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ABSTRACT: Instability of overhanging cliffs depends mainly on rock mass structure and on t
base of the slope. In this paper we present stability analysis of a 34m high overhanging cl
horizontal beddings and three sets of vertical joints. The upper third of the cliff is cantilevered an
the toe of the slope, giving rise to eccentric loading at the base of the slope and buildup of tens
Field observations suggest that the vertical joints which transect the entire cliff form "tension cr
their distance from the face is uncertain. Yet, the nature of deformation depends upon the exa
crack. The stability of the cliff under different geometrical configurations was studied usin
Discontinuous Deformation Analysis. Both FEA and DDA are shown to agree with field obse
results rock bolt reinforcement was added to the DDA model. Optimal reinforcement scheme w
based criterions. 

1. INTRODUCTION 

The stability of rock slopes is typically controlled 
by the rock mass structure, namely by the 
orientation, extent and density of the discontinuities 
in the slope. In a rock slope where the 
discontinuities do not dip out into the excavation 
space deformation and failure may be controlled by 
complex processes such as tilting, sliding, and block 
rotation. In cases where the rock mass contains sub-
vertical joints columns of massive rock blocks may 
form and rotational movement may ensue [1]. 
Rotational failures can be broadly classified into 
two categories: 1) slumping – backward rotation; 
and 2) toppling – forward rotation [2]. Slumping 
occurs where sub-vertical joints dip towards the 
excavation space but do not "daylight" whereas 
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continuum based FEM is mainly suitable for slope 
stability analysis in soils and weak or highly altered 
rock which may be modeled as a continuum, the 
DEM is most suitable for analysis of structurally 
controlled instabilities. Numerical analysis offers 
many advantages over the traditional LEM, for 
example: 1) nonlinear behavior can be modeled; 2) 
complex geometries of slope and discontinuity 
network can be accounted for; 3) the failure mode 
need not be assumed in advance; 4) complex 
loading conditions may be modeled, 5) various 
initial and boundary conditions may be imposed.  

An accurate description of the network formed by 
intersecting discontinuities is a fundamental 
problem of rock engineering in general and of slope 
stability analysis in particular. In most cases, the 
persistence of discontinuities and their termination 
within the rock mass are unknown. Surface survey 
techniques for persistence estimation have been 
suggested [e.g. 7, 8], but valid procedures for 
predictions of in-depth geometry are still not 
available. The geometric uncertainty is further 
augmented where the rock mass structure is 
partially or completely concealed by urban 
development, or when the effect of previous 
blasting and quarrying are unknown.  

An effective geological description of any given 
problem should result in effective remedial 
engineering: i.e. transforming geological description 
into design oriented parameters. In the general case 
of slope stability the geometrical uncertainties of 
the rock mass structure should be related to 
engineering parameters such as displacements or 
loads. 

In this paper we present a stability analysis of an 
overhanging cliff built of densely jointed rock, with 
an emphasis on kinematics. Stability analysis is 
performed using FEM, and an implicit DEM: the 
Discontinuous Deformation Analysis - DDA [9]. 
Based on the results of the numerical analysis rock 
bolt reinforcement is modeled using DDA and the 
effect of reinforcement on slope deformation is 
studied. The limitations of different analysis 
methods are discussed, and practical 
recommendations for stability analysis of 
overhanging cliffs are presented. 

2. DESCRIPTION OF CASE STUDY 

The studied cliff was formed due to quarrying 
activities in the early fifties. The cliff strikes SSW 

to azimuth 185o, with local variations in strike 
which form large extrados. At places past quarrying 
activity and natural receding of the cliff base give 
rise to large overhangs, which cantilever beyond the 
base of the cliff. Field observations indicate that at 
certain areas along the cliff deformation is taking 
place. It seems that most of the deformation is 
taking place where the cliff is overhanging. 
Geological reconnaissance delimited the stability 
analysis to a particular section of the cliff which is 
34m high and where the upper third of the cliff is 
cantilevered, and extrudes more than 11m beyond 
the toe of the slope.  

The rock is comprised of a well bedded dolostone 
sequence. Bed thickness ranges between 5cm to 
1.5m. Thick beds are formed generally as a result of 
a unification of several thinner beds. Chalk forms a 
secondary constituent throughout the otherwise 
dolostone mass, reaching 10-20% by volume. The 
thickness of chalk beds does not exceed several 
cm’. Chalk beds are not continuous, therefore, most 
of the mass shows mating contacts between 
dolostone beds.  

