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1. Introduction

In-situ stress determination has a dominant role in the design
of underground construction projects as the initial and excavation
induced stress concentrations typically affect the performance of
the rock mass surrounding the excavation. While it is possible to
estimate the initial and excavation induced stresses from theory
using some well accepted assumptions, accurate determination of
the stress tensor near the excavation face typically requires either
direct measurements or back analyses.

One of the earliest methods used in rock mechanics for in-situ
stress measurement is the Flat Jack method, the principles of
which are described in the collection of ISRM suggested
methods[1] and reviewed among other techniques by Fairhurst.[2]

The method was first proposed by Mayer[3] and later improved by
Rocha[4] and Hoskins[5]. Based on the stress relief principle, the
cancellation pressure is used to obtain the in-situ stress compo-
nent acting normal to the Flat Jack plate[6,7].

The Flat Jack method is a “cancellation” in-situ stress test
method, in which a thin slot is cut into the rock surrounding an
underground opening and a pressure gage is inserted into the slot
(Fig. 1a). The pressure in the flat jack is increased until the re-
corded strain relaxation of the sidewall is cancelled (Fig. 1b). The
jack pressure at which the strain relaxation is cancelled, is as-
sumed to be the normal stress acting on the face of the flat jack.
Therefore, with known solutions for stress concentrations around
the opening, the initial in situ stress field can be recovered by
means of inversion, if a sufficient number of flat jack tests are
performed around the opening, at different orientations. The fol-
lowing assumptions are made in the solution process: the width of
the slot is very small with respect to the span of the opening, the
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elastic modulus of the rock is linear and reversible in the range of
stresses of interest, the rock mass is isotropic, there is perfect
coupling between the flat jack and the rock which is typically
achieved using cement filling between the jack and the rock.

The method has been used in many case studies around the
world. A set-up of a total of twelve slots cut along the wall of an
underground opening was recommended by Pinto and Cunha[8] to
obtain the stress tensor. Franco el al.[9] used the method to back
analyze the 3D stress tensor via the least square method in the
Serra Sa Mesa Hydroelectric Power Plant in Brazil. Results of
twelve Flat Jack tests performed in an underground hydroelectric
power project in northern Portugal have been integrated into a
stress model that took into account both topography and tectonic
effects[10]. Similarly, the in-situ stress field of the Gardanne basin in
France was assessed using the Flat Jack method where eleven
stress measurements were carried out at different depths[11]. In
Italy, 60 tests were carried out during six geomechanical in-
vestigation campaigns performed for construction of five large
underground power plants by the Italian Electricity Board[12].

Most of the current procedures for determination of the in-situ
stress tensor from the Flat Jack method are based on a two-di-
mensional analytical solution, in which the orientation of one
principal stress is usually assumed to be parallel to the axis of the
investigated gallery. If the far field principal stresses are assumed
to be horizontal and vertical, then only two flat jack tests are
necessary to obtain the magnitude of the principal stresses by
direct application of Kirsch solution [13], as shown by Goodman[7];
see Fig. 2. Amadei and Stephansson[6] proposed a three-dimen-
sional solution for a transversely isotropic medium where they
assume that the stress at every point has one elastic axis of sym-
metry which is aligned with the tunnel axis direction (Fig. 3). The
solution is provided in complex variable functions. Ultimately, the
solution for the isotropic case is provided by Amadei and
Stephansson[6] for three out of the six components of the far field
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Fig. 2. Stresses around a circular hole in polar coordinates under horizontal and
vertical far field Principles stresses (modified after Ref. [7]).
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Fig. 3. Three–dimensional far field stress tensor and a circular tunnel aligned with
the z axis.
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Fig. 4. Sign convention used in Ref. [6] for Flat Jack test i (i¼1, 2, 3) performed
around a circular opening subjected to far field stress tensor.
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Fig. 1. Principles of the Flat Jack test: (a) Plan view and cross section of flat jack.
(b) Cross section through the side wall of a tunnel showing the flat jack test as-
sembly. (c) Pin separation curve (modified after Ref. [7]).
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stress tensor, where θi (i¼1, 2, 3) is the angle defining the position
of the Flat Jack test from the x-axis (Fig. 4):
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A complete three-dimensional solution, the derivation of which
is not provided, for the far field stress tensor was suggested by
Pinto and Cunha[8] where at every point θ around the tunnel axis
four tests must be performed at four inclination angles α with
respect to the direction vector r, separated at 45° intervals (Fig. 5).
In this approach, 12 tests are needed to resolve the complete far
field stress tensor, to be performed at three different θ positions
around the tunnel axis. This procedure requires at every θ position
four slots one close to another and this may adversely affect the
accuracy of the solution due to possible interactions between the
slots.

