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1. Introduction

Existing methods for evaluating ground performance under seismic loading fall into

three categories (Cai and Bathurst, 1995): 1) force based pseudo-static methods; 2)

displacement based (Newmark) methods; 3) numerical methods (FEM, DEM).

Typically, earthquake damage is associated with finite displacements of large dis-

crete masses. Therefore, slope performance should be evaluated in terms of permanent

displacements rather than in terms of safety factor derived from pseudo-static analysis.

This approach was firstly introduced by Goodman and Seed (1965) and by Newmark

(1965), and is now largely referred to as ‘‘Newmark’’ type analysis.

A Newmark type analysis assumes that relative slope movement is initiated

when inertial forces on the potential sliding mass overcome the shear resistance

along the sliding plane, the corresponding level of horizontal acceleration known as

‘‘yield acceleration’’. The analysis assumes that the mass will come to rest when

it attains zero velocity. The permanent displacement of the sliding mass can then

be calculated by integrating the relative velocity of the block during sliding over

time.

Most rock masses are discontinuous by nature, and the intersection of disconti-

nuities typically yields a network of individual blocks. When subjected to a dynamic



load the individual blocks interact by transferring normal and tangential forces at the

contacts. The developed failure mode will manifest the geometrical constrains and the

forces acting upon the block system.

Realistic deformation simulation of a large number of blocks using a discrete

numerical approach, such as the distinct element method – DEM (Cundall, 1971) or

the discontinuous deformation analysis – DDA (Shi, 1988; 1993), requires rigorous

validation using analytical solutions, physical models, and case studies. In this paper

we use the DDA method for dynamic analysis.

Yeung (1991), MacLaughlin (1997) and Doolin and Sitar (2002) tested the

accuracy of DDA using analytical solutions for the block on an incline problem.

Hatzor and Feintuch (2001) validated DDA using direct dynamic input, for the same

problem. The conclusions of these studies was that DDA is capable of predicting

block displacements with high accuracy provided that the numeric control param-

eters are properly conditioned. McBride and Scheele (2001) validated DDA using

a physical model of a multi-block array on a stepped base subjected to gravitational

loading, concluding that kinetic damping is required for reliable displacement

prediction.

In this paper we study the displacement history of a single block on an incline

subjected to dynamic loading. The following issues are addressed:

1. Comparison between DDA and analytical solutions.

2. Comparison between DDA solution and shaking table results.

3. The role and sensitivity of the numeric control parameters in DDA.

4. The computational error in DDA.

2. Experimental Setting

The physical modeling used in this research was performed by Wartman et al. (2003)

at the Earthquake Simulation Laboratory of the University of California at Berkley.

The tests were performed on a large hydraulic driven shaking table, producing accu-

rate, well controlled, and repeatable motions to frequencies up to 14 Hz. The table was

driven by an MTS closed loop servo controlled hydraulic actuator. A Hewlett Packard

33120A arbitrary function generator produced the table command signal.

A steel plane, inclined by 11.37�, was fitted to the shaking table. A steel block,

2.54 cm thick, with area of 25.8 cm2, and weight of 1.6 kg was positioned on top of the

inclined plane. Linear accelerometers were fitted on top of the sliding block and the

inclined plane. Displacement transducers measured the relative displacement of

the sliding block, and of the shaking table (Fig. 1). In this study eight sinusoidal input

motion tests were used for validation. The input frequencies, amplitudes, and block

displacements are given in Table 1.

A geotextile and a geomembrane were fitted to the face of the sliding block and the

inclined plane respectively. The static friction angle (�) of the interface was deter-

mined by Wartman using tilt tests and a value of �¼ 12.7�� 0.7� was reported. Kim

et al. (1999) found that the friction angle of the geotextile–geomembrane interface

exhibited pronounced strain rate effects, and reported an increase by 20% over one

log-cycle of strain rate. Wartman (1999) showed that the friction angle of the interface
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was controlled by two factors: 1) amount of displacement; and 2) sliding velocity. The

back-calculated friction angle for the range of velocities and displacements measured

was in the range of �¼ 14�–19� (Fig. 2).

Fig. 1. a) General view of the inclined plane and the sliding block (top); b) Sliding block experimental setup
and instrumentation location, from Wartman (1999)
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The DDA version used in this research accepts a constant value of friction angle.