The rock mass is transected by 4 sets of, sub-
vertical joints. The attitude of three sets is oblique 
to the face of the cliff, whereas the fourth is parallel 
to excavation face. Mean orientation, dip and 
spacing for the different joint sets and bedding 
planes are presented in Table 1. 

 
Table 1. Principal joint sets. 

Joint set Dip (o) Dip Direction (o) Spacing (m) 
J1 7 272 0.8 
J2 87 054 0.6 
J3 88 184 0.9 
J4 90 146 0.6 
J5 90* 90* ? 
*inferred from field observations  
 
The ubiquitous joints exhibit fresh, unaltered and 
uneven surfaces with typical JRC value of 13. The 
joint wall compressive strength is evaluated at JCS 
= 40 GPa (Schmidt hardness of 31). The residual 
friction of the joints was estimated using tilt tests on 
saw-cut surfaces and is assumed to be 37o. The peak 
friction angle according to the Barton and Choubey 
criterion [10] ranges from 67o at the base of the cliff 
to nearly 80o at the top of the cliff, depending upon 
the value of the horizontal (normal) stress.  



The ubiquitous joints are of a limited extent either 
vertically or laterally, as clearly seen in Figure 1. 
The joints that strike parallel to the free surface 
however are expected to have the most significant 
effect on overall cliff stability. The face parallel 
system was detected on both sides of the analyzed 
segment of the cliff, but is obscured behind the 
exposed face. The face parallel set is also unique in 
its persistence, continuity, and relatively open 
configuration. In places the openings reach several 
tens of centimeters; this is in contrast with the 
characteristics of the other sets of joints. 

 

Fig. 1. General view of the cliff. 

2.1. Kinematical considerations 
Kinematical analysis performed using Block Theory 
[11] shows that removable key-blocks are formed 
by the following joint combinations: JC1 = J1J2J3; 
JC2 = J1J2J4; JC3 = J2J3J4. The factor of safety (F.S.) 
for these blocks is 0.18 for JC1 against sliding on 
I2,3 (intersection line of J2 and J3), F.S. = 0.04 for 
JC2 against sliding on I2,4 and F.S. = 0.04 for JC3 
against sliding on I2,3. The blocks formed by these 
joint combinations are slender tetrahedral prisms 
because the line of intersections along which failure 
develops is sub-parallel to the free surface. Such 
removable key-blocks have been named "non-

hazardous" [12] because although removable, the 
volume of the block will be very small and 
consequently the associated risk minimal. Under 
similar considerations toppling of individual blocks 
is ignored. The open, persistent, face parallel tensile 
cracks however imply that rotational instability is 
active within the rock mass. 

2.2. Mechanical considerations 
The cantilevered geometry of the studied cliff leads 
to eccentric loading of gravity forces with respect to 
the centerline of the base. In a continuous rock mass 
such eccentric loading will induce tensile stresses 
when the load resultant lies outside the section’s 
kernel. However the studied rock mass is transected 
by a multitude of discontinuities, which can not 
resist tensile stresses. Consequently, the eccentric 
loading causes opening across the discontinuities. 
Since large, face parallel, vertical tension cracks are 
found within the rock mass, a large scale, forward 
slope rotation is anticipated due to lack of tensile 
strength capacity across joints and beddings. The 
size and location of the section’s kernel, and the 
amount of rotation, are all determined by the depth 
of the vertical tension crack, the height of the cliff 
and the exact geometry of the overhanging slope.  

In addition to face parallel joints, normal faulting 
typical to regional geology has been considered. 
Most known normal faults in the region are dipping 
by 55o to 75o.  Faults can be considered as stable 
end product of all possible mechanical regimes the 
mass of rock has been gone through, and therefore 
should be considered as possible detachment plane 
located at the back of the cliff. Assuming a fault 
plane dipping by 70o, commencing at the base of the 
cliff, the expected termination at the surface of the 
cliff is to be found at about 10m from cliffs edge.  

