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Abstract

In this paper a practical method to apply block theory is presented. Block theory provides the removable joint pyramids from a

given free surface regardless of the number of joints in any joint intersection. While robust, the application of the theory in real

practice is hampered by the large outcome space of possibly removable joint pyramids consisting of k mutually exclusive joints in a

rock mass consisting of m joint sets. In this paper, we prove that the probability that k is greater than three in a three-dimensional

space is zero. Consequently, only tetrahedral blocks need to be considered in the stability analysis for the analyzed free surface. The

outcome space of theoretically removable joint pyramids can be further reduced by considering ‘‘safe’’ joint intersections, which

consist of at least one line of intersection which is sub-parallel to the free surface. The block failure likelihood of the remaining joint

intersections is proportional to two independent parameters: (1) the joint intersection probability and (2) the block instability

parameter. We develop here a rigorous joint intersection probability expression based on simple frequency probability

considerations which predicts that the probability for x in the rock mass to fall in joint intersection Li,j,k is inversely proportional

to the volume of the parallelepiped formed by joints i; j; k with mean spacing values xi, xj, xk:

Pðx 2 Li;j;kÞ ¼
1=Vi;j;kPm

laras¼11=Vl;r;s
.

Using the joint intersection probability and the instability parameter associated with each removable JP the critical key blocks of

the excavation can be determined. In a brittle rock mass only the critical key blocks will require reinforcement. The paper concludes

with a practical example which demonstrates the application of the concepts.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Key block analysis in jointed rock masses

Rock engineering is naturally performed in discontin-
uous rock masses. Rock discontinuities are typically
classified into principal joint sets using statistical
procedures. For example, mean orientation may be
determined analytically by vector operations or by
stereographic projection techniques e.g. [1,2], mean
e front matter r 2005 Elsevier Ltd. All rights reserved.
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spacing by scan lines surveys in the field e.g. [3,4], and
mean trace length by employing convex sampling
windows on field exposures e.g. [5,6].

Once the important statistical characteristics of the
joint sets (orientation, spacing, and length) are deter-
mined with a certain degree of confidence, it becomes
essential to predict the type of rock blocks which may
form in the rock mass behind the analyzed free surface
(rock slope or tunnel face) as a result of joint
intersections. The topological key block theory [7]
denotes as joint pyramids (JPs) the different half-space
combinations that form in the rock mass as a result of
joint intersections. For a given free surface block theory
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determines the removable JP in the joint intersection
using Shi’s theorem [7]. Three-dimensional limit equili-
brium analysis [8] is then employed by block theory to
determine the mechanical stability of the removable JP,
provided that the characteristic friction angle for each
joint set is known. To perform a comprehensive stability
analysis in a jointed rock mass, therefore, one must first
characterize the principal joint sets statistically, then
find all theoretically removable JPs from the analyzed
free surface using block theory, and finally, employ
three-dimensional limit equilibrium analysis for each
removable JP to determine its failure mode and factor of
safety.
1.2. The critical key block concept

Consider now a rock mass with m joint sets. The
number of different joint intersections in this rock mass
is given by

N ¼
m

k

� �
¼

m!

k!ðm � kÞ!
, (1)

where k is the number of joints which participate in the
joint intersection. Note that Eq. (1) is only true for
mutually exclusive joints in the intersection. In the
simplest case, where each joint intersection produces
only one removable JP from the analyzed free surface,
the total number of theoretically removable JPs will
equal N. This number may be quite large. For example,
by applying Eq. (1) to a rock mass consisting of 7 joint
sets ðm ¼ 7Þ, the number of removable JPs of size k ¼ 3
is 35, of k ¼ 4 is 35, of k ¼ 5 is 21, of k ¼ 6 is 7, and of
k ¼ 7 is 1. Hence N in this rock mass equals 99.
However, field examinations of block moulds which
remained in the excavation surface after the failure of
removable key blocks in several engineering case studies
[9,10] strongly suggest that only a very limited number
of theoretically removable JPs actually materialize in the
field as block failures. This field observation implies that
not all theoretically removable JPs have the same failure
likelihood, namely some JPs are more likely to fail than
others.

