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PATTERNS OF PROPAGATING PULSES* 
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This paper is dedicated to Edward L. Reiss on the occasion of his 60th birthday. 

Abstract. The complex dynamics that arise in certain nonlinear partial differential equations in time 
and in one space dimension are studied. In the general case considered, the equation admits a solitary wave 
in the form of a pulse tailing off exponentially, fore and aft, with possibly oscillatory character. Complicated 
solutions are described by a superposition of many such solitary structures in interaction. The description 
is asymptotic in terms of a parameter that becomes exponentially small as the ratio of typical pulse separation 
to pulse width becomes large. The outcome is a set of dynamical equations for the motion of the individual 
pulses with nearest neighbor interactions. This system of ordinary differential equations (ODEs) admits a 
wide range of patterns, both regular and chaotic. The stability theory of such patterns is sketched and the 
continuum limit of the lattice-dynamical equations of the pulses is given. 
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1. Introduction. Pulse-like solutions are found in many different nonlinear partial 
differential equations (PDEs) of macroscopic physics, chemical reaction theory, and 
neurophysics. They frequently arise as exact traveling wave solutions. Along with 
shocks (or fronts), these localized structures, as they are sometimes called, are among 
the simplest solutions found in nonlinear PDEs, and it is worth exploring their 
usefulness as building blocks of more complex solutions. In this paper we study trains 
of such pulses. 

The kinds of equations for which our approach is most useful are either model 
equations, like the FitzHugh-Nagumo system of neurophysics [28], or equations that 
come from coarse-graining more difficult problems. An instance of the latter case is 
convection. Some physicists call the Navier-Stokes equations "microscopic equations" 
because they think of the Benard cells as being like the cells or atoms of literally 
microscopic problems. In the face of such detail, it may not be fruitful to look directly 
for localized structures, but to work on the system only after it has been coarsened by 
two-timing or multiscaling. This typically leads to reduced systems such as the various 
forms of the Ginzburg-Landau equation [17]. 

In some problems, we do not yet know how to do a good job on coarse graining. 
For example, in fluid turbulence, the coherent structures appear to be patches of 
small-scale excitation. We can try to model turbulence with equations of motion for 
these coherent objects themselves. But how do we derive such equations explicitly? 
That question [30] is one of the motivations for the present work, although we realize 
that we are as yet far from realizing this aim. Even a greatly reduced example like the 
one-dimensional, complex Ginzburg-Landau equation, a standard model for the 
dynamics of packets of excitation, produces complications that are not easily under- 
stood by analytic means. Numerical simulations on that equation reveal pulses that 
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tend to split in two and to develop important amplitude and velocity variations during 
strong interactions [3]. We generally do not know how to deal with such creation and 
destruction processes of solitary structures. 

On the other hand, there are even tamer examples with which we can do something. 
In simulations on the FitzHugh-Nagumo equations [28], generic situations arise where 
the pulses do not come very close to each other. There we can use the so-called dilute 
gas approximation, where the separations of the structures greatly exceed their widths. 
This regime has been developed in the study of defect dynamics, particularly for 
interacting kinks and antikinks [4], [5]. It is basically the same approach as has been 
used in a variety of nonlinear field theories [27] where the particles are the pulses that 
we are talking about. This is the point of view that we want to develop here as an 
asymptotic procedure. 

A solution in the form of an individual pulse may be relatively easy to find 
numerically, but accurate solutions representing trains of many pulses require much 
more effort. However, multipulse solutions do appear in numerical simulations and 
we could hope to treat them approximately. Of course, for many integrable systems, 
pulse trains can be obtained as solutions by the nonlinear superposition achieved in 
the inverse scattering transform [1]. But here we are interested in dissipative systems, 
such as reaction-diffusion equations [15], which may also be subject to instabilities. 
The methods that we use for the study of trains of interacting solitary waves are 
therefore approximate, but, as we shall explain, they have an asymptotic character 
based on the dilute approximation. Hence they are amenable to systematic study as 
we shall describe in what follows. They also tie in nicely with the methods of dynamical 
systems theory. 

Although we have reported elsewhere some first results from this kind of analysis 
[9], we have not yet properly described the method for getting them. To do this here, 
we shall speak generally about a system of partial differential equations for a state 
vector, U(x, t), depending on only one space coordinate x, all of whose components 
are scalars or pseudoscalars. We adopt the general form of PDE, 

(1.1) atU = J(a, F)U+A(U). 