To account for the uncertainty with respect to the 
depth of the face parallel tensile crack or the 
location of a normal fault, five different scenarios 
are modeled: tension crack at a distance of 5m, 10m 
15m, 20m and 25m from the toe. For easy of 
comparison both joints and faults were modeled as 
vertical planes with zero tensile strength and 
cohesion. Rock mass parameters, determined using 
standard laboratory test, has been considered to be 
of a minor influence to the paramount influencing 
factor of the parallel joint.     



3. CONTINUUM MECHANICS STABILITY 
ANALYSIS 

A study of the behavior of the overhanging cliff is 
first conducted using a continuum mechanics 
approach. The rock mass is considered continuous 
and not jointed. It has free boundaries formed by a 
vertical “tension crack” on the back of the cliff and 
by its sloped façade. 

The simulation is carried out with the STRAP [13] 
FEA program. A typical model is presented in Fig. 
2. The rock is presented by a 2D-plane strain linear-
elastic constitutive law. The elements used are the 
Pian-Sumihara 4-node hybrid quadrilateral elements 
[14]. The element mixed formulation is based on 
the Hellinger-Reissner variational principle derived 
from the following functional: 
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The elements displacements are decomposed into 
two parts such that 
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where are compatible displacements in terms of 
nodal displacements and  are internal 
displacements which may be compatible and 
incompatible.  are the homogeneous 
equilibrium equations and the last term in the 
integral is the Lagrange multiplier term to impose 
such constraints.  

qu
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The essential terms of the assumed stresses are 
expanded as complete polynomials in the natural 
coordinates of the element. The equilibrium 
conditions are imposed in a variational sense 
through the internal displacements that are also 
expanded in the natural coordinates. A small 
perturbation method is used to determine the 
equilibrium constraint equations. 

The base of the cliff is supported on uni-directional 
springs, namely springs that follow a linear 
Hookean constitutive law in compression only. No 
tension forces are allowed in the springs and 
therefore gaps may open at the base. This “no 
tension” constraint leads eventually to a solution of 
non-linear equations.  

The mesh is composed of 1.0m x 1.0m elements. 
Young’s Module of Elasticity is taken as 70 GPa for 
the rock. Poisson’s ratio is taken to be 0.25. 

Unidirectional springs are attached to each of the 
nodes at the bottom of the mesh. The spring’s 
stiffness represents a Subgrade reaction coefficient 
of 7.5·108 N/m3 i.e. they will allow 1.0 mm of 
settlement under a pressure of 0.75 MPa. 
Gravitational static load due to the self weight of 
the rock (taken as 25 kN/ m3) is applied in the FE 
analysis. 

a 

b 
 

Fig. 2 .a) Finite element model with a vertical tension crack 
located 10m from its toe; b) the FEA deformed shape with a 
vertical tension crack located 10m from its toe. 

 



The solution for the cliff with a tension crack that is 
located 5m from the toe became unstable.  In that 
case the resultant of the self weight loading passes 
through a location that is external to the base. 

The deformed shape of the cliff with a tension crack 
that is located 10m from the toe is shown in Fig. 2b. 
It is shown that the cliff rotates forward almost as a 
rigid body. This is due to the asymmetric shape of 
the cliff. The resultant of the self weight is eccentric 
with respect to the centerline of the base. Therefore 
the base contact stresses that develop are not 
uniformly distributed and consequentially the 
vertical displacement of the base is not uniform 
along the base. A horizontal displacement of 102 
mm and a vertical displacement of 52 mm develop 
at the top. A gap is formed at the base of the cliff. 
The gap length is 6.5 m. This leaves only 3.5 m of 
the base in contact, and produces linearly varying 
contact stresses with a maximum value of 7.9 MPa 
at the toe. 

The cliff with a tension crack that is located 20 m 
from the toe demonstrates a horizontal displacement 
of 6mm only at its top. So is the vertical 
displacement there. In that case the eccentricity of 
the resultant of the self weight loading is much 
smaller than in the former example, and passes 
within the kernel of the base. No gap is formed at 
the base of the cliff and the maximum contact stress 
is 2.5 MPa. 

It is seen that even though a continuum mechanics 
approach is not generally suitable for the analysis of 
discontinuous rock masses, it can provide us with 
some insight to the overall stability problem. It is 
often good practice to use relatively simple and 
robust computational tools before performing 
rigorous complex analysis. 