Hatzor [11] demonstrated, on the basis of many case
studies, that the block failure likelihood (P(B)) is
proportional to two mutually independent parameters:

(1) The joint combination probability (P(JC)) which
depends on the spacing and orientation of the joints in
the intersection.

(2) The JP instability parameter (F) which maps the
required support force for limit equilibrium (F�)
normalized by the active resultant (R) to a field between
0 and 1 for infinitely stable and falling blocks,
respectively.
The mathematical expressions for P(JC) and (F) can
be found in [11]. The product

PðBÞ ¼ PðJCÞðF Þ (2)

provides the block failure likelihood for each JP in the
outcome space of Eq. (1) above.

By comparing the resulting P(B) values for all
theoretically removable JPs from a given free surface
one can readily assess the JPs which are more likely to
fail, originally referred to as Critical Key Blocks by
Hatzor and Goodman [10]. Previous field studies of
both underground openings and rock slopes [9–12] have
indicated a very good agreement between predicted PðBÞ

values and mapped block moulds on excavation faces,
all of which represented the theoretically determined
critical key blocks.

1.3. Safe and unsafe joint intersections

A joint intersection Lijk may yield a removable JP
from an analyzed free surface with high failure like-
lihood and yet may not produce actual block failures in
the field. Such joint intersections were referred to as Safe
Joint Combinations by Hatzor [9]. Safe joint intersec-
tions occur when a line of intersection Iij between two
joints in Lijk is sub-parallel to the analyzed free surface.
A safe joint intersection may easily be detected using the
stereographic projection because in such a case one line
of intersection will plot very near the free surface.

Recall that by Shi’s theorem [7], a removable JP must
plot entirely within the space pyramid (SP): JP � SP, or
equivalently, the intersection of a removable JP with the
excavation pyramid (EP) is empty: JP \ EP ¼ ;. By
means of stereographic projection, the implication of
Shi’s theorem is that all lines of intersections Iij in a
removable JP must plot completely within the region of
the space pyramid.

In Fig. 1 (A–D) four different joint intersections are
plotted and in each case the theoretically removable JP
from the analyzed free surface (dashed line), is clearly
marked. Note that joint intersections 1 and 4 (Figs.
1A,D) are ‘‘safe’’ because the line of intersection I2,3

plots very near the free surface. Therefore, while JPs 110
and 101 in joint intersections 1 and 4 are theoretically
removable, any slight deviation in the joint or free
surface attitude may shift I2,3 into the excavation
pyramid, thus producing a non-removable block.
Furthermore, if the block does materialize in the field,
it will have a very slender shape because of the sub-
parallelism between I2,3 and the analyzed free surface, as
shown in the three-dimensional diagrams on the right in
Figs. 1A and D. Such slender blocks will pose minimal
risk to the excavation and should not be of great
concern.

It is therefore necessary to check the outcome space of
Eq. (1) for ‘‘safe’’ joint intersections, namely for any
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Fig. 1. Left: block theory removability analysis for the four joint intersections listed in Table 2 (Upper hemisphere stereographic projection). The free

surface is dashed. Right: removable block geometry. Viewer is looking horizontally along the strike of the free surface towards NE.
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joint intersection Lijk that contains a line of intersection
Iij which is sub-parallel to the analyzed free surface. The
detected ‘‘safe’’ intersections may be eliminated from
any further treatment and thus the theoretical outcome
space of removable JPs is further reduced.

