Nonlinear dynamics and pattern formation
with applications to ecology

» Ehud Meron




Outine of Part II

Experimental studies of periodically forced pattern forming
systems:

1. Temporally forced Belouzov-Zhabotinsky reaction
2. Spatially forced Rayleigh-Benard convection

Nonlinear analysis of temporally forced oscillating systems:

1. 2:1 resonance - frequency locking in uniform oscillations, phase
front instabilities, Bloch-front turbulence, effects of pattern on
frequency locking.

2. 4:1resonance - phase front instabilities, multi-phase patterns

Nonlinear analysis of spatially forced systems:

Wavenumber locking can be dramatically different from frequency
locking
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Experimental studies of periodically forced systems

Temporal forcing of a spatially extended oscillatory system

Experimental system: BZ reaction with a photo-sensitive catalyst,
forced by periodic illumination in time, uniform in space.

The forcing is controlled by the light intensity 7" and the ratio of
forcing frequency @, to the frequency @, of the unforced reaction.

The experimental results reproduced main dynamical aspects of
single forced oscillator, such
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Lin, Hagberg, Meron, Swinney, PRE 2004




Experimental studies of periodically forced systems

But the experimental results also revealed
strong effects of the forcing on pattern

formation:
Unforced BZ —

Transitions from traveling
spiral waves to standing
labyrinthine patterns

2:1 forced BZ —,
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Experimental studies of periodically forced systems

The 2:1 resonance include:

Patterns with a characteristic length-scale or wavenumber =228
Amorphous domai ith %
phous domain patterns with fronts 1 %
o QSRS

M

Are the former a result of a transverse front instability, or a
result of a finite-wavenumber instability of a uniform state (i.e.
class IT or class I)?

Multiphase traveling waves:

3-phase 4-phase 5-phase 6-phase
Lin, Hagberg, Meron, Swinney, PRE 2004
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Experimental studies of periodically forced systems

Spatial forcing of a system supporting
stripe (roll) patterns

Experimental system: Rayleigh-Benard
convection with a periodically modulated
bottom plate

One-dimensional forcing induces two-
dimensional patterns - oblique domains in
a roll background (entrained to the
modulation). (a) and (b) - 5 hours apart.
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Consider the FHN model (Class I):

3 2
U, =u—u" —v+V-ou

_—

v, =¢(u—a,v)+ oV 2y a, <1 \7(%,%)\
The single stationary uniform state, (1,v)=(0,0),

loses stability to uniform oscillations as ¢ is decreased below
E=&,=a’
The oscillation frequency at the instability point is :
Wy = al_l(l_al)
Reo
This is an example of a Hopf bifurcation I e<e,
where an oscillatory mode begins to grow: )
u ~ eoWrriont o o \
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Suppose we force the system at a frequency @, ~2w, by adding to
a, an oscillatory term:

a, —>a, +I'sinw,t

Close to the Hopf bifurcation we can approximate solutions of the
forced FHN model by

uy (1 i(w, /2)
~ A(x,y,t)e + c.c. The Complex
V C

Ginzburg-Landau
or CGL equation

where A(x,y,t) satisfies the amplitude equation /
A =A+iv)A+(A+ia)VA-(1+iB)IAIP A+ A

A= (5H — 5)/5H - distance from the Hopf bifurcation

V=0, -0, /2 - detuning (deviation from exact 2:1 resonance)
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2:1 temporal forcing: frequency locking - uniform oscillations

Frequency locking of uniform oscillations

The temporally forced system has two frequencies, the Hopf
frequency, @, and the forcing frequency @, . In general such
systems show quasi-periodic oscillations, but if the fwo frequencies
are rationally related the dynamics is periodic in time.

Time independent solutions of the amplitude equation represent
periodic oscillations of the FHN system with a frequency o, /2.

Let's consider first time independent solutions which are also
uniform in space, i.e. solutions satisfying
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A+iVA—(+iB)IAP A+/A =0 N memeion
1 uniform oscillations
Such solutions exist provided y > vy, - 0= 2
where b | /
y, = V—ﬁ,ﬁ : At
’ J1+ B2 ol

-0 0.5 1

V=0,-0,/2



2:1 temporal forcing: frequency locking - patterns

The shaded area is the so called Arnold tongue of the 2:1 resonance.
Within the ftongue the system adjusts its oscillation frequency to
exactly half the forcing frequency, even when o, # o,/ 2. We say that
the oscillation frequency is locked to the forcing.

What types of spatial patterns the forcing can induce and how is
frequency locking affected by pattern formation?

Recall the two classes of pattern-formation mechanisms: Class T
(instabilities of uniform states) and Class IT (multi-stability of states).