Therefore a single friction angle (�av) value must be chosen for validation. The value

of �av was determined as follows. First, the measured displacement of the block was

differentiated (forward difference) with respect to time and hence the velocity record

was attained. The differentiation was performed for Dt¼ 0.005 sec, conforming to test

acquisition rate of 200 Hz. Next, the velocity content for the duration of the test

was computed. For an example, the 2.66 Hz input motion test showed that the upper

Table 1. Shaking table model summary: ! is the input motion frequency, dT is the
shaking table displacement, dB is relative block displacement, and ah is maximum

horizontal table acceleration

Test ! (Hz) dT (cm) dB (cm) ah (g)

1 2.66 0.889 5.367 0.28
2 4 0.559 6.604 0.25
3 5.33 0.305 3.341 0.19
4 6 0.254 3.647 0.19
5 6.67 0.254 3.410 0.22
6 7.3 0.228 3.353 0.22
7 8 0.228 3.937 0.23
8 8.66 0.019 2.882 0.21

Fig. 2. Back calculated friction angles as a function of average sliding velocity for the rigid block tests,
from Wartman (1999)
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bound velocity value was below 10 cm=sec (Fig. 3a). This value was attained only

for short periods during the test (Fig. 3b). The velocity content chart (Fig. 3b) shows

that 80% of the velocities fall under 3 cm=sec (Fig. 3b). Taking 3 cm=sec as the

upper bound velocity, the corresponding friction angle should be �av < 17� (Fig. 2).

The 50% is 1 cm=sec value corresponding to friction angle of �av ¼ 16�. In all DDA

simulations a constant value of �av ¼ 16� was used for the validation study. It

should be noted that velocity dependence is a test artifact associated with particular

geo-interface used, and is not expected in rock discontinuities (e.g. Crawford and

Curran, 1981).

Fig. 3. a) Displacement derived velocity, 2.66 Hz sinusoidal input test; b) Velocity content of the 2.66 Hz
sinusoidal input test
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3. DDA Formulation

DDA models a discontinuous material as a system of individually deformable blocks

that move independently without interpenetration. In the DDA method the formulation

of the blocks is very similar to the definition of a finite element mesh, where the

elements are physically isolated blocks bounded by pre-existing discontinuities. The

blocks used in DDA can assume any given geometry, as oppose to the predetermined

topologies of the FEM elements.

By the second law of thermodynamics, a mechanical system under loading must

move or deform in a direction that produces the minimum total energy of the whole

system. For a block system the total energy consists of the kinetic energy, potential

energy, strain energy and the dissipated energy. In DDA individual blocks form a

system of blocks through contacts among blocks and displacement constrains on a

single block. For a system of n blocks the simultaneous equilibrium equations, derived

by minimizing the total energy � of the block system are:
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or KD ¼ F; ð1Þ

where K is the global stiffness matrix, D is the displacement variables vector, and F is

the forcing vector. The global stiffness matrix is an n� n symmetric matrix. The

diagonal entries Kii represent the sum of contributing sub-matrices for the i-th block,

such as strain energy, inertia, and body forces. The non-diagonal entries Kij (i 6¼ j)

represent the sum of contributing sub-matrices of interaction between blocks i and j,

such as contact forces. The total number of the displacement unknowns is the sum

of the degrees of freedom of all the blocks. A complete description of the stiffness

formulation matrix and load vector assembly is provided by Shi (1993).

The solution of the system of simultaneous equilibrium equations is constrained by

inequalities associated with block kinematics: no penetration and no tension condition

between blocks, which are imposed using the penalty method. Shear displacement

along the interfaces is modeled using the Coulomb–Mohr failure criterion. The large

displacements and deformations are the accumulation of small displacements and

deformations at each time step.

The time integration scheme in DDA adopts the Newmark (1959) approach, which

for a single degree of freedom can be written in the following manner:

uiþ1 ¼ ui þ�t _uui þ ð0:5 � �Þ�t2€uui þ ��t2€uuiþ1

_uuiþ1 ¼ _uui þ ð1 � �Þ�t€uui þ ��t€uuiþ1; ð2Þ
where €uu, _uu, and u are acceleration, velocity, and displacement respectively, Dt is the

time step, � and � are the collocation parameters. Unconditional stability of the

Newmark scheme is assured for 2� � � � 0:5. The DDA integration scheme uses

�¼ 0.5 and �¼ 1 and, thus it is implicit and unconditionally stable. The error prop-

agated in the integration scheme may be attenuated or amplified depending on the

collocation parameters used, however this discussion is beyond the scope of this
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contribution. For elaborate treatment of the subject, the reader is referred to Wang et al.

(1996), who showed that �¼ 0.5 and �¼ 1 assure highest attenuation rate (a.k.a

algorithmic damping) and enhance solution convergence.