1.4. Scope of this paper

In this paper we first present a proof that in a jointed
rock mass consisting of m joint sets the probability of
finding a joint intersection consisting of more than three
joints is zero. To appreciate the significance of this proof
note that by employing it the outcome space of Eq. (1)
reduces from 99 to 35 theoretically removable JPs which
must be analyzed in a particular free surface excavated
in a rock mass with seven joint sets. This proof explains
earlier field observations which indicated that tetrahe-
dral blocks (k ¼ 3) were by far the most common
underground [9–11]. Furthermore, it lends support to
previous analytical attempts to determine the joint
intersection probability for the case of tetrahedral
blocks only [13]. We then proceed to develop a rigorous
joint intersection probability expression, starting in two
dimensions and then generalizing to three dimensions
using simple frequency probability considerations.
Finally, a practical application is provided for the
benefit of practitioners.

In developing our solutions we make two assump-
tions:
(1)
 all fractures in a joint set are strictly parallel,

(2)
 all fractures within a given joint set have non-zero

spacing.
In nature fracture attitudes within a given joint set
exhibit dispersion about a resultant which may be
described for example by means of the Fisher constant
for normal distributions [14]. Nevertheless, removability
and stability analyses in rock mechanics typically
assume a fixed orientation for each joint set. Our
approach is not different in that sense. Solving the joint
intersection probability for a distribution of orientations
about each mean attitude is beyond the scope of this
paper and is not attempted here.

We also assume that fractures within a joint set have
non-zero spacing, namely the spacing cannot be smaller
than some threshold value. This assumption is valid for
all practical applications in rock mechanics.
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2. Line intersections

We begin with some preliminary remarks about the
probability of geometric events in the plane. We
consider a simple example. Suppose C ¼ fðx; yÞ :
x2 þ y2 ¼ 1=pg. C is of course the disk of radius 1=

ffiffiffi
p

p

with area 1. We look at C as a target and want to
consider the probability of hitting a sub-set of C.

A standard model is obtained by considering a
probability function which is defined axiomatically on
sets for which we have a notion of area, and the
probability of hitting such a subset is its area. In this
framework points are assumed to have area zero and
thus the probability of hitting a given point is zero. This
does not mean that there is no possibility of ever hitting
a particular point. It simply means that in the standard
geometric probability framework hitting a particular
point is a non-generic event. In addition, it follows from
the standard axioms for probability functions that the
probability of hitting one of a sequence of points (a
countable set) is also zero.

Our statements about the probability for line inter-
sections on a plane and for joint intersections in three
dimensions are to be understood in this sense. The
mathematical probability of an event taking place
should not be identified with the physical possibility of
such an event. The notions are closely related but not
identical [15].

Before we attempt to solve the three-dimensional
problem pertaining to the intersection probability of
Fig. 2. Trace lines of two joint sets on a plane dipping 901 (vertical) to azim

Mean joint spacing values are: x1 ¼ 1 m, x2 ¼ 3 m. Width a and Height b o
joint sets within a given rock mass volume, it is
instructive to first consider the two-dimensional case
pertaining to the intersection of lines on a plane.

In this section we assume that lines are perfectly
planar, and that the line spacing in each family is
constant, but not necessarily equal. The main point is
that by choosing an appropriate algebraic basis for the
plane (2-dimensional Euclidian space R2) we can
represent the intersection points of two families of
parallel equidistant lines as the set of pairs of integers
{(n, m)}.
2.1. The probability for line intersections on a plane

consisting of more than two lines is zero

Consider two families of parallel equidistant lines:

F 1 : a1x þ b1y ¼ nc1,

F 2 : a2x þ b2y ¼ nc2, ð3Þ

where n varies over the integers. Assume that we have
already normalized so that the origin is an intersection
point of lines from each family ðn ¼ 0Þ. Let us now
characterize the points of the ‘‘grid’’ determined by the
intersection points (Fig. 2).

A point of intersection is a solution of the system of
equations:

a1x þ b1y ¼ nc1,

a2x þ b2y ¼ mc2. ð4Þ
uth 1351. Joint plane dips are as follows: J1 ¼ 10=045; J2 ¼ 80=225.

f domain are a ¼ 44 m, b ¼ 32 m.
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Then the x value of the intersection is given by

x ¼

nc1 b1

mc2 b2

�����
�����

a1 b1

a2 b2

�����
�����
¼ nl1 þ ml2, (5)

where l1, l2 are easily computed but not important as
they depend on ai, bi, and ci. The y value is given by

y ¼

nc1 a1

mc2 a2

�����
�����

a1 b1

a2 b2

�����
�����
¼ ns1 þ ms2, (6)

where si, mi are easily computed as above. Let

e1 ¼
l1

s1

" #
; e2 ¼

l2

s2

" #
.