Here Y is a partial differential operator in x, depending on the parameters of the 
system, say F = (yi, Y2,p ... ), and Y is a nonlinear operator, which may also depend 
on Ax. Neither operator depends on t or &,. We assume that (1.1) is invariant under 
translation. Equation (1.1) clearly contains a number of well-known special cases, of 
which we have already mentioned some familiar examples. For simplicity, we further 
assume that the translation group is the only continuous group of (1.1); in particular, 
we rule out scale invariance and Galilean invariance. 

The form (1.1) represents systems whose state vectors evolve under the joint 
influences of nonlinearity and spatial coupling. We expect (1.1) to display various 
kinds of complicated solutions in different parameter ranges. The particular behavior 
that we are going to study here comes from the interactions of many coherent structures, 
or solitary waves. The asymptotics of this problem relies on the interactions among 
pulses becoming quite weak when the interpulse spacing is large. When we take 
advantage of this weak coupling, we are able to replace (1.1) by a solution in the form 
of a pulse train together with a discrete set of ordinary differential equations for the 
motions of the individual pulses. Thus, we reduce the PDE (1.1) to a simple N-body 
problem, whose particles are the solitary structures we describe in ? 2. Then, in ? 3, 
we outline the reductions that lead to the equations of motion of these structures when 
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we allow for nearest neighbor interactions and neglect tidal distortions of pulses. 
Finally, we say something about the content of these equations in ? 4. 

2. Basic structures. Equation (1.1) is assumed invariant under the transformation 
x - X = x + a, where a is a constant. If now a = ct, where c is another constant, the 
transformation still leaves the right-hand side of (1.1) unchanged. However, the 
left-hand side is altered in this case, for at -> d, ? cQO, where 

(2.1) x = x + ct. 

The building blocks of our description are constructed by using this transformation 
to look for traveling waves. We seek solutions of (1.1) of the form 

(2.2) U(x, t) = H(x) 

By direct substitution into (1.1), we obtain the ODE 

(2.3) [ (D)-cgD]H+A(H)=O, 

where D is the ordinary derivative operator with respect to X and & is the unit matrix. 
Solution of (2.3) immediately leads to traveling wave solutions of (1.1). We will 

not pursue these in any detail here since, even if we could find them easily, it is usually 
difficult to decide which are stable solutions of (1.1). This question has been discussed, 
along the lines of slowly varying wave theory, for reaction diffusion waves [14]. We 
will see below how the techniques described here lead to another version of this stability 
problem. However, our immediate interest in the isolated structures arising in (2.3) is 
that they provide us with elementary objects from which to construct approximate 
solutions of (1.1). 

There are so many problems where solitary waves do exist that we do not worry 
about their existence issue in general, although this may come up in particular applica- 
tions. Generally, to find the solitary wave of the PDE, we look for a solution of infinite 
period in the phase space associated with (2.3). For our purposes, we do not need to 
know details about the internal structures of these solitary solutions, except for some 
measure of their widths. However, we do need to know their behavior at large distances 
from their main bodies. 

Infinite period (in X) results when the solution tends to a fixed point as lXi -> +x. 
As the motion follows a trajectory in the phase space of (2.3) toward or away from a 
fixed point, it goes so slowly near this point that an arbitrarily long time is required, 
where y is the "time" of this system. The solitary pulse that is central to this work 
corresponds to a trajectory that connects the fixed point to itself. We adapt a word 
from Poincare and call this a homoclinic orbit; similarly, we call a trajectory that joins 
two different fixed points heteroclinic. The latter are the shock-like structures such as 
we find in the Burgers equation. For brevity, we leave these out here and concentrate 
on the homoclinic orbits, the pulses. 

It is convenient to locate the origin of phase space at the fixed point that is joined 
to itself by the homoclinic orbit. As X ' oo x, the behavior is controlled by the linearized 
version of (2.1), which admits solutions proportional to exp (sx). We generally have 
no difficulty in finding a characteristic value equation for s. The values obtained will 
depend on the parameters of the problem F, normally specified by physical conditions, 
and on c. 

A most important property of the characteristic value s is the sign of its real part. 
Various cases may be distinguished according to the spectrum of these values and, to 
shorten this discussion, we exclude the following two atypical (though potentially 
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interesting) situations: (a) purely imaginary roots for s and (b) multiple roots for s or 
the associated possibility of algebraic behavior. 

For V -> x, the solution will asymptotically approach 0 on a path lying in the 
subspace of the phase space that is spanned by those characteristic vectors of the linear 
problem that are associated with the eigenvalues with Is <0. Were we to mix in a 
characteristic vector with positive As, that would drive the trajectory away from 0. In 
the final approach to 0, the trajectory in phase spaces is further squeezed into the 
subspace spanned by only the characteristic vector (or complex conjugate pair) with 
the smallest value of -ATs. We call these the dominant eigenvalue and the dominant 
eigenvector(s) and we shall use the notation o = -NIs. In this last phase of the approach 
to the origin, the behavior is either pure exponential decay or exponential decay with 
a superposed oscillation. 