Computer implementation of DDA allows control over the analysis procedure

through a set of user specified control parameters:

1. Dynamic control parameter (k01) – defines the type of analysis required, from

quasi-static to fully dynamic. For quasi-static analysis the velocity of each block at the

beginning of each time step is set to zero, k01¼ 0. In case of dynamic analysis the

velocity of each block at the end of a time step is fully transferred to the next time

step, k01¼ 1. Different values from 0 to 1 correspond to different degrees of inter step

velocity transfer, comparable to damping or energy dissipation. For example, for an

input value of k01¼ 0.95 the velocity in the beginning of each time step is 5% lower

than the terminal velocity at the previous time step.

2. Penalty value (p) – is the perpendicular stiffness of the contact springs used to en-

force contact constrains between blocks. Tangential contact stiffness is assumed pt¼ 0.5p.

3. Upper limit of time step size (g1) – the maximum time interval that can be used

in a time step, should be chosen so that the assumption of infinitesimal displacement

within the time step is satisfied.

4. Assumed maximum displacement ratio (g2) – the calculated maximum displa-

cement within a time step is limited to an assumed maximum displacement

(Umax ¼ g2 � ðy=2Þ, where y is the length of the analysis domain in the y-direction)

in order to ensure infinitesimal displacements within a time step. This parameter is

also used to detect possible contacts between blocks.

A necessary condition for direct input of dynamic acceleration is that the numerical

computation has no artificial damping because artificial damping may lead to energy

losses. In DDA the solution of the equilibrium equations is performed without damping.

4. Results of Validation Study

4.1 Analytical Model

For a block on an incline subjected to dynamic loading (Fig. 4) a Fourier series

composed of sine components represents the simplest form of harmonic oscillations:

aðtÞ ¼
Xn
i¼1

ai sinð!itÞ; ð3Þ

where ai and !i are the amplitude (acceleration) and frequency respectively.

The displacement of a mass subjected to dynamic loading is attained by double

integration of the acceleration record (Eq. 2) from � to t:

dðtÞ ¼
Xn
i¼1

ai

!2
i

�sin!itþ sin!i�þ !iðt��Þ cos!i�i½ �; ð4Þ

where � is the time at which yield acceleration ay is attained.

Hatzor and Feintuch (2001) showed that for an acceleration function consisting of

sum of three sines (for arbitrary selected constants a1¼!1¼ 1; a2¼!2¼ 2; a3¼!3¼ 3)
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DDA prediction is accurate within 15% of the analytic solution provided that the

numeric control parameters g1, g2 are carefully selected. Moreover, they argued that

the influence of higher order terms in a series of sines is negligible. These values

produce a low frequency dynamic input assuring a nearly constant block velocity,

which was attained at the beginning of the analysis (ca. 20% of elapsed time).

In order to attain a more realistic simulation we have extended the analysis

to higher frequencies, constraining the peak horizontal acceleration to 0.15 g. The

analysis was performed for a single block resting on a plane inclined �¼ 15�

to the horizontal. The block material properties were: density �¼ 2700 kg=m3,

E¼ 5 � 109 N=m2, and v¼ 0.25. The friction angle of the sliding plane was set to

�¼ 15�, thus the yield acceleration (ay¼ 0) was attained immediately at the beginning

of analysis (�¼ 0 sec). Three different sets of frequencies were modeled (Table 2).

Constant values of numeric spring stiffness (p¼ 1 � 109 N=m), assumed maximum

displacement ratio (g2¼ 0.0075), and dynamic control parameter (k01¼ 1) were used.

Input acceleration and comparison between the analytical solution and the numer-

ical solution for the total displacements are presented in Fig. 5. The figure shows DDA

solutions for two values of g1: 0.005 sec and 0.0025 sec, which yielded the most

accurate results, larger time steps yielded lower accuracy.

The relative numeric error is defined by:

eð%Þ ¼ d�dNk k
dk k � 100; ð5Þ

and the relative numeric difference is defined by:

e0ð%Þ ¼ dk k� dNk k
dk k � 100; ð6Þ

where d is the analytical or the measured displacement and dN is the numeric dis-

placement vectors respectively. �k k is the norm operator.

Table 2. Frequency sets for sum of three sines input function

Set !1 (�), a1 (g) !2 (�), a2 (g) !3 (�), a3 (g)

1 8, 0.1 4, 0.05 2, 0.025
2 10, 0.1 5, 0.05 2.5, 0.025
3 15, 0.1 7.5, 0.05 3.75, 0.025

Fig. 4. Forces acting on a block on an incline subjected to dynamic loading (after Goodman and Seed, 1965)
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The relative numeric error for g1¼ 0.005 sec simulations is within 4.5% for a

numeric spring stiffness of p¼ 1� 109 N=m. Halving the time step reduces the

numeric error to 1.5%.