In this note we present an analytical solution for recovering the
six components of the far field stress tensor in an isotropic rock
mass using only six Flat Jack tests to be performed at a minimum
of three different θ positions around the tunnel axis and a mini-
mum of three α inclinations around the tunnel radius vector. No
assumptions need to be made with respect to the orientation of
the initial far field stresses. The complete derivation of the ana-
lytical solution we propose is provided below.
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Fig. 5. Procedure proposed in Ref. [8] for determination of the far field stress tensor
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2. Stress distribution around a circular hole in the x–y plane

It can be shown (for complete derivation see Appendix A) that
the stress distribution around a circular hole in cylindrical co-
ordinates may be expressed as
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where θ is measured as in Fig. 4, a is the radius of circular opening.
Letting r equal a we obtain the same solution for σθ as proposed by
Amadei and Stephansson[6] for the immediate wall of the tunnel:
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The complete analytical solution which is derived in the ap-
pendix and shown in Eq. (2) is identical to Eq. (1) suggested by
Amadei and Stephansson[6], provided that the slots of the jack are
parallel to tunnel axis, thus yielding xσ , yσ and xyτ in the x–y plane
(the tunnel cross section; see Fig. 4) based on three different tests.
To obtain the remaining three components of the stress tensor, at
least three more tests are necessary. In this note we propose a
procedure in which the jack slots in the additional three tests are
not necessarily parallel to the tunnel axis but rather form an angle
α with respect to tunnel axis, as originally proposed by Pinto and
Cunha[8]. The angle α can be viewed as a rotation angle around the
tunnel radius vector. Note that the angle α around the tunnel ra-
dius vector is measured clockwise from the tunnel axis to the slot
when the system is viewed from outside the tunnel (Fig. 6). When
viewed from the inside of the tunnel, as would be the case in
practice, α is measured counterclockwise with respect to the
tunnel axis. Also note that here the slots are always perpendicular
to the tunnel wall, as in previous procedures.

In our proposed procedure a total of only six tests is required, in
contrast to a minimum of 12 tests that are required in the proce-
dure proposed by Pinto and Cunha[8]. We believe this represents a
significant improvement, as possible interferences between the
four slots in each measurement point in Pinto and Cunha proce-
dure are avoided.
3. Finding the stress tensor components in the in z-direction

To obtain the stress components in the z-direction ( zσ , zxτ and
zyτ ) we rotate the coordinate system around the r axis (Fig. 7) to
establish the relationship between σθ and the far field stress in the
z-direction, thus the six components of the in-situ stress tensor can
be determined.
3.1. Transformation of field variables from Cartesian to Cylindrical
coordinates

We begin by rotating the x–y coordinate system around the z
axis (Fig. 8). The rotation matrix for this case is
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Employing the second-order matrix transformation of isotropic
tensor between Cartesian coordinate systems [e.g. Ref. [14]], we
obtain:
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Using Eq. (5), we can now express zτθ as

sin cos 6z zx zyτ θτ θτ= − + ( )θ

3.2. Local change in sz due to tunneling

Assuming there is no excavation induced deformation along
the tunnel axis in the z-direction, we may write

E/ 0z z x yε σ ν σ σΔ = [Δ − Δ( + )] = , where ν is Poisson's ratio. We can
now find the excavation induced change in zσ near the tunnel:
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where xσ ′and yσ ′ are the local stresses near the tunnel after ex-
cavation. Employing the first stress invariant, we may write:

8y x rσ σ σ σ′ + ′ = + ( )θ

Substituting Eq. (8) into Eq. (7), we can find the change in zσ
due to tunneling:
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Thus, the normal stress in the z direction near the tunnel after
the excavation can be presented by the original stress components

xσ , yσ , zσ and xyτ as follows:
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Note that the value of Poisson's ratio is needed for character-
izing the change in stress in the z-direction induced by tunneling.
3.3. Rotation of the cylindrical coordinate system about the r axis

From Eqs. (2) and (10), the stress components at the wall of a
circular tunnel of radius a (r¼a) are



Table 1
Concentrated results of six theoretical flat jack tests performed around a circular
opening.

Test no. P1 P2 P3 P4 P5 P6

Rotation angle θ/° 55 55 90 120 335 335
Rotation angle α/° 45 0 75 0 135 0
Measured cancellation pressure in
slot/MPa

�4.5 �6.0 �4.5 �4.0 �5.0 �3.5
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The stress matrix in the tunnel cross section where r¼a is
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We now rotate the cylindrical coordinate system about the
tunnel radius vector r by an angle α (Fig. 7) in order to be able to
retrieve the additional three components of the stress tensor in
the z-direction ( zσ , zxτ , zyτ ). The rotation matrix for this case is
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Solving Eq. (14), the desired σ ′′θ can therefore be expressed as
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Substituting Eq. (6) and the expressions for σθ and zσ ′ shown in
Eq. (11) into Eq. (15), we obtain the desired solution for σ ′′θ which
includes all six components of the stress tensor:
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To conclude this section, we show that by performing six flat
jack tests that provide σ ′′θ at different positions and orientations
around the tunnel we can recover the six components of the in-
situ stress tensor ( xσ , yσ , zσ , xyτ , zxτ , zyτ ) by means of the standard
Flat Jack method. Although from a theoretical standpoint only six
tests are required, it would be prudent to perform more than six
tests in field applications, in case one or two tests were not per-
formed strictly according to the suggested methods, or have failed.
4. Worked example