When the representative point in the phase space is very near to the origin, that 
corresponds to being far from the structure itself in x in the original space. This 
translates into the simple nature of the forward edge of the solitary wave in original 
space: far ahead of the main body of the pulse the structure is like exp (-ox), with 
or without superposed oscillations. 

A similar discussion applies as we take the solution backward into negative X. 
Here, we are concerned only with the case when the trajectory goes back to the origin 
0. But this time, we are interested in the characteristic value for the linear problem 
about 0 that has smallest positive real part, p, say. When the appropriate characteristic 
value is real, the behavior near to the fixed point is proportional to exp (pX) times 
the eigenvector that goes with this eigenvalue. When the dominant eigenvalues (in the 
sense of being closest to the imaginary axis in root space) are a complex pair, the 
approach to 0 is oscillatory and occurs in the subspace spanned by the corresponding 
two complex eigenvectors. In short, as we move away from the pulse in either direction 
(in X) the decay to the fixed value of H at ?JVJ is exponential, with or without 
superposed oscillations. 

We know then how the trajectory leaves the fixed point and how it returns. What 
we need to know in addition is the condition for these two asymptotic motions (in X) 
to meet sufficiently smoothly at some finite X to form a single orbit. If the values of 
the system parameters F are fixed, we need to choose a value c = co(F) such that we 
do have a homoclinic trajectory for (2.3). For the FitzHugh-Nagumo equation, for 
example, it has been shown that such values of co exist [13]. Similar results exist for 
many well-studied problems and homoclinic orbits have played a fundamental role in 
dynamical systems. They have been used especially in the theory of chaos [31], largely 
because they do arise often for reasonable parameter values. What makes them usable 
is that they can be found numerically, to good accuracy, with quite modest means. 

When the homoclinic orbit is stable, there is no problem in finding it numerically. 
To find an unstable homoclinic orbit, a simple approach is to choose parameter values 
for which the problem is greatly reduced and homoclinic orbits are easily found. Then 
the parameters are incremented in small steps back to the desired values, and a new 
homoclinic orbit is calculated at each step, using the orbit from the previous step as 
a first guess [2]. Such homotopic methods have been used in dynamical problems with 
success, so we may consider that this technical part of the problem has been resolved 
for the rest of this paper. We can then go on to see how to use these pulses. 

Another issue that ought to be mentioned is the prospect of finding many homo- 
clinic orbits issuing from the same fixed point. This can arise for us because c is not 
given a priori but is sort of a nonlinear eigenvalue that goes with the homoclinic orbit. 
A typical nonuniqueness arises with the occurrence of many discrete eigenvalues of c 
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corresponding to homoclinic solutions in the form of pulses, double pulses, triple 
pulses, and so on [11], [12]. As we are able to approximate the multipulse solutions 
as several nonlinearly superposed single pulses, we shall simplify at the outset by 
considering only the single-pulse coherent structure in our scheme. 

3. Dynamics of pulses. We will approach the problem of interacting coherent 
structures from the point of view of singular perturbation theory. So we begin by 
defining a small parameter. Let L be the typical separation of the pulses of the system. 
Pulses tail off on the scale o-1 in the positive x direction, while in the negative X 
direction their decay scale is p-1, as discussed in ? 2. In this work we shall confine 
our attention to cases where the parameter, 8 = o/p, is of order unity. So, we can think 
of o as the effective range of the pulses in their interaction. Our small parameter for 
this work is E = exp (-oL). 

A single pulse is given by the homoclinic solution, H(s) discussed in ? 2, where 
X x + ct where c is a constant. By translational invariance, H(V - a) is also a solution, 
where a is another constant. We choose the origin of X so that the maximum of the 
excursion of H from the fixed point-the peak of the pulse-occurs near X = 0. Let us 
look for an N-pulse solution with individual pulses at X = X,,, where X,,(t) = nL+ ,, (,r) 
and where r = Et. We seek solutions in the form of a train of pulses: 

N 

(3.1) U= E H(X-nL -?n(r)) +R(X r), 
n = I 

where N may be any fixed integer. Since a superposition even of widely spaced pulses 
cannot be an exact solution, we have made the accommodation of letting the pulses 
move slowly; the Xi depend on Et. Even then, the solution cannot be exact, so we 
allow for that by including a remainder term, ER. 