4. DISCONTINUOUS STABILITY ANALYSIS 

Fully discontinuous analysis is performed using the 
implicit member of the DEM family: the 
Discontinuous Deformation Analysis - DDA [9]. 
DDA models a discontinuous material as a system 
of individually deformable blocks that move 
independently without interpenetration. In the DDA 
method the formulation of the blocks is very similar 
to the definition of a finite element mesh. A finite 
element type of problem is solved in which all 
elements are physically isolated blocks, bounded by 
pre-existing discontinuities. The blocks used in 
DDA can assume any given geometry, as opposed 

to the predetermined topologies of the FEM 
elements. 

In DDA individual blocks form a system of blocks 
through contacts among blocks and displacement 
constrains on a single block. For a block system 
defined by n blocks the simultaneous equilibrium 
equations are KD = F where K is the global 
stiffness matrix, D is the displacement variables 
vector and F is the forcing vector. The total number 
of displacement unknowns is the sum of the degrees 
of freedom of all the blocks. The simultaneous 
equations are derived by minimizing the total 
potential energy Π of the block system [9].  

The solution to the system of simultaneous 
equilibrium equations is constrained by inequalities 
associated with block kinematics, i.e. no penetration 
and no tension condition between blocks. The 
kinematical constrains on the system are imposed 
using the penalty method. Shear displacement along 
the interfaces is modeled using Coulomb - Mohr 
failure criterion. The large displacements and 
deformations are the accumulation of small 
displacements and deformations at each time step. 

The accuracy of DDA for slope stability problems 
has been tested by many researchers, using 
analytical solutions for static and dynamic 
problems, physical models, and case studies. For an 
extensive summary of DDA validation see 
MacLaughlin and Doolin 2005 [15]. 

4.1. Gravitational loading 
DDA analysis is performed for five different 
geometrical configurations, where the depth of the 
“tension crack” is modeled at: 5m, 10m 15m, 20m 
and 25m from the toe, referred to herein as Cases 1 
to 5 respectively. The mechanical properties of the 
rock mass, numerical control parameters and 
modeling cases are given in Table 2. The DDA 
undeformed geometry of Case 1 is shown in Figure 
3a. 

The displacements within the rock mass are 
recorded at 8 different measurement points (mp) 
within the rock mass: 4 points in front of the 
“tension crack” and 4 points within the rock mass 
behind the “tension crack”. The x,y locations of the 
measurement points with respect to an origin set at 
the base of the “tension crack” are given in Table 3, 
and are shown in Figure 3a. 



Table 2. Mechanical properties of the rock mass, DDA 
numerical control parameters and cases modeled. 

Rock mass properties 
Dry specific weight 24.54 kN/m3

Elastic Modulus 70 GPa 
Friction angle along interfaces 
 

41o

DDA numerical control parameters 
Time step size 0.0005sec 
Assumed maximum 
displacement within time step* 

0.001 

Contact normal stiffness 7.5 ⋅ 108 N/m 
Inter-step velocity coefficient 
 

0.98 

Modeling cases Location of tension crack 
Case 1 5m from toe 
Case 2 10m 
Case 3 15m  
Case 4 20m 
Case5 25m 
Case 6 5m dynamic input 
Cases 7, 8, 9 5m with φ = 1’’, φ = 2’’and 

φ = 3’’ rock bolts 
 

Figure 4 shows the relative displacements (u,v) 
recorded at the different measurement points for 
Case 1. The top extremity of the cliff (mp1) 
undergoes negative vertical displacement (v) and a 
positive horizontal displacement (u). The equivalent 
measurement point at the same height but 18.14m 
behind the face (mp2) undergoes positive 
displacements in the horizontal and vertical 
directions. These two points are located at the two 
ends of a horizontal segment, which marks the top 
of the cliff. The recorded displacements indicate 
that the rock mass in front of the tension crack is 
rotating forward. 
Table 3. Location of the measurement points in the DDA mesh 
of Case 1 

 Location (x, y) m Remarks 
Origin  0,0 base of tension crack 
mp1 18.14, 35.54 Cliff top 
mp2 0.1, 35.54  
mp3 0.1, 0  
mp4 5,0 Cliff toe 
mp5 -0.1, 35.54  
mp6 -19.9, 35.54  
mp7 -19.9, 0  
mp8 -0.1, 0  
 

The measurement points at the base of the rotating 
mass show very little displacement, thus indicating 
that the center of rotation is found at some height 
above the base of cliff. The graphic output (Fig. 3b) 

clearly shows the numerical results: the horizontal 
opening of the tension crack is reduced from top to 
bottom and is negligible at a depth of 29m from the 
surface. 