Consider the flat jack testing array shown in Fig. 9. Assuming
the material is isotropic we need to solve a six-variable linear
equation as shown in Eq. (17) below utilizing a software package
such as MATLAB, for example.
In Table 1, the results of six theoretical flat jack tests are pre-
sented for four different θ angles and four different α angles. We
will assume here that Poisson's ratio is ν¼0.3. Note that the po-
sitions and rotation angles (θ, α) are displayed in Fig. 9.

Using the data obtained in the six measurement points around
the tunnel the complete far field stress tensor may be recovered by
solving a system of linear equations as shown in Eq. (17). For the
test results shown in Table 1 the obtained in-situ stress tensor is
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Fig. 10. Sensitivity of analytical solution to the value of Poisson's ratio.
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The magnitude and orientation of the principal stresses are
readily determined by finding the eigenvalues and eigenvectors of
Eq. (18):
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A sensitivty analysis of the analytical solution with respect to
the value of Poisson's ratio reveals that it is not very sensitive to
the value of ν (Fig. 10).
5. Summary and conclusions

A complete analytical solution has been derived for obtaining
the six components of the far field in-situ stress tensor based on
six flat jack tests performed around a circular tunnel. In the ana-
lysis, we assume a Continuous, Homogenous, Isotropic, Linear
Elastic (CHILE) rock mass. No assumptions need to be made with
respect to the orientation of the initial far field stresses and the
slots do not have to perpendicular to the tunnel axis. We have
shown that a minimum of three different θ positions around the
tunnel axis and a minimum of three α inclinations around the
tunnel radius vector are required for obtaining the complete stress
tensor. The proposed analytical solution is not very sensitive to the
y

σx

σy

x

τxy

θ

y

σx

xθ

Fig. A1. Superposition of stresses. (a) Natural stress, (b) h
assumed value of Poisson’s ratio for the rock mass near the tunnel.
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Appendix. A. Analytical solution for the stress components in
cross section of a circular tunnel using superposition of far
field stresses

To obtain the stress distribution around a hole in an infinite
elastic plate consisting of isotropic material we will investigate the
contribution of each of the stresses separately using the principle
of superposition (Fig. A1).
A.1.. Horizontal tension

Fig A1(b) represents a plate with a hole submitted to a hor-
izontal uniform tension xσ in the x-direction. The original and
primed coordinate systems shown in Fig. A2 establish the angles
between the various axes. The rotation matrix is given by [e.g. Ref.
[14]]:

⎡
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⎤
⎦⎥Q cos sin
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ij

θ θ
θ θ
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− ( )

Transformation of field variables between rectangular and cy-
lindrical coordinates [14] gives in our case:
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Solving Eq. (A.2) for the case of horizontal uniform tension, we
obtain:

cos 1 cos 2 cos 2
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2 1
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σ θσ θ σ σ θσ
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The result obtained in Eq. (A.3) can be arrived at by super-
position of two cases, the first due to the normal constant com-
ponent 1/2 xσ( ) (Fig. A3b) and the other due to the normal stress
yσy

xθ

y

x

τxy

θ

orizontal stress, (c) vertical stress, and (d) Pure shear.
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1/2 cos 2 xθσ( ) and the shear stress 1/2 sin 2 xθσ( − ) components
(Fig. A3c).

The equation of compatibility [15] is as follows:

⎛
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⎞
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d
dr r
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d

1 1
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A. 4
4
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ϕ
θ

ϕ∇ = + + =
( )

where ϕ is a general stress function. In the case of horizontal
uniform tension (Fig. A3(b)) where the stress function depends on
r only, the general solution of Eq. (A.4) can be resolved by means of
Euler differential equation and MATLAB to obtain the following
general stress function:

A r Br r Cr Dlog log A. 52 2ϕ = + + + ( )

Using the stress function, we can obtain the stress and the
displacement components:
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Note that in the displacement uθ , the term Br E4 /θ is not single-
valued after making a complete circle around the ring. Therefore,
we let B═0 and rσ in Eq. (A.6) reduces to A r C/ 2r

2σ = + . From the
boundary conditions in Fig. A3(b) ( 0r r aσ =( = ) ; 1/2r r b xσ σ= ( )( = ) ) we

obtain the constants A a /2 x
2 σ= − ( ) and C 1/4 xσ= ( ) for this case.