We substitute (3.1) into (1.1), and get, on using the definition of H, 
N N N 

(3.2) cEa3R+ E2&9R-ER=E E H +A' H +ER - E A(H 
n=l i=n i=n 

where Hn =H(X - nL- -0. Next, we begin the development of the perturbation theory 
with the expansion to O(E) of the nonlinear term: 

(3.3) A(P + EQ) = A(P) + EG(P)* Q + ? * 

where G denotes functional gradient with respect to the argument, taken at E 0. Thus, 
we obtain the perturbation equation for R: 

(C(3x-)R (n-lE Hn)R E [X( Hn - E A(Hn)] 
(3.4) 

N 
? E ?,Hn? + 0(E). 

n = 1 

Now we introduce a simple approximation on nonlinear functions of sums of 
widely spaced pulses. Let X(X) = Xn. Suppose that X = EN= Hm, where the Hm peak 
at widely spaced points, X = X= mL?+ 4m. The value of Hm?+ is 0(E) at xm and is 
O(E2) at Xm-l and so on. We see that X(ZN=j Hm) =ZN=l X(Hm)+ O (E). When we 
keep only the leading terms in such a development, we shall call that the superposed 
pulse approximation, or Spa. In the examples, for which we use the Spa here, we deal 
with vector valued functions like XA, and these are functions of the components of U 
and possibly its X derivatives. We shall assume that these functions are (possibly 
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infinite) sums of monomials in those components and their derivatives. Then, in (3.4) 
in particular, we have 

/N .\ N 

(3.5) GA- ( Hm) =E GA-(Hm)+O(E). 

The Spa also tells us that the right-hand side of (3.4) is really 0(1), despite appearances. 
Now we can rewrite (3.4) as 

/N N N 

(3.6) OR= E- [1 (E Hn - E .A(Hn) + E ? nHl +H (E), 
n=l1 n=1 n=1 

where 
N 

(3.7) caX = CQG-H- m) 
m==1 

The linear operator Xe has a form that is reminiscent of the Hamiltonian operator 
of the time-independent Schr6dinger equation for an electron moving in a lattice. That 
is, it is the sum of the linear differential operator, cQ, - ., and the "lattice potential" 

N= 1m=i GA(H(X - mL- om)), which need not be periodic. The approximations that 
we have used here correspond to what is called tight binding in solid state physics, in 
which the wave function has greatest intensity near the atoms of the lattice. Here, R 
is the analogue of the wave function, and we may similarly expect it to be concentrated 
near the pulses. 

There are also differences from the solid state situation: our differential operator 
need be neither second-order nor self-adjoint. Nevertheless, some of the approaches 
used in the solid state analogue are helpful to us. Thus, we observe that for widely 
separated pulses the eigenfunctions of X are well approximated by eigenfunctions of 
the operator 

(3.8) -WI = ca.-c'-GA(H_)* 

As we see on differentiating (2.3) with respect to X, this operator has zero as an 
eigenvalue for the eigenfunction R= H> where the prime means differentiation with 
respect to the argument. But the significant reason for the existence of this neutral 
mode is the translational invariance of the original problem. Indifference to transforma- 
tion with respect to the parameter of any group (here translation) makes the first 
variation of the homoclinic solution a mode of zero eigenvalue. 

All this leads us to expect X to have an eigenvalue near to zero. If we seek a 
solution to the equation 

(3.9) WQQ= EQ, 

where E is an eigenvalue, we can approximate the solution by 
N 

(3.10) Q= i AiH'i 
i=l 

where the Ai are constants. We can write a stationary for E in the usual way. When 
X is self-adjoint, the stationary expression for E actually bounds it from above, and 
we have a systematic procedure for improving our estimate of E. But it is sufficient 
for our purposes that we can use the stationary expression to estimate that E = 0(E). 

Now, if it is to be true that a solution to the problem in the form of widely 
separated, interacting pulses exists, then the correction term, ER in (3.1), must be 
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small. To ensure this, we require R to be finite everywhere. To close this problem, we 
impose this condition of finiteness on R as a solvability condition on (3.6). But here, 
we take this only to leading order in E. 

We assume the usual inner product of vector analysis and use integration over 
the infinite range of X for functional products. Then we can define an adjoint linear 
operator _Wt through the relation 

00 co 
(3.11) {P.-2WXRdx={P R (tP) RdX9 

_03 -00 

with a similar definition for _*". Thus, 

(3.12) Oj = -ca-St-[GA]t(Hj)* 

Very often, the existence of a null vector of X means that we can expect a solution 
of 

(3.13) ArtP = O 

to exist. But when AWj is not self-adjoint that is not a foregone conclusion, although 
it is usually a safe one. For example, the ground state of the lowering operator for the 
harmonic oscillator is an eigenstate of eigenvalue zero. Yet its adjoint, the raising 
operator, does not have zero as eigenvalue. However, this arises because the harmonic 
oscillator is in an infinitely deep well, which we do not have here. We will proceed 
here on the assumption that a solution to (3.13) exists. 