Class IT pattern formation mechanisms induced by the forcing:

There are two stable constant solutions W.Im(A)
within the 2:1 Arnold tongue, whose
phases (arguments) differ by = :

Ai:pei¢i’ b_=¢ . +7
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2:1 temporal forcing: frequency locking - patterns

and front solutions that can go through a NIB front bifurcation as
the forcing strength is decreased (like in the unforced bistable
FHN):

, Im(A)

2=
— / 'Re(A)

front speed

0.70 0.25 0.30 035 040
Forcing strength vy
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In the forcing plan the NIB "N | 7 .UW

threshold divides the Arnold *°| X\ = g 7 |9

tongue into two parts: - 23 b :
2 b :}’jrm‘ » |

Ising: Stationary fronts and patterns ﬁ _ Bloch . @

Bloch: Traveling fronts and patterns —g; - : - 4
-1.0 0.5 i'.:.;ﬂ 0.5 1.0 FOPCCd BZ

Petrov et al.




Stationary solutions of the amplitude equation
oscillations at exactly /2.

Ising regime remains resonant
also when spatial patterns appear.

Bloch regime becomes non-
resonant when patterns appear

—

resonant

Supported by experiments on the forced BZ reaction (Lin et al. PRE, 2004):
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2:1 temporal forcing: frequency locking - patterns

Dynamics near the NIB bifurcation: can we find Bloch-front
turbulence as in the (unforced) bistable FHN model?

Forced CGL Experimental
simulations observations

(a)

(a) (d) (d)

(o) (e) 140
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Marts, Hagberg, Meron and Lin et al. PRL, 2004 time
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A non-resonant dynamics within Arnold tongue of resonant uniform
oscillations.




2:1 temporal forcing: frequency locking - patterns

Class I pattern formation mechanisms induced by the forcing:

The forcing not only affects the oscillatory states, creating
bistability of states, front structures, etc.; it can also induce a
finite-wavenumber or Turing-like instability of the original zero
state that underwent the Hopf bifurcation to uniform oscillations.

Recall the amplitude (CGL) equation
A=A+iv)A+(A+ia)VA-(1+iB)IAIP A+ A
Linear stability analysis of the zero state A=0:
OA(x,1) = ae I 4 cc lal—= 0

gives

O'(k):/l—k2+\/7/2 —(v—ak2)2

By tuning the forcing strength y and distance A from the Hopf

bifurction we can identify a surface in parameter space, or a
codimension-2 point, A =0, y = v/\/1+ o’ at which both a
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Hopf mode (k=0, w=w,) and a Turing (finite-wavenumebr) mode (k=k,,
«»=0) begin to grow simultaneously:

k2 . VO 0.5 ¢
0o ~ )
l+a’

vo

(00:
/ 2
1+a Re o

In the vicinity of fthis
codimension-2 point we can
approximate a solution of -l - -
the CGL equation as ko o

A(x,y,t)= B, (x, y,t)eiwot + B, (x, y,t)eikx + c.c.

and derive coupled equations for the amplitudes B,and B, , the so
called Hopf-Turing amplitude equations.
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2:1 temporal forcing: frequency locking - patterns

A significant outcome of these equations is the possibility of having
stationary labyrinthine patterns outside the Arnold tongue
boundaries, implying resonant standing waves in a parameter range
where uniform oscillations are not resonant.

These patterns are to be contrasted with stationary labyrinthine
patterns inside the Arnold tongue resulting fr'om a transverse
instability of an Ising front.

L

l

t=1{ii}

qu:iencylndmd

Experimental results, obtained in the ! e b v
forced BZ reaction, that show resonant

standing waves invading into quasi-periodic il

oscillations outside the Arnold tongue. . /=,
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Yochelis, Hagberg, Meron, Lin, Swinney, STADS 2002. ol
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To study periodic forcing we may consider again the FHN model
except that now we force the cubic term:

U, :u—(1+Fsin a)ft) u —v+Viu w, 4w,
v, =g(u—ay)+ovV a <1

Close to the Hopf bifurcation where A = (gH —5)/5H is small, we
approximate a solution to the forced FHN equations as

(uj o~ (I]A(x, y,t)ei(wf/4)t + c.c.
% c

The amplitude equation now reads

A=A+iVA+(1+ia)VA-(1+iB) AP A+A"

where V=w, —®,/4 is the deviation from exact 4:1 resonance,
and y is proportional to the forcing strength T.
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4:1 temporal forcing: phase front instability

The forcing creates four stable constant solutions within the 4:1
Arnold tongue, whose phases (arguments) differ by = /2 . It also

creates two types of front solutions:
Im(A)

7 -fronts: shift the phase by 7
/2 -fronts: shift the phase by 72

Analysis of the amplitude equation
reveals the following:

lZe(A)

1. m-fronts are always stationary and
are stable for forcing strengths y
that exceed a threshold value v. .