Then each intersection point is of the form

x

y

" #
¼ ne1 þ me2. (7)

Since B ¼ fe1; e2g is a basis for R2, we can characterize
the grid points as the set of all pairs of integers {n, m

integers} where (n, m) is the co-ordinate vector of the
point with respect to B:

x

y

" #
B

¼
n

m

� 	
. (8)

We want to discuss the probability of an arbitrary line
intersecting the points of our grid. This of course will
depend on the probability function that we define on the
appropriate family of subsets, the ‘‘measurable’’ sets.
We will follow the tradition that axiomatically associ-
ates with each finite line segment in the plane a
probability directly proportional to its length (or with
a finite plane in R3 a probability directly proportional to
its area). For such a probability measure it is immediate
that points have probability zero.

We now refer to the standard sigma—algebra
property of probability measures: If T1, T2, y is a
sequence of measurable sets which are point-wise
disjoint (Ti \ Tj ¼ ;, iaj) and T ¼ [1

i¼1Ti, then the
probability measure of T, P(T) is just the infinite sumP1

i¼1PðTiÞ. Applying this to our grid we obtain that the
probability measure of the set of pairs {(n, m)} of
integers in the plane is zero. Thus this will be the
probability of its intersection with any line. This
argument generalizes in an obvious way to the three-
dimensional case.

It is easy to extend these arguments to the situations
where the spacing between the parallel lines in each
family is not uniform as long as it is bounded from
below.
3. Joint intersections

The theory developed above for two dimensions is
expanded here for three dimensions to address joint
intersections within the volume of a rock mass, where
the intersection of planes in space replaces line intersec-
tions on a plane.
3.1. The probability for a joint intersection consisting of

more than three joints is zero

Here everything is the same as in Section 2.1. We
consider three families of parallel equidistant planes
analogous to three joint sets each of which has a
constant spacing value:

F 1 : a1x þ b1y þ c1z ¼ nd1,

F 2 : a2x þ b2y þ c2z ¼ nd2,

F 3 : a3x þ b3y þ c3z ¼ nd3, ð9Þ

where again we have normalized and assumed that the
origin is a point of intersection of representatives of the
families (n ¼ 0).

A point of intersection of representatives of each
family is a solution to the system

a1x þ b1y þ c1z ¼ nd1,

a2x þ b2y þ c2z ¼ md2,

a3x þ b3y þ c3z ¼ kd3. ð10Þ

Here

x ¼

nd1 b1 c1

md2 b2 c2

kd3 b3 c3

�������
�������

a1 b1 c1

a2 b2 c2

a3 b3 c3

�������
�������

¼ nr1 þ mr2 þ kr3 (11)

and similarly

y ¼ ns1 þ ms2 þ ks2,

z ¼ nt1 þ mt2 þ kt3. ð12Þ

Then

x

y

z

2
64

3
75 ¼ ne1 þ me2 þ ke3, (13)
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where

e1 ¼

r1

s1

t1

2
64

3
75; e2 ¼

r2

s2

t2

2
64

3
75; e3 ¼

r3

s3

t3

2
64

3
75

form a basis B for R3. Then

x

y

z

2
64

3
75

B

¼

n

m

k

2
64

3
75 (14)

and again, this set has probability measure zero so the
probability of an arbitrary plane passing through such a
set is zero.
(A)

Fig. 3. (A) A point in the grid and its associated parallelogram of area

a, (B) schematic presentation of the two types of points in a sampling

circle of radius R: filled points—associated parallelograms are

completely contained in the circle; open points—associated parallelo-

grams contain a part of the circumference of the circle.
4. The relative probability of joint intersections

A model for relative probabilities of joint intersec-
tions was considered by Mauldon [13]. We present here
a different model based on simple frequency probability
considerations. Following Mauldon we discuss the
model in the case of points of intersections of lines in
a plane, and then the straightforward generalization to
the three-dimensional case.