For the same reasons as for H, P must decay exponentially when we go far from 
X = Xj. We therefore can conveniently denote the adjoint homogeneous solution of 
(3.13) as Pj= P(y -jL- j). Further, by the same arguments as we used for H, we 
see that 

(3.14) Xtpj = 0(?). 

If we take the inner product of (3.6) with Pj for any j, we get on the left-hand side a 
factor that is 0(E) times J dX Pj R. If R is finite everywhere, this integral is finite, 
since Pj decays exponentially. Hence the inner product of any of the Pj with the 
right-hand side of (3.6) must be 0(?). Since the right side of (3.6) is 0(1), by the Spa, 
we are driven to a solvability condition in leading order straightaway. 

Now, we need to calculate the 0(E) term in (3.5). To get it, we again consider 
i'({Hj}) = (z= Hm)n. We obtain X=N (H) IN Ejm n(Hm)Hj, plus 
terms O(E2). The first term is the Spa and, in the next term, we get as single factors 
pulses whose peaks are far from Xm. for each m. The factors in the second term 
generated by the distant peaks are produced by their exponentially small tails and 
have local amplitude 0(E). In the case where A' does not contain derivatives, we have 

/N \ N N 

(3.15) A( Hm) = A .(Hm)+ E E GY(Hm) Hj+ O(E2). 

We can do a similar thing when Y contains derivatives, but it is not useful to write 
that out here. 

If we now project the right-hand side of (3.6) onto Pj, we get, in leading order, 

N\ 

(3.16) (PkIH'k)4k?+ 1 (Pk E E GA(Hm) Hj) = 0(E). 
m=l jom 
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Since the inner product involves integration over X, the second term in (3.16), 
when written out, is 

fN 
(3.17) {dX E E Pk- GA(Hm) * Hj. 

m=lj#m 

Because Pk is sharply peaked, only terms linear in Hk?l contribute to this expression, 
since more distant peaks contribute only terms of order E So, in leading order, (3.17) 
becomes 

(3.18) ? j dX Pk' i(Hk) * (Hk+l+Hk-l)- 

where F is a suitable nonlinear function. 
Now, Hk?l o 0R exp {s?[X - (k ? 1)L - 4'kil]} in the neighborhood of Xk, where we 

recall that A s+ = p and As_ = -6p. If we set y = X - kL- 1k, we find that, for instance, 
Hk+l1 OC exp [s+y- s+L -S+(k+l-k)]. Since E = exp (-pL), (3.18) reduces to two 
terms, one of which is proportional to 

(3.19) exp [-P(4k+l - fk)] COS [w?+(.k+l - (Pk -+)] I j' Pk(y) GA(Hk(y)) e dy. 

We can see that the integral converges and, like co and 1), is a parameter of the system. 
The other term from (3.18) has a similar integral as a factor, which does not matter 

here; the interesting factor is 

(3.20) ? -1 exp [-P18(k - Ok-1)] cos [o(Ok -k-1 --)]. 

For 8 close to unity, we have E'-' = 1 + (8 - 1) ln ? +* . Hence, for 6 -> 1, if we neglect 
O(E) and 0(8 - 1), we have for the solvability condition, 

(3.21) 95k aO cos [wO(4k1 -k) 0F] + a, e-P1(, ,k-1) cos [&l (4k - k-1) -(I], 

where the overdot denotes differentiation with respect to r and a,, cot, and (D are 
constants with I = 0, 1 and po = p. Some constants have been renamed in an evident 
way for cosmetic reasons, as in Pi = c-= 8p. 

We have not given any higher terms in (3.21), but we should say that there is only 
one term 0(8 - 1) and a diversity of O(E) terms. Provided that ?E6 stays larger than 
E, we are able simply to absorb the E?6 -l1 terms into the factor a,, with a gain in 
the range of usefulness of (3.21). Another change in (3.21) makes it easier to work 
with. We reintroduce the explicit positions of individual pulses, 

(3.22) Xk(t) =kL?+ k(r) 

Then, with (D = (1+wL, (3.21) becomes 

(3.23) Xk aO ePO(x+lxk cos [&)w0(Xk+I Xk) -D] 

+ a, 1-6I X - cos [cvl(Xk -AXk-1) -Fj1]. 