The displacements within the rock mass behind the 
tension crack are very small when compared with 
the displacements of the rotating mass. The 
horizontal displacements are smaller by two orders 
of magnitude, and the vertical displacements are 
smaller by one order of magnitude, indicating that 
the rock mass behind the tension crack is static and 
stable. 

L

B
0,0

2

3 47 8

6 5 mp1
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b 

Fig. 3. DDA Case 1 model: a) undeformed shape and location 
of measurement points – no joints are shown; b) deformed 
shape after 20 seconds. 

When the tension crack is located at a depth of 10m 
with respect to the toe (Case 2) the displacements 



are restrained when compared with Case 1 however 
the trend is similar to the described above for Case 
1. Figure 5 shows time histories of horizontal 
displacements (u) for the different cases. It is clear 
that only for the 5m case (Case 1) the cliff 
undergoes unrestrained deformation. For the other 
four cases the displacements are arrested at 
approximately 20% of total computed time (4 sec) 
with the exception of the 10m case where 
displacement arrest is detected at 50% of total time 
(10 sec). 
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Fig. 4. Vertical displacement (v) vs. horizontal displacement 
(u) for DDA Case 1: a) displacements in front of the vertical 
tension crack; b) displacement behind the vertical tension 
crack. 

4.2. Dynamic loading 
Dynamic analysis is performed by applying time 
dependent accelerations to the block system 
forming the cliff using the seismic record of the 
1995 Mw = 7.1 Nuiweba earthquake. In order to 
attain computational efficiency the full 50 sec 
record of the earthquake is trimmed to contain the 

critical 10.5 sec of the record (Fig 6). The Peak 
Horizontal Ground Acceleration (PGA) of the 
record is 0.05g. Additional dynamic analysis is 
performed using the same seismic record but scaled 
to produce PGA = 0.25g. According to the Israeli 
Code of Building [16] the expected PGA in the area 
is 0.179g. 
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Fig. 5. DDA time histories of the horizontal displacements (u) 
of mp1 for Cases 1 to 5. 

Figure 7 shows the displacement components (u,v) 
at the top extremity of the cliff (mp1), for Case 1 
geometry subjected to different loading scenarios: 
1) gravitational loading; 2) seismic loading; 3) 
seismic loading scaled up by a factor of 5. It is 
clearly seen that the magnitude of displacements 
and their pattern are essentially identical: the 
displacement components are increased by only 
2.5% due to the up-scaled seismic load. It can 
therefore be concluded that the static case 
(gravitational load only) represents the critical state 
of cliff stability, and that the effect of seismic loads 
is of minor importance. 
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Fig. 6. Dynamic input motion for DDA models. 
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Fig. 7. DDA time histories of the horizontal displacements (u) 
of mp1 for Cases 1: gravitational and seismic loading. 

5. ROCK BOLT REINFORCEMENT 

The stability analysis of the studied cliff indicates 
that rotational failure ensues when the depth of the 
face parallel tension crack is up to 5m from the toe 
of the discontinuous cliff.  When the depth of the 
tension crack is greater the cliff is stable. Based on 
these findings rock bolt reinforcement is added to 
the DDA model. The bolts are vertically spaced 4m 
apart, from bottom to top (Figure 8). The individual 
bolt length is adjusted such that the static end of the 
each bolt is anchored 3m behind the tension crack. 

 The stiffness (k) of each bolt is given by: 

L
Ek 2φπ ⋅⋅

=  , where E is Young modulus for steel, 

φ is bolt diameter, and L is bolt length. Three 
different bolting simulations are performed for 
varying bolt diameters: φ = 1", φ = 2" and φ = 3" 
and therefore varying bolt stiffness.  
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Fig. 8. DDA domain boundary of Case 1 with rock bolts. 