For the far field stresses we get:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

a
r

a
r2

1
2

1 0
A. 8

r
x

r
x 2

2

2

2
σ

σ
σ

σ
τ= − = + =

( )
θ θ

Considering now the contribution of the normal force
1/2 cos 2 xθσ( ) and the shearing force 1/2 sin 2 xθσ−( ) in Fig. A3(c),
we may assume a stress function such as:

f r cos 2 A. 9φ θ= ( ) ( )

Substituting Eq. (A.9) into the general form of the compatibility

Fig. A2. Coordination transformation.
Fig. A3. Stress state of circular hole under horizontal stress in plate. (a) Str
Eq. (A.4), we can express the general solution of Eq. (A.9) as fol-
lows:
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Combined with a stress function [15], the corresponding stress
components are:
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The constants of integration can be determined by using the
boundary conditions as shown in Fig. A3(c), 0r r aσ =( = ) ;

1/2 cos 2r r b xσ θσ= ( )( = ) ; 0r r aτ =θ ( = ) ; 1/2 sin 2r r b xτ θσ= − ( )θ ( = ) ):
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Substituting these constants into Eq. (A.11), and adding the
stresses produced by the uniform tension 1/2 xσ( ) on the outer
boundary calculated from Eq. (A.8), we obtain the stress compo-
nents of Fig. A3(b) due to horizontal tension:
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A.2. Vertical tension

Consider now a plate with a hole submitted to a vertical uni-
form tension yσ (Fig. A1c). Transformation of field variables be-
tween rectangular and cylindrical coordinates (Fig. A2), gives in
this case [14]:
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Fig. A4. Stress state of circular hole under vertical stress in plate. (a) Stress at radius b. (b) Normal forces. (c) Normal force and shearing force.

Fig. A5. Corresponding stress as uniform far-field tension and shearing loading.
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Solving Eq. (A.14) in terms of cylindrical coordinates, we get:
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The result obtained in Eq. (A.15) can be arrived at by super-
position of two contributions as shown in Fig. A4(b) and
(c) namely, the first due to the normal component 1/2 yσ( ) and the
remaining part due to the normal stress 1/2 cos 2yσ θ−( ) and the
shear stress 1/2 sin 2yσ θ( ) components.

The constant component 1/2 yσ( ) of the normal forces in Fig. A4
(b) is similar to Eq. (A.8) in Fig. A3(b). Therefore, we obtain:
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Considering now the contribution of the normal force
1/2 cos 2yσ θ−( ) and the shearing force 1/2 sin 2yσ θ( ) in Fig. A4(c),

we assume stresses that may be derived from a stress function
which is of the same form as of Eq. (A.9). Therefore, the corre-
sponding stress components around the hole are identical to Eq.
(A.11).

The constants of integration for this case can be determined by
solving the boundary conditions as shown in Fig. A4(c), 0r r aσ =( = ) ;

1/2 cos 2r r b yσ θσ= − ( )( = ) ; 0r r aτ =θ ( = ) ; 1/2 sin 2r r b yτ θσ= ( )θ ( = ) :
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Substituting the constants of integration into Eq. (A.11) and
adding the stresses produced by the uniform tension 1/2 yσ( ) on
the outer boundary calculated from Eq. (A.16), we obtain the stress
components due to vertical tension in Fig. A1(c):
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A.3. Pure shear

Fig. A1(d) represents a plate with a hole submitted to pure
shear xyτ . Transformation of field variables between rectangular
and cylindrical coordinates (Fig. A2) gives [14]:
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Fig. A5 shows a large plate in a state of pure shear xyτ , perturbed
by a hole of radius a. Due to the normal stress sin 2r xyσ τ θ= and
shearing stress cos 2r xyτ τ θ=θ in Fig. A5, we assume stresses that
may be derived from a stress function of the form:

f r sin 2 A. 20ϕ θ= ( ) ( )

Substituting the stress function from Eq. (A.20) into the com-
patibility Eq. (A.4), we can express the general solution of Eq.
(A.20) as:
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Combined with a stress function [15], the corresponding stress
components are:
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The constants of integration can be determined by the
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boundary conditions shown in Fig. A5, 0r r aσ =( = ) ;
sin 2r r b xyσ τ θ=( = ) ; 0r r aτ =θ ( = ) ; cos 2r r b xyτ τ θ=θ ( = ) :

A B C
a

D a
1
2

0
2 A. 23xy xy xy

4
2τ τ τ= − = = − = ( )

Substituting the constants of integration into Eq. (A.22), we
obtain the stress components due to pure shear stress:
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The result obtained here for pure shear is identical to the ex-
pression obtained in Ref. [16] using the Fourier method.

Finally, subsequent to the analysis of horizontal, vertical and
shear stress respectively, the state of stress around the hole can be
obtained by superposition as follows:
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