4. Pattern dynamics. 
4.1. Lattice forces. We have taken a rather general PDE with translational invari- 

ance that admits pulse-like solutions and have looked for N-pulse solutions. Those 
can be found, provided that the pulses remain far enough apart and move in accordance 
with (3.23). For that kind of solution, we can reduce the PDE to this relatively simple 
system of ODEs. To conclude, we want to sketch some features of this dynamical system. 
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It is convenient to write (3.23) in abbreviated form, letting 

(4.1) Xk FR(Xk+l Xk) + FL(Xk -Xk-1), 

where FR is the force exerted by the pulse to the right and FL is exerted by the pulse 
to the left, respectively, and we make the convention that Xk+1 > Ak. The subscripts R 
and L seem easier to keep in mind that 0 and 1 in this context. So we shall, in (3.23), 
let I = 0 = R and I = 1 = L. Then, we can write the general form of the force as 

(4.2) Fl (Xk) = a, eI Ak COS (CO!lkf1I) 

where 

(4.3) Ak=Xk Xk-1 

The various constants, like a,, are renamed from (3.23), whose form is, however, kept 
intact. As before, PL/PR = 8- 1. We have previously reported on results obtained by 
simulations on a particular case of this system [9]. 

The dynamics implied by (4.1) are simple. In a space of dimension d, a Coulomb- 
type force between two particles a distance r apart goes like r-(d1). For d = 1, the 
force is constant, as it is here, except for the exponentials. The monotonic parts of the 
exponentials describe the ranges of the forces and, because the pulses need not be 
symmetric fore and aft, the ranges may be different on the two sides. The oscillatory 
part of the range has no obvious analogue in traditional dynamics. The term on the 
left of (4.1) ought to be moved to the right and thought of as a frictional drag. And, 
or course, there is no inertial term because we disallowed Galilean invariance. 

The exponential nature of the interpulse forces is a result of the great separation 
of pulses, which exists by assumption. To get an idea of the risk of violating this 
condition, let us study what happens when particles k and k-I develop a smaller 
than average separation. Let Ak+1 >>? k and Ak-1 >> k. Then we easily derive the 
approximate equations 

(4.4) Ik = FL(Ak) - FR(Ak) 

and 

(4.5) -=2FL(Ak) + 2 FR(Ak), 

where 2 =?(Xk +Xk-1) 

Equation (4.4) says that the pulse separation will adjust until the left and right 
forces are equal and then the particles will lock in, with constant separation. In cases 
where an oscillatory tail separates the pulses, we can expect them to be kept apart by 
this locking effect, at least long enough for the results to be interesting, for at least 
some of the locked states will be stable. The approach of a third and a fourth particle 
to the pair could be disruptive and often is. But this need not cause close approaches. 
Though there are parameter choices in some problems where the world lines of the 
pulses do cross, as these remarks suggest, there are many cases where no problem 
arises [9]. Equation (4.5) tells us that the velocities in the various locked states are 
constant and different from that in the single particle state. (These locked states may 
in fact approximate double-humped homoclinic solutions of the associated PDE, as 
we know from computations on specific examples that will be elaborated elsewhere [7].) 

4.2. Pattern maps. We see that (4.1) has a solution with Xk = V where V is a 
constant velocity in the frame of the single pulse, independent of k. In this case, pulse 
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spacings do not change in time, for the pulses are locked together as for the pair we 
just discussed. We obtain the pattern map, 
(4.6) V= FR(Ak+l) + FL(A/k) 

Given a spacing between two neighboring pulses, we can deduce the spacing 
between the next pair over from (4.6) and so use (4.6) to map out the entire steady 
pattern. The simplest pattern has uniform spacing, Ak = A, and we get the dispersion 
relation V(A) = FR(A) + FL(A). We thus get qualitatively useful results from the general 
theory without extensive computation. The stability of the uniform pattern is straightfor- 
ward to investigate as we shall see presently, but first, let us look at (4.6) a bit more. 

Maps like (4.6) are dynamical systems. They may arise as first return maps for 
ODEs like (2.3). There are really three distinct cases of (4.6). We can have (1) purely 
exponential tails on both sides, (2) one oscillating and one monotonous, or (3) both 
oscillatory. Each of these cases gives rise to different pattern dynamics, and we shall 
illustrate the content of this work with a brief discussion of case (2). Case (1) is too 
simple to be intriguing and case (3) is normally an implicit map, too complicated for 
a brief discussion. It arises in certain fourth-order ODEs and has recently been 
investigated by Fowler and Sparrow (preprint). 

In case (2), let Zk = exp (-PRAk). Then (4.6) takes the form 
(4.7) Zk+ = C -AZ" cos [co ln Zk - f], 

where the constants have been renamed to streamline the formula. This map has both 
regular and chaotic solutions [2]. In parallel with the familiar period-doubling sequence 
of chaos theory [6], there are sequences of patterns with trains of paired pulses, paired 
pairs, and so on. All of the complications maps of the line are here. The possibilities 
seem endless and, to begin to sort them out, it will help to study their stability. 

