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The world we perceive with our senses is highly nonlinear:

Climate phenomena (tornados, hurricans), patterns in nature (clouds,
vegetation), oscillations and synchronization (heart beats, hands clapping,
stock-market dynamics), are all nonlinear phenomena.

To study phenomena of this kind we need the tools of dynamical system
theory




General outine

Part I: Basic mechanisms of pattern formation

Basic concepts: dynamical systems, instabilities, etc.

Pattern forming systems
1. Class I - instabilities of uniform states
2. Class IT - multistability of states, front dynamics

Part II: Controling patterns by temporal and spatial periodic forcing
Frequency locking, wavenumber locking in spatially extended systems

Class T and class IT pattern formation mechanisms induced by the
Forcing

Part III: Multimode localized structures

Localized structures, multiple instabilities, instabilities of single-
mode to dual-mode localized structures

Part IV: Applications to ecology

Vegetation pattern formation in water-limited systems, plant
interactions and biodiversity.
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Outine of Part I: Basic mechanisms of pattern formation

Basic concepts: Open non-equilibrium systems, dynamical systems,
nonlinear systems, multiplicity of states, instabilities, hysteresis

Pattern formation in nature: Symmetry breaking, universality

Canonical models of pattern forming systems: Swift-Hohenberg,
FitzHugh-Nagumo

Pattern forming systems class I: Instabilities of uniform states

Examples, linear stability analysis, nonlinear analysis - amplitude
equations, secondary instabilities

Pattern forming systems class IT: Multiplicity of stable states

Examples, fronts, front instabilities, labyrinthine patterns, spiral
waves, spiral turbulence.
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Basic concepts: open non-equilibrium systems

The natural systems we mentioned represent open non-equilibrium
systems, that continuously exchange materials and energy with
their environments.

One of the first tasks in exploring such systems is defining what
constitutes the "system” and what constitutes the system's
“environment”.

The distinction between the system and its environment depends
on the processes they involve, which can be divided into two
general groups:

1. Group I: Processes that mutually affect one another through
various feedbacks.

2. Group IT: Processes that affect Group-I processes but are
hardly affected by them.

Using this process classification we can introduce the concept of a
dynamical system.
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Dynamical system - a set of group-I processes, quantified by
dynamical variables, U,t), that evolve in tfime according o some laws
of motion. These laws describe the mutual relationships among the
dynamical variables and the manners by which they are affected by
parameters, P, (1), representing group-II processes, which define the

system's environment.

U3(t) \

Dynamical U, /-
........... N system

’ Gr‘oup—I processes SRR b

(dynamical var'iables) SRR

O Group-IT processes (parameters) L
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Basic concepts: linear and nonlinear dynamical system

Example of a dynamical system: A pendulum with a friction

The system is described by Newton's 29 law
which we can express in ferms of the bead ; N
position, x(1)=L#t), and the bead velocity N N A
w(t)=dx/dr: AN Y

dx dv b ST
— =V — ==V~ 0
dt dt m L

where the bead is subjected to the air-friction force F=-bv
and we assumed small oscillation amplitudes.
Group-I processes (system):  Group-II processes (environment):

Bead-position (angle), x. Friction with air, b.
Bead-velocity, v. Gravitational force, mg.

i : : X 4 Typical soluti
This is a linear dynamical system (assumption 7 YF}“‘ solution

of small amplitude oscillations).

Dynamical systems representing natural
phenomena are nonlinear in general. :
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Basic concepts: instabilities

Nonlinearity can induce instabilities to new states

W <W,.

The buckling of a beam: =

There is a critical weight, W,
beyond which the beam buckles.

Let,
u - measure the degree of buckling  7=777=7> Ceaacee

A=W -W_.)/W,. - the deviation from the critical point

beam beam "buckles"

Close to the critical point the system can be described by the
nonlinear dynamical system

i=Au—u'=f(u) (i=du/dt)

u
Steady state solutions (i =0): U, V

u, =0 - the unbuckled state
u, = +~/A - two symmetric buckled states
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The steady state solutions tell us that beyond the critical weight,
or when A>0 , the buckled states appear, but they do not tell us
that the system will necessarily evolve towards these states. This
type of information is contained in the stability properties of the
various states.

Linear stability: A solution (state) u, is stable if any small
perturbation of u; decays in the course of time.