2. Decreasing the forcing strength below y., 7-fronts lose
stability to pairs of propagating 7/2-fronts that repel one
another. Conversely, increasing y beyond y_, propagating 7/2-

fronts attract one another and merge to form stationary -
fronts.
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4:1 temporal forcing: phase front instability

Numerical demonstration of an instability of a stationary z-front to
pairs of propagating 7/2-fronts ("decomposition instability"):

Space-time plot Phase-space plot

Time

—-1.0 0.0 1.0
Re (A)

Elphick, Hagberg, Meron, PRL
1998, PRE 1999.

0 2 4 6 81012 0 2 4 6 8 10 12
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4:1 temporal forcing: phase front instability

Testing the decomposition instability using the FHN model:

! o (1 v ® - (a) q e (a
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Amplitude equation FHN model close FHN model far
to Hopf from Hopf

The amplitude equation does not provide a good approximation far
from onset.

Lin, Hagberg, Ardelea, Bertram, Swinney, Meron, PRE 2000
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4:1 temporal forcing: implications for pattern formation

The decomposition instability designates a transition from four-
phase ftraveling waves at low forcing strength to two-phase

stationary patterns at high forcing strengths.

ﬁ

(a)

Im(By
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b
i f,r_ l: } _— 3 Finta) . Reia)
, <,\ e B -8 Ik BZ experiment
ol b R A  decomposition
£ T © instability has been
k. Trnia) .
N AN found so far in the
Y s ol 0 .
= ‘*f-gv,f’ experiments.
S Lin, Hagberg, Ardel
48 iniil Im{a) In, nlagberg, Ardeleaq,
y I - o 0 Bertram, Swinney,
16 Meron, PRE 2000
ﬂ- 64 I l‘: ‘ ] i 0
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2n:1 temporal forcing (n=2,3,4, ..): frequency locking

Similar decomposition instabilities are found in 6:1 and higher even
forcing (using the appropriate amplitude equations).

WO R 'S SN SN

(a)

300
| .
1.0 B l — .:-‘.'-‘;_-

Imi{A) Il A

0.0 0.0

| 200

@ P
~L.0 * ¢ - ~1.0 ——
-1.0 0.0 1.0 =10 .0 1.1
— Re (4) Re(A)
LNSTADINTY TO 3 Instability to 4
n/3-fronts n/4-fronts

The implication for frequency locking
| is  that within any 2n:1 resonance
R tfongue (n=2.3,...) the oscillations are
frequency locked only above the decomposition instability where the
(two-phase) patterns are stationary. Unlike the 2:1 resonance the
forcing in the higher resonances cannot induce a secondary Turing

instability of the zero state, which can affect frequency locking.
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Spatial forcing and wavenumber locking

Consider a system that supports stripe patterns and is subjected to
one-dimensional spatially periodic forcing. This is the spatial
counterpart of forced oscillations. Despite the apparent similarity
between the two problems, there are significant differences.

For the sake of concreteness consider the SH model,

u =5u—u3—(V2+k02)2u

t

The patterns that develop above >>>>>>>>‘
but close to the instability point “ /)
&=0 of the zero state have |
wavenumbers k, or close to ift. !
Stripe patterns with k > k, are |

stable but those with k < k, are 1 -

unstable to zigzag perturbations. 0
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Spatial forcing and wavenumber locking

We force the SH equation by making the replacement:
& —> &+ ycos(k,x)

where k, is the forcing wavenumber. We will consider k, values
about 2k, and smaller, and introduce a detuning v=k, /2—k,

The forcing act to stabilize the zigzag instability if we start with
a stripe solution.

A Y
But if we start with random \ N/
initial conditions about the zero  « *'| E-:ﬁu-gvz/ /i>]4 '

state u=0 we get instead oof L
rectangular patterns
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Spatial forcing and wavenumber locking

Why do we get rectangular patterns when the unforced system has
only stripe solutions and we apply a stripe forcing?

The answer: unlike forced oscillations where the time axis is
intrinsically one-dimensional, here the system can respond in the
second space dimension. It does so by first locking the x component
of its wavevector to the forcing and then compensating for the
unfavorable wavenumber by developing a y component.

Unlike normal locking phenomena where the locking
range is very small for weak forcing (the Arnold-
tongue width), in this case the locking range can be - A
very wide even for small forcing:

k. =0, k =k,

T uniform oscillations /
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All patterns are wavenumber locked: k is exactly k./2.