4.3. Stability theory. Now we let 

(4.8) Xk = kA?+ Vt+ Ok 

and treat ok as a small perturbation to the pattern with constant spacing, A. The linear 
equation is 

(4.9) dOk FR(A)[aOk-1 -(1 + a)Ok + Ok+1], dt R 

where a =-F'L(A)/F'R(A). 
Basically, a measures the slope of the pattern map, so it is clearly related to the 

stability of the map. But that is not the same thing as the stability of the pattern in 
the PDE; that is governed by (4.9). Another way to think about a is as a measure of 
dispersion. If we define an individual pulse velocity Vk =Xk, we find from (4.1) 

(4.10) = k _ -FR(Ak+l) + F'L(Ak)- 
&AXk 

For constant Ak, this quantity is -F'R(1 + a), a sort of tidal force on pulses. 
We look for solutions of (4.9) in the form ok = 01 exp [a1t + 2irtkl/ N] + c.c. where 

N is the total number of pulses and we find 
2vl ~~~~21rll 

(4.1 1) o-I =-FR (A\) [(1 + a ) ( 1-CO co ) r i(l l-a) sinN]- L \ N / NJ 

This says that the necessary and sufficient condition for stability of the pattern with 
constant spacing i\ is that 

(4.12) F'R(A) - FL(A) > 0. 
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Comparison with formula (4.10) for dispersion suggests that, should the pulses be 
moving faster when they are farther downstream, instability develops. When F'R(A) + 
F' (A) & 0, the instability is in the form of a growing oscillation. 

If we have more complicated patterns, the stability theory proceeds in the same 
way, leading to more complicated instability criteria. For trains of pulse pairs, or pairs 
of pairs, the treatment is simple and comes down to application of the Routh-Hurwitz 
criterion. We have decided to omit these details, for the main outcome is that there 
are typically many linearly stable solutions. The message is that these are metastable 
[9] and that the final state depends on initial conditions and the level of noise in the 
background. Such a system resembles what physicists call a spin glass, but it is not a 
potential system. It is not clear what kind of statistical mechanics to invent for this 
problem as yet. 

4.4. Large-scale dynamics. The pattern theory of this section is founded on the 
idea that the pulses are widely separated compared to their widths. Within this 
restriction, (3.23) or (4.1) gives a detailed description of the pattern. The last question 
we touch on is this: how should we formulate the question of organization on scales 
very large compared to the typical pulse separation, L? In that limit, L seems small, 
and we may think of a continuous medium of pulses. From that vantage point, we no 
longer distinguish individual pulses but worry about some measure of their density. 
This limit has been extensively studied by Rosenau [29] for lattice dynamics like (4.1). 
We next apply his approach to this case, making the needed, but evident, generalizations 
for asymmetric pulses. 

Let Uk = Ak/L. This quantity is a measure of the local spacing of pulses, hence it 
is an inverse pulse density. From (4.1), we can derive an equation for the evolution 
of uk: 

(4.13) Lak ==FR(LUk+l)- FR(LUk) +FL(LUk)-FL(LUk-l). 

In the limit L -> 0, we replace the discrete variable k by the continuous variable x = kL. 
Then uk(t) goes over into u(x, t). 

Now we introduce W, (u) = F, (Lu), and (4.13) becomes 

(4.14) LA,u = (e _ 1) R(u)-(e x_j)gL(U). 

To study the stability of the uniformly spaced solution, we set u = 1 + v where v 
is a small perturbation that we may take to vary like exp (o-kt + ikj) + c.c.. Then, the 
linear perturbation equation gives us back the dispersion relation (4.11). 

In the nonlinear regime, we can replace the exponentiated operator by its first 
few terms. Once that is done, it is possible to regroup those few terms in the manner 
of Pade. Thus, we write the expansion 

(4.15) e?L?12-K- 1 2(1 + iL22 ** * )a2 i L(1? L2? +. 

and regroup these terms to give the approximation 

(4.16) e L@\ = I d I (1-Id 

where X = x/L. Then (4.14) becomes, after some rearrangement, 

(4.17) La,u = 'L(1 - a8)a8,4 ?12(1 -1X)aX(h - JL)+AX (JR ? 2L)X 
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Suppose that we are close to an equally spaced solution with L= A and write 
u = 1+ v/L. Then, (4.17) becomes 

a, =6124 X )8X t+ 2(1-12 8X )8X (aU+1UD 

(4.18) ?e3x(aiV?f3iV2?~ ..) 

where ak = - ( i(1) and fk = R-i(1) L 
Next, we should look for a solitary wave solution to (4.18), but perhaps this is 

not the moment. What we do see from this reduction to another PDE is how the 
procedure we have outlined connects with what some people call phase dynamics [10], 
the theory behind various extensions of the Burgers equation [15]. Those theories 
consider large-scale modulations of simple waves. In looking at our train of pulses in 
a coarse-grained way, we get the sort of modulational equation associated with those 
developments. 