A graphical view: A solution u_ is stable (unstable) if the slope
f'(u) of = f(u)=Au—u’ at u, is negative (positive)

A<0 : A>0
flu) 1 I
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Basic concepts: bifurcation diagrams

We describe such an instability bya 1<0
diagram that shows the various
steady-state solutions as functions
of the control parameter A, and
their stability properties:

U -I-\/I

beam

A

S

. Diagrams of this kind are
A called bifurcation diagrams

NG This particular instability
-vA is called the pitchfork
Stable = = = = Unstable bifurcation

In practice the two buckled states need not be perfectly symmetric,
and the instability may favor one state over the other.
Mathematically, such imperfections are described by additional
terms that break the symmetry u — —u
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Basic concepts: the cusp singularity

w=Au—u'+ui>+b =0

u

Cusp singularity

A

Cuts at constant b values:

u ‘
Iy
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Basic concepts: the cusp singularity

w=Au—u'+ui>+b =0
Cusp singularity

u

A

Cuts at constant A values:
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Basic concepts: hysteresis

| u,(b) Hysteresis phenomena:

/ ‘ Different transition points upon

\ Seee increasing and decreasing b.
TS Introduced in the context of
u-(b)/ magnetism, exists in numerous
| | , other contexts
b, Dy b
<. ...................................... >

Coexistence of
Stable states

In ecology - catastrophic shifts (Scheffer et al. Nature 2001):

Desertification - sudden decrease in biological productivity as a
result of climate fluctuations (droughts) and human- related
activities (over-grazing).

Sudden loss of transparency and vegetation in shallow lakes
subjected to human-induced eutrophication.
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Basic concepts: hysteresis

Hysteresis in Escher’s art
Birds

 Fish to birds

Coexistence

of birds & fish |

\ Birds to fish

Fish
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Pattern formation in nature
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o Universality s 1
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Canonical models of pattern forming systems

Numerous experimental and theoretical studies support the
interpretation of natural patterns as symmetry breaking phenomena.

Of these, studies based on mathematical models have been very
instrumental in understanding the mechanisms underlying these
phenomena.

In some contexts the model equations are based on firm theories and
reproduce observed behaviors with quantitative accuracy. Examples
are the Navier-Stokes equations of fluid dynamics, and the Maxwell
equations in nonlinear opftics.

In most other contexts, especially when the system's complexity
increases, mathematical models are less accurate. However, they can
still be very helpful in capturing the qualitative behavior of a system,
and in understanding the specific mechanisms responsible for it.

Along with models that are geared to reproduce and predict
behaviors of specific systems, simplified models, focusing on general
aspects of pattern formation rather than on the details of a specific
system, have appeared. A few of them have become canonical models.
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The Swift-Hohenberg model

U, =/1u—u3—(V2+kf)2u

The FitzHugh-Nagumo model

u, = Au—u’>—-v+V'u

Vv, :g(u—alv—a0)+5V2v

_Ou V2_62+82 —00 < X <0

K Tl oy —0< y <o
u(xy,0) u(x,y,t)
v(x,y,O) v(x, )t)
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Models of this kind help us understand basic mechanisms of pattern
formation and classify pattern forming systems accordingly.

We will distinguish here among two classes which we illustrate with
the following model simulations:

. T T o our ials siads)

Sandstede

Class I: Instabilities Class IT: Multistable Class ITI: Excitable
of uniform states systems systems
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Thermal convection (Rayleigh-Bénard): heating a fluid layer from
below

Below a critical temperature
difference,

AT =T

bottom

the fluid is at rest - heat is
transferred by molecular conduction

T oo
YT et s

'WY L

Above AT. convection sets in the form of ordered parallel roles

Cold
Lo Hot I 1 fluid
fluid

Toor > Trop Visualization by illuminating from
below (index of refraction changes
with temperature periodically).
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Why do we have an instability when the temperature difference is

large enough?
top plate

T,<T,: Colder fluid layer — heavier

danjerdduwd J,

T,: A fluid layer with a hotter fluid particle T +0T

Bottom plate

Imagine a fluctuation in which a fluid particle at some height has a
temperature which is slightly higher than the surrounding fluid at
that height. Because of thermal expansion the fluid particle will
have a density lower than that of the surrounding fluid (i.e. will be
lighter) and will tend to move upward. As it moves upward the
surrounding fluid becomes yet colder and the buoyancy force
upwards increases.

Asua(q
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Class I: Instabilities of uniform states

Why does not the instability occur when the temperature
difference is not large enough?

There are processes that stabilize the rest state:

Fluid viscosity: induces transfer of linear momentum from the up-
moving fluid particle to its neighborhood, thus reducing its
momentum and speed.