Figure 9a shows time histories of the horizontal 
displacement component at the top of the cliff 
(mp1) as a function of modeled bolt diameter. The 
upper bound for top cliff displacement is 
represented by the displacements calculated for an 
unsupported cliff - Case 1; while the lower bound is 
represented by the displacements calculated for 
Case 5 geometry. Clearly, the slope displacement 
components are reduced with increasing bolt 
diameter (or stiffness). It is found that complete 
slope stabilization is obtained with bolt diameter of 
2" and above. With a bolt diameter of 1" slope 
displacements are never arrested and the cliff is 
rendered unsafe. With bolt diameters of φ = 2" and 
φ = 3" the horizontal slope displacements at mp1 are 
0.29m and 0.19m respectively (Figure 9b). 

Plotting the ultimate horizontal displacement (u) at 
mp1 against bolt diameter (Figure 9a) shows that 
the two are related trough a simple exponential law: 

 Using this function the displacement 
for other possible bolt diameters can be assessed 
with high degree of accuracy for the studied 
overhanging slope. 

φ52.09.0 −= eu

The bolt axial forces (FB) as computed by DDA are 
presented in Figure 10 where the x – axis represents 
the vertical position of each rock bolt. We find that 
maximum axial force changes with diameter and 
vertical position, FB (φ = 1") = 147 kN at bolts 
number 6 and 9; 2) FB (φ = 2") = 237 kN at bolts 
number 6 and 9; and 3) FB (φ = 3") = 309 kN at bolt 
number 6. 
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Fig. 9. a) DDA time histories of the horizontal displacements 
(u) of mp1 for Cases 1 for different values of rock bolts 
diameter. 
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Fig. 9.(cont.) b) ultimate displacement of mp1 as a function of 
rock bolt diameter. 
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Fig. 10. Axial force in rock bolts for different values of rock 
bolts diameter. 

6. DISCUSSION  

The stability of an overhanging cliff with vertical 
joints and horizontal beds is studied using three 
different approaches: 1) key-block theory; 2) 
continuous FEA; and 3) DDA. Block theory 
analysis shows that local failure of tetrahedral 
blocks can take place. However, these local failures 
have little impact on the overall cliff stability. This 
conclusion is supported by field evidence where 
very few slender moulds of failed keyblocks were 
mapped along the face. 

The stability of the cliff is primarily controlled by 
two factors: 1) the cantilevered geometry of its face 
and 2) the depth of the face parallel, vertical tension 
crack. Since the face geometry is known, it is the 
location of the tension crack that controls overall 
cliff stability. In this paper we apply both 
continuous and discontinuous numeric approaches 
in an increasing order of complexity. First a 

relatively simple and robust continuous FEA is 
executed, thus providing a first order approximation 
of cliff behavior. The insights gained from FEA are 
then incorporated in to DDA, thus the model is 
further refined. Finally, a fully discontinuous model 
with rock bolt reinforcement is analyzed, and the 
influence of rock bolting on cliff stabilization is 
determined. 

Both FEA and DDA predict that the cliff is instable 
when the vertical tension crack is at a depth of 5m 
from the toe. The mode of failure is essentially the 
same, forward rotation. The numerical values of the 
displacement however are not comparable because 
DDA is fully dynamic and the deformation evolves 
with time. However, when DDA’s deformation 
reaches equilibrium the displacements are 
comparable (Table 4). Taking as an example Case 2 
(with face parallel crack 10m from toe) it can be 
seen that while in FEA the entire mass rotates as a 
rigid body around a point located at the base of the 
mass, in DDA the rotation is taking place 5m above 
the base. The numerical values of displacement are 
0.102m and 0.39m respectively. The discrepancies 
between the calculated displacements in the two 
methods are due to the governing constitutive 
relations of each method. While in the continuous 
FEA the tensile stresses due to eccentric loads are 
compensated by vertical displacements at the base, 
in the discontinuous DDA these tensile stresses are 
compensated by vertical displacements across 
bedding planes. The net displacement in DDA is the 
sum of individual displacements across the bedding 
planes. 

 
Table 4. Comparison of MP1 horizontal displacement for 
different analysis method. B is depth of vertical crack from 
cliffs toe. 

