right-hand side of Eq.~12! onto B08(x2x1), the zero eigen-
mode ofH 1

†5H1, and setting to zero we obtain,

ẋ152
27

16
dE

2`

`

dx tanh~x2x1!sech2~x2x1!tanh2~x2x2!.

~14!

A similar solvability condition for Eq.~13! leads to

ẋ252
27

16
dE

2`

`

dxtanh~x2x2!sech2~x2x2!tanh2~x2x1!.

~15!

Expressing these equations in terms ofz andx, we find

ż50, ~16!

ẋ52 27
16 dJ~x!, ~17!

where

J~x!5E
2`

`

dz tanhz sech2z tanh2~z12x!. ~18!

Evaluation of the integral in Eq.~18! yields

J~x!5I ~a!56~a212a23!1~123a22!G~a!,

G~a!5~12a22!lnS 11a

12aD ,

wherea5tanh 2x. Note that Eqs.~16! and ~17! are valid to
all orders inx and to linear order aroundg451/3.

The equation for the order parameter~17! can be written
in the gradient form

ẋ52
dV

dx
, V5

27

16
dEx

J~z!dz. ~19!

Figure 4 shows the potentialV(x) for d.0 (g4.1/3) and
d,0. There is only one extremum pointx50 of V. For d
.0 it is a minimum andx converges to zero. Pairs ofp/2
fronts with arbitrary initial separationx22x1 attract one an-
other and eventually collapse to a singlep front (x15x2 or
x50). In practice, the collapse process is noticeable only
relatively small separations. Ford,0 the extremum point
x50 is a maximum andx diverges to6`. A p front de-
composes into a pair ofp/2 fronts, which repel one anothe
This process is shown in Fig. 2 for the nongradient syst
~1!. In the gradient case bothp andp/2 fronts are stationary
~in the absence of interactions!. Since the potentialV(x)
becomes practically flat at finitex values, the pair ofp/2
fronts do not seem to depart from one another at long tim
r

m

s.

Figure 3 shows the decomposition process of ap front in the
complexB plane. Starting with theB21→11 p front, repre-
sented by the thick solid phase portrait, the time evolut
~thin solid phase portraits! is toward the fixed pointB1 i and
the dashed phase portraits representing the pair ofp/2 fronts
B11→1 i andB1 i→21. Because of the parity symmetryx→
2x, an appropriate perturbation of the initialB21→11 p
front could have led the dynamics toward the pairB11→2 i

and B2 i→21. Notice that ford50, ż50, ẋ50, and we
recover the two-parameter family of pair solutionsB(x;z,x)
with arbitrary z and x. This degeneracy of solutions atd
50 is lifted by higher-order terms in the amplitude equati
~1! as will be discussed in Sec. III C below.

B. Nongradient system

The results described above can easily be extended to
nongradient system~2! for smalla, b, andn0. The equations
for U andV are

Ut5U1
1

2
Uxx2

2

3
U32

d

2
~U223V2!U

1n0V1
a

2
Vxx1

b

2
~U21V2!V,

Vt5V1
1

2
Vxx2

2

3
V32

d

2
~V223U2!V

2n0U2
a

2
Uxx2

b

2
~U21V2!U. ~20!

Assumingd, a, b, andn0 are of the same order of magn
tude we write a solution in the form~11!, insert in Eqs.~20!,
and obtain,

FIG. 4. The potentialV(x). ~a! For d.0 the extremum atx
50 is a minimum andx converges to 0.~b! For d,0 the extre-
mum is a maximum andx diverges to6`.
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H1u5s1ẋ1B08~x2x1!2 1
2 ds1@B0

2~x2x1!

23B0
2~x2x2!#B0~x2x1!1n0s2B0~x2x2!

1 1
2 as2B09~x2x2!1 1

2 bs2@B0
2~x2x1!

1B0
2~x2x2!#B0~x2x2!, ~21!

H2v5s2ẋ2B08~x2x2!2 1
2 ds2@B0

2~x2x2!

23B0
2~x2x1!#B0~x2x2!2n0s1B0~x2x1!

2 1
2 as1B09~x2x1!2 1

2 bs1@B0
2~x2x1!

1B0
2~x2x2!#B0~x2x1!. ~22!