Thermal conduction: induces diffusion of heat from the fluid
particle to its colder neighborhood, thus reducing the buoyancy
force that drives the fluid particle upward.

— There should be a critical
temperature difference, AT, at
which the stabilizing factors just
balance the destabilizing buoyancy
force.

Bodenschatz lab. 1997: small Prandtl
number fluid experiments
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Class I: Instabilities of uniform states

Farady surface waves
(stripes and squares)

{ E
4 1 .
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Stephen W. Morris

(PuMP ——
Chemical reactions
CAMERA
VIDEQ OUT TO
PC WITH FRAME
GRABBER
QUARTZ WINDOW
CIMA reaction: ! NN B NN ‘
Turing patterns R S |
Vigil, Ouyang and Swinney ou” $ 111
LIGHT (490 mm) ’r

PUMP
SULFURIC (PUMP)
AT L'—J
LPLIMEPT
CSTR
MALONIC ACID A

SODIUMIODIDE ¢ UM HY DROXIDE

SODIUM CHLORITE
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Class I: Linear stability analysis of the uniform state

A powerful method that provides information about the instability
threshold of a uniform state and the nature of the mode that grows
at the instability point is linear stability analysis. Let's illustrate this
method using the Swift-Hohenberg (SH) model:

ou.
ot

o° 2
:ﬂ,u—u3—[a 2+k02j u —00 < x <00
X

Consider the stationary uniform solution u,=0. This solution is
linearly stable if any infinitesimally small perturbation decays in the
course of time. It is linearly unstable if there exists a perturbation
that grows in time.

Writing u(x,7)=u, + ou(x,t), where ou(x,t) is an infinitesimally
small perturbation, we obtain after linearizing in ou (x,t):

2 2
855u:/15u—£682+k02j ou
[ X
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Class I: Linear stability analysis of the uniform state

Since any perturbation can be represented as a Fourier integral and
since the equation for du is linear, it is sufficient to study the
stability of u.=0 to the growth of any Fourier mode,

Su(x,t)=A()e™ +cc. 1AI> 0 [e”“ — j

cos kx +isin kx

In other words we study the
growth or the decay of sinusoidal

perturbations with wavenumber k
or wavelength A=27/k:

The amplitude of the perturbation satisfies the equation

A=c(ka, o=2-(k-k)

where o is the growth rate of the perturbation. The solution to this
equation is
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The solution u =0 is stable if o(k)<0 for all wavenumbers k. Plotting
the growth rate o=o(k) for various 1. values we find:

0] A<0 1=0 1>0
’ ’ / 0/ T
/\ . | .
kO kO
o<0 forall k otk,)=0, u=0is o(k)>0 for a band of

u=0is stable marginally stable  modes, u,=0 is unstable

=  The solution u =0 loses stability at A =0

to the growth of a mode with wavenumber k, which
breaks the translational symmetry of the system.
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This is a major mechanism of symmetry breaking in
nonequilibrium systems




Class I: Linear stability analysis of the uniform state

Another way to describe the instability is by plotting a neutral
stability curve, by setting =0 —= A= (ko2 — k2)2
ﬂ/ A

All modes within the
parabola grow

u.=0is unstable, a
band of modes
around k, grow

' k u =0 is stable, all
modes decay

Linear stability analysis provides information about instability
thresholds, 4 = 0 in the case, and about the modes that grow, a
finite-wavenumber mode k, in this case.

It does not provide information about the new state that the
system evolves to because such information can only be derived

by considering large deviations from the original state u =0.
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Class I: Nonlinear analysis, amplitude equations

Going back to the SH model (how in fwo space dimensions)

2
u, = lu—u3—(V2+k02) U —0<X<00, —00< <00

we consider approximate solutions of the form
u(x,t) = A(x, y,t) exp(ik,x) + c.c. 0<|Al<<1

where the amplitude A is assumed to be small but finite. We

further assume that A varies weakly in space and in time. Such a
solution describes weak modulations of a stripe pattern, either

longitudinal II II IIII or transverse &&&& or both.

Using various mathematical methods, e.g. multiple time scales, a
nonlinear equation for the amplitude A can be derived from the
original SH equation:
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Class I: Nonlinear analysis, amplitude equations

The equation, known as the Newell-Whitehead-Segel (NWS)
equation, reads:

—=AA+| 2ky——i—

OA 0 0’
Ot ox 0y

2
jA—3lAI2A

Equations of this kind are called "amplitude o
equations”. They have universal forms that are I A=0

determined by the types of instabilities the 0
systems go through. Any system that goes /I\
through a finite-k instability of the form > k, ™k

will be described close to the instability point by a NWS equation.