5. Conclusion. In many fields, complicated solutions to nonlinear field equations 
can be reduced to superposed, interacting solitary structures. The motion of these 
objects is usually governed by dynamical equations. Examples include particle physics 
[27] and the theory of defects [5]. In this work, we have outlined a general approach 
to such questions in terms of singular perturbation theory. Other approaches have 
been used in this kind of problem, the most familiar being forms of gauge field theory 
such as phase dynamics [15]. A relation between the approach we have taken and 
phase dynamics was indicated at the end of the last section. We would like to conclude 
by trying to clarify this connection. 

In perturbation theory, we develop an approximation around a special solution 
at a special value, F0, of the system parameter, F. The special solution is either exact 
or very accurate at Fo. For small ?2 = F-1F0, we look for approximate solutions that 
are the special solution plus small corrections. Here, smallness is measured in terms 
of e. Sometimes this works straightforwardly in the sense of ordinary perturbation 
theory. At other times, the development fails and leads to singularity. 

The latter case is interesting when the special solution contains one or more 
arbitrary constants. These constants normally enter because the system has invariances 
either for all F or at Fo. The practice in physics is to identify the constants as parameters 
of continuous groups, so it is possible to see in advance whether these constants will 
enter. If the system generally, or for F = Fo, has invariances, arbitrary constants may 
be expected in the special solution. 

When the ordinary perturbation theory blows up in your face, you can try to 
remove the singularity by choosing the constants in the special solution to remove the 
trouble. In deriving the amplitude equation known as Landau's equation, you can let 
the arbitrary amplitude depend slowly on time in such a way as to remove secular 
terms in the perturbation theory. The idea is that if the original try is not good enough, 
the easiest adjustment is through the variation of the parameters, to whose values the 
system is indifferent. In the case of the Landau equation, the approximate linear system 
is scale invariant, so the amplitude is allowed to vary. 

Sometimes it is not enough to let the constants depend on time. So you can try 
letting them depend weakly on position as well. This is where our departure from 
conventional multiscaling occurs. Instead of letting the group parameter of our problem 
depend slowly on position, we let it depend on a discrete index. As we indicated briefly 
in concluding the last section, when the discrete index becomes continuous, the results 
look like the sort of equation that ordinary multiscaling produces. The choice of 
approach depends on the circumstances. 
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If you find a simple wave solution to your problem, the phase dynamical approach, 
or slowly varying wave theory, works well. Here the phases are the group parameters 
that will depend slowly on space and time. When the system supports localized 
structures, especially those tailing off exponentially, you can describe large-scale 
patterns by superposing such structures, as we have done here. But, as we saw, even 
in this discrete case, you can go over to a phase equation in the continuous limit. 

Naturally, there are several extensions of such a theory that may be studied. Other 
invariances, the most common being Galilean and scale invariance, can be included 
[7], [8]. Higher dimensional problems are also interesting [16], such as vortex interac- 
tion in two dimensions. Those extensions, while not obvious, are feasible. But there 
is a nagging problem that needs to be confronted. It is the choice of N, the number 
of pulses in the solution. Here, we have specified N, but that choice should be made 
by the system. So far, we do not know how to allow that. It may be difficult to do this 
as long as the pulses are constrained to stay far apart, except for integrable systems. 
Perhaps the right approach may be found in the study of near-integrable systems. 

In the meantime, we are interested in testing the theory. We have mentioned the 
FitzHugh-Nagumo equation [28] as a paradigm and have been studying it with Rinzel 
along the lines described here. As always, there are some technical details involved in 
the comparison with experiments, whether real or numerical. Experimental systems 
are finite, and that has to be allowed for. But the main confrontation with reality arises 
because we have been thinking of an initial value problem, in which the pulse positions 
are all given for t = 0. In biological experiments one frequently uses pacemakers, that 
is, one gives the times for creating pulses at x = 0. That can be handled, but we shall 
postpone the discussion to another occasion. 

In this work, E is our small parameter and we have tried to put it in all the right 
places, while 8 is 0(1). Nevertheless, we attach great importance to their product, 
especially in the quantity ?8 pEtc-. May he continue to operate the lights for another 
sixty years. 
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