Suppose there are m sets Li, i ¼ 1; . . . ;m of parallel
lines in the plane. To simplify matters we assume that in
each family the distance between any two lines (the
spacing) is constant. This assumption is for convenience
only. As long as the sequence of distances is bounded
below, the following argument is applicable.

If we define Li;j ¼ Li \ Lj , iaj, the set of intersection
points of lines from the families Li and Lj, then by

Eq. (1) there are
m

2

� �
such sets. On the basis of the

results of the previous sections it is natural to assume
that these sets have no common points. Thus our sample
space is L ¼ [m

iaj¼1Li;j, where Li;j \ Lk;l ¼ ; for iak or

jal.
We want to define a probability function on this

sample space which is appropriate to answer the
question: ‘‘What is the probability that x 2 L belongs
to a given Li,j’’?

The sets Li,j are infinite sets. However, if we choose a
large circle with center at the origin of radius R, then we
can give a good simple approximation of the number of
points of Li,j inside this circle. If we identify each point
with the lower left vertex of the parallelogram deter-
mined by the intersections of the families of lines Li and
Lj, then there are two types of points in the circle. The
first type is those points whose associated parallelogram
is completely in the circle, and the second type is those
whose associated parallelograms contain a part of the
circumference of the circle (Fig. 3). It is not hard to see
that for R sufficiently large, the number of points of the
second type becomes negligible relative to the number of
points of the first type.

If aij denotes the area of the parallelograms deter-
mined by Li and Lj, then pR2=ai;j is thus a good
approximation for the number of intersection points
inside the circle (This can be made precise but the details
are not important in this context.). Thus, a good
approximation for the number of points of L in the
given circle is

Pm
kaj¼1pR2=ak;l and the frequency

probability that a given point x in m belongs to Lij is
given by

pR2=ai;jPm
kaj¼1pR2=ak;j

¼
1=ai;jPm

kaj¼11=ak;j
. (15)

Since this probability is independent of R, when we
allow R to go to infinity this number is not affected. It is
thus natural to define a probability function P on L by

Pðx 2 Li;jÞ ¼
1=ai;jPm

kaj¼11=ai;j
. (16)

It is easy to check that P is a probability function. It
depends only on the areas of the parallelograms that are
determined by the pairs of the given families of lines.

The three-dimensional generalization is now obvious.
Families of parallel lines are replaced by families of
parallel planes and parallelograms by parallelepipeds
determined by three planes. If we are given m families
L1; . . . ;Lm of parallel planes and want the probability
that a given intersection point x 2 m belongs to the set
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Fig. 4. The abandoned gypsum quarry at the Ramon crater, Israel.

Table 1

Characterization of the principal joint sets in the abandoned gypsum

quarry at the Ramon crater, Israel

Joint set # Dip Dip

direction

Mean

spacing (m)

Peak

friction

angle (1)

Y.H. Hatzor, A. Feintuch / International Journal of Rock Mechanics & Mining Sciences 42 (2005) 531–541 537
Lijk determined by Li \ Lj \ Lk, then

Pðx 2 Li;j;kÞ ¼
1=Vi;j;kPm

laras¼11=V l;r;s
(17)

where Vl,r,s is the volume of the parallelepiped deter-
mined by members of the families Ll , Lr, Ls.
1 84 146 1.77 58

2 77 62 0.70 58

3 82 88 2.36 58

4 (bedding) 14 237 0.44 58
5. A rock engineering application

In this section an application of the concepts is
presented using a real example from an abandoned
gypsum quarry in Southern Israel. The north-west side
wall of the quarry will be used as a free surface to
demonstrate our approach (Fig. 4).
5.1. Rock mass characteristics