We have further investigated the interrelationship between the numeric control

parameters using the input function of set 2 (Table 2). Figure 6 shows the dependence

of the numeric error on the choice of the numeric control parameters g1, g2, and the

numeric spring stiffness p. It is found that for an optimized set of g1 and g2 (bold in

Fig. 6) the DDA solution is not sensitive to the penalty value, which can be changed

over two orders of magnitude, from p¼ 1� 108 N=m to p¼ 5� 109 N=m, with no

Fig. 5. a) The loading function a(t)¼ a1sin(!1t)þ a2sin(!2t)þ a3sin(!3t); b) Comparison between analyt-
ical and DDA solution for block displacement subjected to a sum of three sines loading function. All DDA
simulations for: p¼ 1 � 109 N=m; g2¼ 0.0075; block elastic modulus E¼ 5 � 109 N=m2. All input motions are

!1¼ 2!2¼ 4!3
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significant change in error. Within this range the numeric error never exceeds 10% and

in most cases approaches the value of 1%. Departing from the optimal g1, g2 combi-

nation results in increased sensitivity of the DDA solution to the penalty value. The

departure from the analytical solution occurs at lower penalty values with increasing

time step size.

4.2 Shaking Table Experiments

It has been shown that there is a very good agreement between DDA and analytical

solutions for the block on an incline problem. However, the analytical solution is only

an approximation of the physical problem with various simplifying assumptions

including: perfectly rigid block, constant friction, and complete energy conservation.

Comparison between DDA and physical model results can help us probe into the

significance of these assumptions.

For this part of the study the numeric control parameters are: penalty value

p¼ 5 � 109 N=m, time step size g1¼ 0.0025 sec, assumed maximum displacement

g2¼ 0.005. Block elastic modulus is taken as E¼ 200 � 109 N=m2, which is the

elastic modulus of steel. The 2.66 Hz input motion is discussed here in detail and

the results are shown in Fig. 7. For k01¼ 1 the numeric error is approximately 80%,

but the ultimate displacement values are close, 0.055 m measured displacement com-

pared to 0.093 m of calculated solution. Introducing some kinetic damping by

reducing k01 improves the agreement between DDA and the physical test. Setting

k01¼ 0.98, corresponding to 2% velocity reduction, reduces the error to below 4%,

Fig. 6. Absolute numeric error of DDA ultimate displacement prediction as a function of spring stiffness,
for a sum of three sines loading function
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and improves the tracking of the displacement history by DDA. Setting the k01¼ 0.95

results in a highly un-conservative (underestimated) displacement prediction by

DDA.

Plotting the relative numeric difference (e0) against the input motion frequency

(Fig. 7) shows that in general DDA accuracy increases with higher frequencies, and

that for k01¼ 1 the numeric error is always conservative (overprediction of displace-

ment), with an exception at 6 Hz. Reducing k01 to 0.98 shows a similar effect for all

frequencies, reducing the numeric error below 10%.

Fig. 7. a) The 2.66 Hz sinusoidal input function; b) Comparison of measured displacement and DDA
solution for the 2.66 Hz test, for different values of dynamic control parameter (k01); c) Evolution of the

numeric error during the test

DDA on an Inclined Plane 163



5. Discussion

The implicit formulation of DDA guarantees numerical stability regardless of time

step size. However, it does not guaranty accuracy. Where the time step is too large

relative to the numeric spring stiffness, loss of diagonal dominance and=or ill con-

ditioning error may result, interfering with convergence to an accurate solution.

The numeric implementation of DDA utilizes the SOR Gauss–Seidel equation

solver, the convergence of which is guarantied for diagonally dominant matrices.

Larger inertia terms on the diagonal of the global stiffness matrix increase the stability

of the computation. A small time step size is needed to increase the inertia terms,

which are inversely proportional to the square of time step. For small time steps

(0.0025 sec) the numeric error does not exceed e¼ 10% for increasing penalty values

up to 5 � 1010 N=m; higher penalty values however result in significant error as the off

diagonal sub-matrices become exceedingly large. Enlarging the time step results in

reduction of inertia terms in the diagonal sub-matrices. Therefore, for a given time

step size the loss of diagonal dominance will occur at lower penalty values.