FIG. 5. The effects of the higher-order termduBu2Bxx on the
decomposition instability within the 4:1 resonance. The poten
~27! deforms from a single well to a single barrier asg4 is de-
creased pastg4c . In the intermediate range two scenarios are p
sible: ~a! For d.0, thex50 solution loses stability in a pitchfork
bifurcation atg4c to a pair of solutions that move to6`. Param-
eters:d51.0, m50.01,g450.339,0.337,0.336,0.335,0.333.~b! For
d,0, thex50 solution remains stable while thex56` solutions
acquire stability and lose stability only belowg4c . Parameters:
udu51.0, m50.01,g450.334,0.332,0.331,0.330,0.328. In both sc
narios the deformations from a single well to a single barrier oc
within a small range ofg4 of order m!1. For comparison, an
equivalent figure for the degenerate case (d50) is shown in~c!.
The only intermediate form between a single well and a sin
barrier is a flat potential,V50, ocurring atg51/3.
Solvability conditions lead to equations forx and z. The
equation forx remains unchanged. That is, Eq.~17! is valid
for the nongradient equation~2! as well. The equation forz
becomes

s1s2ż5n0Fn~x!1aFa~x!1bFb~x!, ~23!

where

Fn52 3
4 G~a!2 3

2 a21,

Fa5 3
4 I ~a!,

Fb53a21~12 3
2 a22!2 9

4 a22G~a!.

Notice thatFn , Fa , andFb are odd functions ofx and do
not vanish whend50. Whenuxu→`, the right-hand side of
Eq. ~23! converges to3

2 (n01b), the speed of ap/2-front
solution of Eq.~2!. The odd symmetries ofFn , Fa , andFb
imply that thex50 solution~representing ap front! remains
stationary (ż50) in the nongradient case as well, and th
the two pairs ofp/2 fronts x56` propagate in opposite
directions.

C. The effect of higher-order terms

According to Eq.~17! the asymptotic solutions just below
g451/3, thep/2-front pairs asuxu→`, are not smooth con-
tinuations of the stationaryp front at g451/3 ~the x50
solution!. This abrupt nature of the instability is related to
degeneracy of solutions atg451/3. At this parameter value a
whole family of solutions exists describingp/2-front pairs
with distancesux22x1u52uxu ranging from zero to infinity.
In the nongradient case these pair solutions propagat
speeds given by Eq.~23!. The degeneracy of solutions i
lifted by higher-order terms in Eq.~2!.

Consider the gradient version of the amplitude equatio

Bt5B1 1
2 Bxx2uBu2B1g4B* 31mH~B,B* ;]x!, ~24!

whereH(B,B* ;]x) includes higher-order terms likeuBu4B,
uBu2Bxx , etc. The factorm reflects the fact that fifth-orde
terms in the amplitude equation are smaller by a factorm
!1 than the lower-order terms. The effect of these term

l

-

-
r

e

FIG. 6. Decomposition of ap front into threep/3 fronts in the
6:1 resonance band. Parameters in Eq.~28!: g650.9, m4521.0,
m6521.0. All other parameters are zero.
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generally weak, but becomes important nearg451/3. Con-
sider, for example, the effect of the termduBu2Bxx . Equa-
tions ~9! include now the contributions

1
2 md~U21V2!Uxx and 1

2 md~U21V2!Vxx ,

respectively. The corresponding contributions to Eqs.~12!
and ~13! are

FIG. 7. Decomposition of ap front into four p/4 fronts in the
8:1 resonance band. Parameters in Eq.~28!: g850.75, m4520.5,
m6520.5, m8521.0. All other parameters are zero.

FIG. 8. Decomposition of ap front into threep/3 fronts in the
6:1 resonance band. The figures show space-time plots of nume
solutions of Eq.~28! with parametersg650.9, m4521.0, m65
21.0, n050.1. All other parameters are zero.
1
2 mds1@B0

2~x2x1!1B0
2~x2x2!#B09~x2x1!

and

1
2 mds2@B0

2~x2x1!1B0
2~x2x2!#B09~x2x2!.

The equation for the order parameter will now read

ẋ52 27
16 dJ~x!1 9

8 dmK~x!, ~25!

where

K~x!5E
2`

`

dz tanhz sech4z tanh2~z12x!. ~26!