B FEA DDA w/o joints DDA 
10m 0.102m 0.05m 0.39m 
20m 0.006m 0.019m 0.11m 
 

It is interesting to note that the displacements in 
DDA without systematic joints are close to those of 
the FEA: 0.05m compared with 0.1m respectively 
for Case 2 and 0.019m compared with 0.006m 
respectively for Case 4. These differences are 
attributed to absence of internal discretization of the 
DDA domain when modeling the rock mass as a 
single continuous block. In DDA each block, 
irrespective of size, is modeled as a simply 



deformable body, the net deformation of a rock 
mass is the sum of individual intra-block 
deformation and inter-block displacements.  

The presented case study can be further generalized 
to address the broader problem of overhanging 
cliffs. Clearly the eccentricity of loading, and 
consequently the rotational instability, is determined 
by the ratio between the length of the base (B) and 
the length of the top surface (L) of the rotating mass 
(refer to Figure 3a). Figure 11 shows the relation 
between the horizontal displacement component u 
of the cliff extremity normalized by the 
displacement of Case 1 (u/uB=5m) to the ratio B/L 
ratio. This ratio can be used as an index for the 
degree of eccentricity at the base of the cliff. As B/L 
ratio approaches unity the eccentricity of loading 
diminishes until the slope is homogeneously loaded 
under its own weight. Where B/L ratio is lower than 
0.4 the cliff is assumed to be unstable. Naturally, 
different slope angles will result in somewhat 
different numeric values of B/L; the general 
behavior however is expected to follow similar 
trend. 
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Fig. 11. Normalized horizontal displacement of mp1 as a 
function of B/L ratio. 

The ever-growing reliance on computational 
schemes, such as FEA or DDA, requires rigorous 
control over the numeric accuracy of the solution. 
This is typically achieved by validations using 
analytical solutions or physical models. However, 
no analytical solution or laboratory model can 
duplicate the scale and character of the loading, 
boundary and environmental conditions inherent to 
full-scale problems. Furthermore, in discontinuous 
rock masses the spatial arrangement of the 
discontinuities is complex, and in times only 
partially attainable. Therefore, comparison between 
numerical predictions and actual behavior using real 
case studies can help insure that extrapolation from 

simple problems to field scale problems is basically 
valid. 

DDA predicts that the cliff is stable when the 
vertical tension crack is located 10m from the toe or 
deeper. The amount of opening across the vertical 
crack reaches 0.4m, which is within the order of 
magnitude of opening measured along the tension 
cracks in the field. This implies that for the 
overhang analyzed in this study the face parallel 
tension crack should be located at a depth of 10m 
from the toe. This estimate supports the measured 
inclinations of normal fault planes or vise versa – 
the filed measurement of fault planes supports the 
predictions made by the DDA method. 

Instability and failure must ensue when the tension 
crack is found 5m from toe; or when a normal fault 
with steeper inclination transects the slope. The 
proposed stabilization scheme caters for both 
numerical model and field observations, by 
addressing the critical depth of the tension crack at 
5m. The proposed rock bolts are anchored beyond 
this depth and the bolt stiffness values are set to 
prevent excessive displacements. 

7. CONCLUSIONS 

1. Vertical rock cliffs transected by vertical joints 
and horizontal bedding planes are stable. Local 
failures of removable rock blocks may occur, 
however, these instabilities have little impact on 
the overall cliff. 

2. The stability of vertical rock cliffs transected by 
vertical joints and horizontal bedding planes is 
compromised where overhangs cantilever above 
the base of the cliff, thus subjecting the rock 
mass to eccentric loading with respect to the 
centerline at the base. 

3. The stability of eccentrically loaded overhanging 
cliffs is determined by the depth of the face 
parallel tension crack found at the back of the 
cliff. In this research it is found that an 
eccentrically loaded 34m high cliff is unstable 
for B/L < 0.4.  

4. Both FEA and DDA correctly predict the mode 
of failure. However, the continuous FEA do not 
provide the exact nature and amount of 
deformation. 

5. It is suggested that a robust FEA model should 
be used as a preliminary analysis tool, and then 



the insights gained may be incorporated in a 
refined DDA model. 

6. It is shown that a thorough geological 
reconnaissance can provide constructive insights 
with respect to the geometry and the assumptions 
of numerical modeling. The current research 
proves that structural geology concepts and 
findings could be used jointly with modern 
analytical methods mutually supporting one the 
other.  
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