Ben-Gurion University of the Negev

The Jacob Blaustein Institutes for Desert Research The Albert Katz International School for Desert Studies

001-2-5063 Lab-course: New methods in biofilm characterization (3 Credits)

Intensive lab-course

Lecturer: Prof. Edo Bar-Zeev

Abstract

Biofilm are defined as a sessile assemblage of diverse microbial communities, which are permanently attached to a surface and held together within a matrix of predominantly self-produced extracellular polymeric substances (EPS). Mature biofilms are often found as microbial micro-colonies separated from each other by interstitial water channels which form complex three-dimension structures. Once established, biofilms are notoriously resistant to removal by different treatments, causing adverse effects in different natural and engineered systems. Thus, numerous methods are used to study biofilm including: (i) molecular tools to identify bacterial species that comprise these consortiums or bacterial genes that coordinate different cellular activities; (ii) Biochemical extractions to characterize biofilm biomass and EPS composition. (iii) Different microscopy approaches are used to define the architecture, coverage and mechanical properties of the biofilm structure.

Course code	001-2-5063	
Credits	3 credit points	
Cycle	Graduate and undergraduate students	
Department	Zuckerberg Institute for Water Research	
Academic Year	XXXX	
Semester	Summer – concentrated over 6 days	
Campus	Midreshet Ben-Gurion, ZIWR	
Teaching language	English	
Coordinator name	Edo Bar-Zeev	
Coordinator email	barzeeve@bgu.ac.il	

Course description	This is a unique "hands-on" lab-course that introduces different methodological approaches to study biofilms. The course will span over 6 days during the summer-semester at BIDR, BGU, when various, state-of the-art instruments will be used to characterize different types of biofilms. The course will be backed-up by theoretical classes which will discuss in details the background of the different analytical approaches. The course will be restricted to 12 students only.
Course aim	 The overarching goal of the course is to introduce students with novel tools to study biofilms. The specific aims are to provide students with: 1. Solid theoretical background over each method and rational for using that approach. 2. Preliminary experience in applying the different techniques. 3. Tools to analyze the data obtained from the different approaches.

The course will be divided to theoretical class that will be linked to intense lab-work according to the following topics:

Course content	Theoretical material	Lab-work
Day 1.	Background on bacterial biofilms: from the environment to water treatment. Background on extracellular polymeric substances (EPS) composition: from proteins and TOC to polysaccharides.	<i>Initiating and running biofilm</i> <i>experiments</i> : Preparation of feedwater solutions, starter cultures, flow-cell setups and benthocosms.
		Bacterial biomass: extraction and quantification of protein, polysaccharides and TOC, QCMD
Day 2	Background on measuring bacterial concentrations in biofilms, from extraction to CFU and flow-cytometry analysis.	Bacterial abundance: Extracting bacteria from biofilm and quantify abundance using different analytical technics such as CFU, OD_{600} and flow cytometry. Identifying the benefits for each technique

Day 3.	Background on high resolution imaging of biofilms using scanning and transmission electron microscopy (SEM and TEM).	Capturing biofilm structure in real time using CLSM and OCT. Image analysis of CLSM micrographs.
	Background on using microscopy to study biofilms. Focus on epifluorescent, optical coherence tomography (OCT), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM) including different types of fluorescent labeling.	SEM and TEM: fixation, embedding and specific staining of biofilms. AFM analysis of condition films
Day 4	Background on using microscopy to study biofilms – Continue.	Capturing biofilm structure in real time using CLSM and OCT. Image analysis of CLSM data with various complementary softwares.
Day 5.	Background on community structure in different biofilms	DNA extraction from biofilms and amplifying total bacteria for community analysis
XXX	Theoretical home exam over the materia course.	I that was conveyed during the

Learning outcomes	 At the end of this concentrated course students will acquire: Comprehensive knowledge on biofilm properties including the architecture and the biochemical composition of bacterial biofilms. Theoretical insights over the different approaches that characterize biofilms Hands-on experience using different analytical approaches that characterize biofilm.
Attendance	100 %
requirements	
Teaching	Frontal lectures (13 hours) and lab-work (39 hours)
arrangements	
Required	TBD
Reading	
Course/module	Final exam – Home exam
Evaluation	
Prerequisites	Introduction to microbiology