The integral~26! is elementary but the expression is lengt
and we do not display it here. The second term on the rig
hand side of Eq.~25!, whose origin is the fifth-order term
uBu2Bxx , cannot be neglected in am neighborhood ofg4
51/3. Depending on the sign ofd two scenarios are possibl
as g4 is decreased. In both cases thex50 (p-front! solu-
tion is destabilized atg4c51/318md/21. Whend.0 the
x50 solution is destabilized to a new pair of solutionsx6 in
a pitchfork bifurcation. Foruxu!1 the solutions assume th
approximate values,x6'6A21/4A12d/dc, where dc
5g4c21/3. Wheng4 is further decreased, the two stab
solutionsx6 move to6` on ag4 range of orderm. When
d,0 bistability of thex50 solution and thex56` solu-
tions first develop. Asg4 is further decreased thex50 so-

cal

FIG. 9. Numerical solution of a two-dimensional version of E
~2! showing the collapse of a rotating four-phase spiral wave int
stationary two-phase pattern. The left column isuAu and the right
column arg(A) in the x-y plane. ~a! The initial four-phase spiral
wave ~computed withg4,1/3). ~b! The spiral core, a four-point
vertex, splits into two three-point vertices connected by ap front.
~c! A two-phase pattern develops as the three-point vertices fur
separate.~d! The final stationary two-phase pattern. Paramete
g450.6, n050.1, a5b50, x5@0,64#, y5@0,64#.
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lution becomes metastable until it completely loses its sta
ity at g4c . Figure 5 shows the potential

V5
9

8E
xF3

2
dJ~z!2dmK~z!Gdz, ~27!

associated with Eq.~25! for both scenarios.
The two scenarios are related by the symmetryd→2d,

d→2d, t→2t, of Eq. ~25!. The first scenario (d.0)
amounts to a pitchfork bifurcation from a stablex50 solu-
tion to a pair of stablex6 solutions that move to infinity as
g4 is decreased. The second scenario (d,0) amounts to a
backward pitchfork bifurcation from an unstablex50 solu-
tion to a pair of unstablex6 solutions that move to infinity
asg4 is increased.

The higher-order termuBu2Bxx , and similarly other high-
order terms, lift the degeneracy of the lower-order system~3!
at g451/3. Ford.0 and in a smallg4 range of orderm near
1/3, the instability becomes similar to the NIB bifurcation
the 2:1 resonance. But apart from the behavior in this sm
parameter range, the overall behavior does not change:p
front decomposes into a pair ofp/2 fronts asg4 is decreased

IV. p-FRONT INSTABILITIES IN HIGHER RESONANCES

We have found numerical evidence for the existence
similar p-front instabilities within the 6:1 and 8:1 band
These findings suggest the following generalization: wit
the 2n:1 band (n.1) a p front may lose stability by de-
composing inton p/n fronts. Consider the equation

Bt5
1
2 Bxx1~11 in0!B1m4uBu2B1m6uBu4B

1m8uBu6B1g4B* 31g6B* 51g8B* 7. ~28!

The normal form equation up to seventh order contains m
more terms. Our purpose here, however, is just to dem
strate thep-front instability for someparameter values per
taining to the 6:1 and 8:1 bands. Figure 6 shows the dec
ic

ys

s

l-

ll

f

y
n-

-

position in the complexB plane of ap front within the 6:1
band into threep/3 fronts. Figure 7 shows the decompositio
of a p front within the 8:1 band into fourp/4 fronts.

Figure 8 shows a space-time plot of the decomposit
instability within the 6:1 band. The initial unstablep front
decomposes into threep/3 fronts, traveling to the left or to
the right depending on initial conditions. Along with th
process two intermediate phase states appear betwee
original white and black phases.

V. IMPLICATIONS ON PATTERN FORMATION

The p-front instability in the 4:1 band has a pronounc
effect on patterns. Despite the coexistence of four unifo
phase states and the stability ofp/2 fronts, asymptotic four-
phase patterns appear only below thep-front instability
point g451/3. The reason is the attractive interactions b
tween p/2 fronts wheng4.1/3 and the collapse intop
fronts. Thus, forg4.1/3 two-phase patterns prevail. The
patterns form standing waves sincep fronts are stationary.
For g4,1/3 the interaction betweenp/2 fronts is repulsive
and four-phase patterns prevail. These patterns travel s
p/2 fronts propagate.

Figure 9~a! shows a stably rotating four-phase spiral wa
for g4,1/3. Figures 9~b!, 9~c!, and 9~d! show the collapse of
this spiral wave into a stationary two-phase pattern asg4 is
increased past 1/3. The collapse begins at the spiral
where thep/2-front interactions are the strongest. As pairs
p/2 fronts attract and collapse intop fronts, the core splits
into two vertices that propagate away from each other le
ing behind a two-phase pattern.
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