Most of the error is accumulated at the beginning of the analysis and it declines

with time, a phenomenon known as algorithmic damping, which is typical to the

Newmark implicit time integration scheme (Fig. 7c). This behavior is observed here

for all selected values of k01. In this study we have limited the duration of the analysis

to 5 seconds, in conjunction with the duration of the shaking table experiment. Doolin

and Sitar (2002) show that for a block on an incline problem the relative error con-

tinues to decrease up to displacement of 250 m during 16 seconds of sliding. There-

fore, for computations involving larger time spans the error is expected to decline as

calculation proceeds, further improving solution accuracy.

When compared with analytical solutions for frictional sliding DDA is found

to be accurate. Therefore, it can be assumed that the contact formulation in DDA is

Fig. 8. Numeric error of DDA ultimate displacement prediction as a function of input frequency, for a
sinusoidal input function
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equivalent to the mathematical model for frictional sliding. The comparison with

shaking table experiments however implies that the contact formulation in DDA is

not sufficiently accurate for modeling physical friction. Consider for example the

phenomenon of block ‘‘wobbling’’ during shaking table experiments. In the numer-

ical model the acceleration is applied as a concentrated body force at the centroid of

each block, whereas in the physical model block displacement is induced by the

motion of the shaking table. This motion causes block ‘‘wobbling’’ during which

physical contacts may open and close repeatedly. This process reduces the total energy

of the system and consequently the total down-slope displacement. Furthermore, the

dynamic formulation of DDA is essentially un-damped, friction being the main source

of energy consumption. In the physical model however mechanisms such as structural

vibrations, material damage along interface (ploughing), drag, heat etc. do take place

during block sliding. These processes are not modeled numerically and can be a

second source of discrepancy between the results of the numerical and physical

models.

The only method available at present to simulate energy dissipation in DDA is by

reducing transferred velocity between time steps. In this study it is found that a

reduction of transferred velocity by 2% (k01¼ 0.98) yields realistic prediction of

block displacements, further reduction of the dynamic control parameter yields un-

conservatively small displacements.

The numeric analyses show good agreement with the shaking table results, once

kinetic damping is applied. The reduction of the transferred velocity between time-

steps is a numeric adaptation not linked directly to a physical damping mechanism.

Since DDA formulation is essentially un-damped, viscous damping is not accounted

for. Implementation of a dashpot model in parallel with a contact spring (Voigt model)

in order to simulate viscous damping in DDA would be more appropriate. However, it

is impossible to assign a correct damping coefficient for the given problem a priory.

For problems of rock falls analyzed using DDA with viscous damping (Chen et al.,

1996; Shingi et al., 1997) the selection of the damping coefficient was performed

using trial and error procedure. We perform similar best ‘‘fitting’’ by reducing the

transferred velocity between time steps.

The results reported herein are for a simple two block system. Natural slopes are

more complex, containing many blocks of different geometries. When subjected to

dynamic loading the blocks are expected to show different modes of failures resulting

from blocks geometries and inter-block interactions. As shown in this research for a

simple two block system a ‘‘kinetic damping’’ of 2% is required for accurate solution.

It is expected that for a multi block system the amount of ‘‘kinetic damping’’ should

be higher. McBride and Scheele (2001) showed that for a multi block array on a steep

base under gravitational load the amount of required ‘‘kinetic damping’’ is about 20%

(k01¼ 0.8). However, this estimate should be examined in conjunction with condi-

tioning of g1, g2 parameters. Hatzor et al. (2002), who studied the stability of a natural

rock slope situated in seismically active zone using DDA, showed that most accurate

results were obtained for ‘‘kinetic damping’’ lower than 5%. Higher values resulted in

un-conservative slope behavior, while un-damped simulations resulted in excessive

and non-realistic displacements.
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6. Conclusions

1. The results of the validation study show that DDA solution of an idealized system

for which an analytical solution exists, is accurate. The block contact algorithm in DDA

is therefore an accurate replication of the analytical model for frictional sliding.

2. The accuracy of DDA is governed by the conditioning of the stiffness matrix.

The DDA solution is accurate as long the chosen time step is small enough to assure

diagonal dominance of the global stiffness matrix.

3. Comparison between shaking table experiments and DDA calculation shows

that the DDA solution is generally conservative, over predicting block displacement.

The main sources of discrepancy between DDA and the physical model are the

difference between the numerical and actual behavior at contact points, and lack of

a complex energy dissipation algorithm in DDA.

4. For accurate displacement prediction a reduction of the dynamic control param-

eter (k01) by 2% is recommended, for the block on a incline problem.

5. Implementation of viscous damping and strain=displacement dependent friction

into DDA can further improve the accuracy of the method.
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