The rock mass at the quarry consists of a bedded and
jointed gypsum sequence of the Triassic Mohila forma-
tion which consists primarily of gypsum, anhydrite, and
some dolomite layers. The quarry was developed at the
crest of the Ramon anticline where the Triassic sequence
is exposed. The rock mass structure consists of three
steeply inclined and very persistent joints sets (J1, J2,
and J3), and a set of bedding planes (J4). The dip and
dip direction, mean spacing, and friction angle of the
joint sets are listed in Table 1 below. A joint trace
generation for the analyzed free surface using actual
orientation and spacing data is demonstrated in Fig. 5
using the joint generation code in DDA [16].
5.2. Block theory analysis

Consider the analyzed free surface which dips 90/115.
By Section 2.1 the number of joints in any intersection
cannot be greater than k ¼ 3, and therefore

N ¼
m

k

� �
¼

4

3

� �
¼ 4. The joint intersections, remo-

vable JP codes, failure mode, factor of safety, and
normalized support force (F*/R) are listed in Table 2
below. Block theory removability analysis and the
geometries of the removable blocks with respect to the
analyzed free surface are illustrated in Fig. 1. An equal
distance of 1 m from each boundary joint to the block
center was used as input in the generation of the three-
dimensional block geometries, i.e. the actual spacing
values were overlooked. This simplification allows a
comparative discussion of block shapes, rather than a
specific discussion of block volumes that would have
been possible if actual spacing values were used.
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Fig. 5. Statistical joint trace generation using joint data in Table 1 as seen on the analyzed free surface.

Table 2

Results of block theory analysis

Joint intersection

(Lijk)

i,j,k Removable JP

code

Failure mode Factor of safety

against sliding

Normalized

support force

1 1,2,3 110 3 0.22 0.767

2 1,2,4 001 12 0.48 0.503

3 1,3,4 001 13 0.26 0.736

4 2,3,4 101 3 0.22 0.767

Free surface orientation: 90/115. Rock mass structure as in Table 1. In the JP code column upper and lower half spaces are denoted by 0 and 1

respectively. In the failure mode column modes i and ij indicate single or double plane sliding respectively. The factor of safety is calculated assuming

equal friction angle for all joints. The normalized support force is the required support force for limit equilibrium normalized by the block weight.

z

xi

Y.H. Hatzor, A. Feintuch / International Journal of Rock Mechanics & Mining Sciences 42 (2005) 531–541538
By inspection of Fig. 1 it becomes immediately apparent
that every joint intersection which contains the intersection
J2 \ J3 is safe because although I2,3 plots inside the space
pyramid it projects very close to the free surface (Figs. 1A
and D). Joint intersections 1 and 4 are therefore safe and
need not be analyzed any further.
x

y

ni

nj
nk

xj

xk

Fig. 6. The volume of a parallelepiped formed by intersections of

joints i,j,k.
5.3. Determination of the joint intersection probability

A mathematical expression for the joint intersection
probability is given by Eq. (17) above. To apply Eq. (17)
the volumes of the different types of parallelepipeds which
result from all joint intersections Li,j,k must be determined.

The volume of a parallelepiped formed by the
intersection of i, j, k in a coordinate system, where the
x axis is horizontal pointing north, the y axis is
horizontal pointing west, and the z axis is vertical
pointing up, is given by (Fig. 6):

V i;j;k ¼ ni � ðnj � nkÞ

¼

xi cos di cos bi xi cos di sin bi xi sin di

xj cos di cos b xj cos di sin b xj sin di

xk cos di cos b xk cos di sin b xk sin di

��������

��������
, ð18Þ
where ni and xi are the upward normal and mean
spacing of joint set i, respectively. The direction cosines
of the normal vector are given by di and bi, where di is
the rise angle of upward normal i with respect to plane
xy, and bi is the angle from the x axis to the trace of
normal i on plane xy measured counterclockwise
from x.
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Table 3

The joint intersection probabilities for the analyzed free surface

Li,j,k i,j,k Vi,j,k m3 Pi,j,k

1 1,2,3 0.286459 0.380921

2 1,2,4 0.538108 0.202781

3 1,3,4 1.527292 0.071445

4 2,3,4 0.316419 0.344853

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4
Li,j,k

P
(I

,j,
k)

Fig. 7. The joint intersection probability computed for the analyzed

free surface.