More generally, different systems that experience the same type
of instability are described by the same amplitude equation and will
behave similarly near the instability point.
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In nature.




Class I: Nonlinear analysis, amplitude equations

The amplitude equation has periodic solutions of the form:
A=Ajexpligx), A, =+/(2- 4k02q2)/3

which exist within the parabola

0
\ Al uﬂ/

or

0 q k, k
Close to the instability point (0<A<<1) it coincides with the parabola
A= (ko2 —k* )2 for the growing modes obtained from the linear
stability analysis. This does not imply that all modes that grow from
the zero state evolve to periodic solutions - some of them may be
unstable.
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The amplitude equation can be used to study the linear stability of
periodic solutions which exist inside the blue parabola. Such an
analysis gives the following boundaries of longitudinal and transverse
instabilities:

Periodic solutions are stable:

N I

Eckhaus instability: Periodic
solutions lose stability to
longitudinal modulations

[

.
L SETTAL L
.

k

zzzzzzzz Zlgzag instability: Periodic solutions lose
stability to transverse modulations

Read more in Cross & Hohenberg, Rev. Mod. Phys. 1993.
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Class I: Summary

Instabilities may break translational symmetry and give rise to
spatial patterns even when the system and the forces it is subjected
to are uniform.

The spatial patterns induced by instabilities are universal; the same
patterns appear in different systems that go through the same
instability.

The dynamics close to instability points are described by universal
equations - the so called amplitude equations , e.g. NWS equation for
a system close to a stationary finite- wavenumber instability.

Amplitude equations are useful for studying secondary instabilities,
such as Eckhaus and zigzag.
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Class IT: Multi-stable systems

Multistability of uniform states can result in asymptotic patterns
even if all the uniform states are linearly stable.

The FIS (ferrocyanide-iodate-sulfite) reaction: A bistable system of
high (white) and low (black) pH. Develops patterns by a transverse
front instability (class II).

Uh[@—ﬂ

Bistability and - o i

hysteresis in the e+ FN ,,
FIS reaction ‘

light

source

(420 or
620 nrm)

polyacrylamide gel

Top view
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We will study pattern formation phenomena in bistable systems using
the FitzHugh-Nagumo (FHN) model:

3 2
U, =u—u" —v+V-ou

v, =¢(u—-ayv—a,)+o6V>y

This is an example of an Activator-Inhibitor system: u activates the
growth of itself and v, while v inhibits the growth of itself and u.

The FHN model captures all 3 classes of pattern forming systems:

1% 1%

A A

+’V+)

\_A A\ A

()

(u
; /C/(MO’VO) \ 'u (u_,v_) ’ \ =u

Class I Class IT Class IIT
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We focus here on class II, corresponding to bistable systems that
consist of two stable uniform stationary states: u=u, v=v_ and

Uu=u, v=v,

Such systems support in general 4
front solutions u(x,t) that are bi-
asymptotic o the two stable states:

u(x, t) —>u, v(x, t) —>V, as x—>—o

u(x,t)>u_ vxt)>v.  as x—+4o0

po )+ = (v
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‘[ Up state Down state
X We will see in the following that
L pattern formation phenomena in
* —’\ bistable  systems  strongly
v, !
N — & depend on the properties of

these fronts solutions.

=



Let's begin with a simpler system, assuming v is constant,

U, =u— uw —v+ U, [= agradient system ]
u—u —v=0 Y
For a certain range of v there are two stable
stationary uniform solutions, u,(v) and u(v),
and an unstable solution uy(v) in between: —s .
u
Front solutions that are biasymptotic to the / " \u+

two stable states propagate at constant
speeds, which depend on the value of v:

v<0 v>0

[ Fronts propagate so
jL 1 as to minimize a
Lyapunov functional ]

(+)|nvades(—) Gﬁlnvades(+)

Note: front speed is uniquely determined by the value of v.
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The situation becomes completely different when the equation for
the inhibitor v is added:

4V u—av—a, =0 U,

u—u’ —v=0 i 1 0 Vv,
V.
u

Front solutions connecting the up-state (+) (at x— -«) to the down-
state (-) (at x— -«) can themselves undergo instabilities.