Spatial forcing and wavenumber locking

To analyze two-dimensional response to one-dimensional forcing we
approximate a solution of the forced SH equation as

i(kxx+kyy) 1 be i(kxx—kyy)

u = ae + C.C.

where the amplitudes a and b are small and vary weakly in time and
space. Multiple tfime-scale analysis gives the amplitude equations:

a, = ca+4(k,0, +k,8,)a-3(al’ + 2| )a + gb*
b, = b +4(k0,—k,0,)°b—3(b|" +2|a| b+ %a*

These equations have the following family of constant solutions

o —ia 1
dy = Po€ by = pee ", /)025\/5"‘%

where « is an arbitrary constant describing translations in the y
direction (the forcing breaks the symmetry only in the x direction).
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These solutions describe rectangular patterns. Linear stability
analysis shows that they are stable in the range

~Lee<y

2
At &=y they lose stability to solutions of the form

7/
a,=p.e”,  b.=pe, %

p+:\/8i\/82_7/2 031

6

oblique

0.2r

rectangular

These solutions break the a1l

symmetry between the ::‘:::::::::::::::::

TWO m O d eS Cln d d €S C r‘ i b e |I|l|l|'|l|l|'|l|'| np— - - -]
oblique patterns. OO0 e S
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Spatial forcing and wavenumber locking

Altogether:

oblique b

0.1 : L
: rectangular ! k

Note the multistability , . .
ranges of stripes and -L00 075 050 02

<

rectangles and of stripes )
and oblique patterns.

i
I

Wavenumber Iocking range

MM

III:I:I:I:I:I:I:I:I
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Spatial forcing and wavenumber locking

The 2D patterns induced by the forcing, appear from the zero
state u=0, even below the instability to stripes (i.e. for £<0), and
therefore represent a class I pattern formation process. It is
reminiscent of the Turing instability that temporal periodic forcing
of oscillatory systems induces even below the Hopf bifurcation.

Like in the temporal case, the spatial forcing also induces class II
processes, for it fixes the phase of a stationary stripe pattern at 0

or =, creating bistability of states, Ising and Bloch fronts and
vortices.

0.0z

Im(A)

Bloch fr
(Chirality) t
Trr A FrrlA
Re(a) 5 He(A)

T e e e

frrfA
H/] Ising front
-0.02
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(Coullet et al. PRL 1990)
More about that in Part IIT.




Vegetation on hill slopes in arid and semi-
arid regions tend to self-organize in the
form of stripes perpendicular to the
slope direction.

Arid  regions are vulnerable to
desertification which can result in the
loss of the vegetation.

Efforts to restore the vegetation in such
regions  employ  water  harvesting
techniques, such as dikes that capture
runoff and along which the vegetation is
planted.

These practices are empirical with very
little theory behind. Very little is known
about the wavenumber that a given plant
species will form in a given environment.

Clos-Arceduc, 1956

0.2 km
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Spatial forcing: application to restoration of vegetation

The general results of our analysis are particularly relevant to such
situations where there is a big uncertainty in k, .

Traditional restoration Alternative restoration
y y
- ) s - - e
o In bot w
B e — .
% cases total b -—— %
= wavenumber
B | = s k, e —— T
. o _EmmEE__ . "
Advantage: total biomass is Advantage: wide locking range -
higher k. remains fixed, k, adjusts

Disadvantage: narrow locking itself to changes in &,

range under conditions where k, = Small risk of vegetation

is not known or fluctuates with collapse

environmental changes. Disdvantage: total biomass

= risk of massive biomass decay s lower
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More research is needed using vegetation pattern formation models




Summary

Spatially uniform, temporal periodic forcing of spatially extended
oscillatory systems reproduce the typical behavior of a single
forced oscillator (frequency locking, Arnold resonance tongues), but
induce, in addition, class I and class II pattern formation
phenomena:

Class I: A Turing instability of the zero state that leads to a Hopf-
Turing codimension-2 bifurcation.

Class ITI: Fronts that go through a NIB bifurcation (2:1 resonance)
and decomposition instabilities (4:1, 6:1, .. resonances), which
designate transitions from stationary patterns fto fraveling waves.
And a transverse front instability in the 2:1 resonance that couples
with the NIB bifurcation to yield Bloch-front turbulence.

The patterns that the forcing induces affect frequency locking:

They reduce the range of resonant oscillations within 2n:1 Arnold
tongues, but also extend the resonance range outside the tongue
(2:1 resonance only).
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Summary

Spatial forcing of a system that goes through a finite-k instability to
stationary stripe patterns, induces an additional instability of the
zero state to two-dimensional patterns (rectangular or oblique).

Wavenumber locking in spatially forced systems differ significantly
from frequency locking in temporally forced systems in that the
locking range is very wide even for weak forcing. This is due to the
freedom of the system to respond in a direction orthogonal to the
forcing and form 2D patterns.

Conclusions are general because they are based on universal normal
form or amplitude equations. We used specific models to test their
predictions but the conclusions apply more generally.
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