Table 4

The block failure likelihood for the analyzed free surface (the critical

key block row is shaded)
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In Table 3 all the steps required for the computation
of the joint intersection probability for the analyzed free
surface are demonstrated and the results are plotted in
Fig. 7.
5.4. The critical key block in the excavation

Inspection of Fig. 7 quickly reveals that Lijk ¼ 1, and
4 have the highest joint intersection probability. How-
ever, as explained above, these two joint intersections
contain I2,3 and are, therefore, designated safe. Indeed, a
careful investigation of the rock slope in the field
revealed no such blocks.

To determine which of the remaining JPs have the
highest failure likelihood the stability of the two JPs
must be considered. As shown in Table 2 the removable
JPs from intersections Lijk ¼ 2, and 3 have the same JP
code: 001, and the same failure mode: Iij. In the case of
joint intersection 2 failure is by sliding along I1,2 and in
the case of Lijk ¼ 3 failure is by sliding along I1,3. Since
I1,3 is steeper than I1,2 it is less stable and therefore the
associated factor of safety for the removable JP of L1,3,4

is lower. To account for block instability the original
[11] instability parameter (F) must be employed:

F ¼ 2ððF
�=RÞ�1Þ, (19)

where F� is the support force required for limit
equilibrium and R is the block weight (the active
resultant in a dry case).
The critical key block is found by finding the block
failure likelihood (P(B)) for every joint combination
after deleting the ‘‘safe’’ intersections:

PðBÞ ¼ Pðx 2 Li;j;kÞF . (20)

The instability parameters and failure likelihoods for
Lijk 2 and 3 are listed in Table 4. From Table 4 it is
evident that joint intersection 2 produces the critical key
block in the analyzed excavation. Indeed, the majority
of block moulds which were mapped in the field when
the analyzed free face was surveyed belonged to Lijk 2.
Two typical examples are shown in Fig. 8 which
shows characteristic block moulds of intersection 2, all
of which exhibit a JP code of 001 and a failure mode
of I1,2.
6. Summary and conclusions
�
 It is proven in this paper that the probability of more
than three joints (representative of three principal
joint sets) passing through the same intersection in a
jointed rock mass is zero.
�
 This result reduces significantly the outcome space of
theoretically removable JPs in a jointed rock mass
from an analyzed free surface and allows an efficient
application of block theory.
�
 A rigorous expression for the joint intersection
probability is developed in this paper. The joint
intersection probability is given by

Pðx 2 Li;j;kÞ ¼
1=V i;j;kPm

laras¼11=Vl;r;s
,

where Vi,j,k is the volume of the parallelepiped formed
by intersection Li,j,k.
�
 The joint intersection probability is inversely propor-
tional to the mean spacing of the joint sets which
participate in the intersection. With increasing
mean spacing the volume of the parallelepiped
increases and therefore the joint intersection prob-
ability decreases.
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Fig. 8. The critical key block in the analyzed free surface. (A) A relatively small block mould of the critical key block, (B) a relatively large block

mould of the critical key block.

Y.H. Hatzor, A. Feintuch / International Journal of Rock Mechanics & Mining Sciences 42 (2005) 531–541540
�
 Two factors influence the block failure likelihood in
the rock mass: (1) the joint intersection probability
and (2) the instability of the associated key block.
Therefore, the joint intersection probability must be
conditioned by the block instability parameter to
obtain a correct block failure likelihood.
�
 Joint intersections may be safe and incapable of
producing removable key blocks when a line of
intersection Iij in the joint intersection Lijk is parallel or
even sub-parallel to the analyzed free surface. Such joint
intersections may be excluded from further analysis.
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