Two front instabilities:
A transverse instability A longitudinal instability
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Class II: Bistable systems - front instabilities

To understand these instabilities and their effects on pattern
formation we first need to understand how the curvature of a front

x , affects its normal velocity, C (velocity in a direction normal to the
front line).

The curvature affects the diffusion of the
activator and the inhibitor and thereby the
front velocity C:

C=C(x) x=1/R__

Radius of curvature

The actual form of the velocity-curvature relation will be affected
by the parameters that control these diffusion processes: § and .

Using a singular perturbation analysis in the range &6<< 1, which

is of fen met in actual systems, velocity-curvature relationships can
be derived.
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Ben Gurion University, Ehud Meron - www.bgu.ac.il/~ehud
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Class II: Bistable systems - stationary patterns

Front stability to tfransverse perturbations

A C C= CO — Dk + - + —
\ Front is stable — —
O small - slow v
0\\ % ( diffusion) - — -
—_— —_—
|
. B 3
o large 1 ¢ C=C,+DKx~Dix 4 / - + /-
/' Front is unstable — —
/ R (0 large - fast v . — —_—
— 0 K diffusion)
—_ —

Note: domains do not merge
due to fast v diffusion
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Front stability to longitudinal perturbations

Stationary labyrinthine
_.--="".-" patterns are found here
I where ¢ is large (fast v

u;_;/f—‘; diffusion) and ¢ not too
i e | small.
o K
“ N Tt Reminiscent of the behavior

EER— - near a cusp singularity or
2 pitchfork bifurcation
0 | 1 |

0.0 0.02 ¢ 0.04 0.06 %

The solid line is the threshold of a longitudinal front instability of

the pitchfork type commonly referred to as the "Non-equilibrium
Ising-Bloch" (NIB) bifurcation.
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The Non-equilibrium Ising-Bloch (NIB) bifurcation:

In Ising regime (77>n.) fronts have

unique direction of propagation

s+ C

—t
=D

(+) invades (-) or (-)invades (+) (+)invades (-) and (-) invades (+)

—

n

s+ C

n

Ising front (Coullet)

= C
u L
| = e N ——
| -
g & ncl 7?‘
u : :
\01 b 0.3 77:\/5
+t/,_"—‘
§ Bloch fronts

Ikeda, Mimura, Nishiura, 1989
Hagberg and Meron 1994

In Bloch regime (n7<n.) fronts
propagate in opposite directions

™

pe ;/27/?37
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Class II: Bistable systems - traveling waves -

What are the implications for pattern formation?

1. Onset of traveling waves

The NIB designates a transition from stationary or uniform
patterns to traveling waves

Ising regime: domains can | |
expand, shrink or become _J L

stationary (+)invades ()  (-) invades (+)
Bloch regime: domains can s L:_
travel

(-) invades (+)  (+) invades (-)

2. Spiral waves:

Point e
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Class II: Bistable systems - traveling waves -

Close to the NIB bifurcation - more complex dynamics
Hagberg & Meron, Chaos (1994), PRL (1994); Elphick, Hagberg & Meron PRE (1995).

3. Bloch-front turbulence: Positive slope at x=0
implies transverse
instability

—. +\ — +
<— Vortex
7 air
K L P
+\ - +\ —
Growing transverse  After spiral vortex
perturbations nucleation
[ ’ <=

Simulations of the FHN
model close to the front
bifurcation
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Class II: Bistable systems - traveling waves

4. Spot splitting:

s C Initial spot

- : . i
S0 8
0! > ) _ _

i

Local front reversals induce

Point b nucleation of spiral-vortex pairs

Simulations of the FHN model in the Ising
regime close to the front bifurcation

B Upstate (+) [l Down state (-)
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Hagberg and Meron, PRL (1994), Nonlinearity (1994),
PRL (1997), Physica D (1998)




Class IT: Summary

Bistability of states allows for domain patterns, stationary or
traveling patterns, consisting of alternate domains of the different
stable states.

Domain patterns are strongly affected by front instabilities:

O A transverse front instability that leads to stationary
labyrinthine patterns.

O A longitudinal instability - the NIB bifurcation - that designates
the onset of traveling waves.

O Coupling of the two instabilities leads to spiral turbulence, spot
splitting, etc.

The multistable states need not be stationary and uniform -
periodic states in space or time, can be reduced to stationary
uniform states using amplitude equations. A \ (\ {\ (\ (\ {\ A (\ A

............... VAVAVAVAVAVAVAVA
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