
1 INTRODUCTION  

Discontinuous Deformation Analysis (DDA) (Shi, 
1988; 1993) is a numeric model for analyzing statics 
and dynamics of discontinuous block systems. Suc-
cessful application of the DDA method to various 
engineering problems requires rigorous validation. 
The accuracy of DDA has been tested by many re-
searchers. Yeung (1991) and MacLaughlin (1997) 
tested the accuracy of DDA for applications ranging 
from tunneling to slope stability, using problems for 
which analytical or semi-analytical solutions exist. 
Doolin and Sitar (2001) explored the kinematics of a 
block on an incline for sliding distances of up to 250 
meters. Hatzor and Feintuch (2001) validated DDA 
using direct dynamic input. Analytical integration of 
sinusoidal functions of increasing complexity was 
compared to displacements prescribed by DDA for a 
single block on an incline subjected to the same ac-
celeration functions as integrated analytically. 

The necessity for DDA validation using analyti-
cal solutions is evident if the method is to be 
adopted by the engineering profession. However, 
analytical solutions are only valid for the inherent 
underlying simplifying assumptions. This limitation 
can be overcome by comparison between DDA pre-
diction and experimental results of carefully planned 
physical models. Up to date, such attempts have 
been limited, or practically non-existent for the dy-
namic problem.  

O’sullivan and Bray (2001) simulated the behav-
ior of hexagonally packed glass rods subjected to bi-
axial compression, showing the advantages of DDA 
in the study of soil dynamics. McBride and Scheele 
(2001) validated DDA using a multi-block array on 
an incline subjected to gravitational loading, and a 
bearing capacity model. 

Validation of DDA using analytical solutions 
(Yeung, 1991; McLaughlin, 1997; Doolin and Sitar, 
2001; Hatzor and Feintuch, 2001) showed that DDA 
accurately predicts single block displacements, up to 
tens of meters. However, validation using physical 
models proves less successful. In particular, it is 
found that kinetic damping is required for reliable 
prediction of displacement (McBride and Scheele, 
2001). 

In this paper we study the displacement history of 
a single block on an incline subjected to dynamic 
loading. The following issues are addressed: 

1. Comparison between DDA solution 
and results of a physical model. 

2. Sensitivity analyses of the numeric 
control parameters: numeric spring 
stiffness (g0), time step size (g1), as-
sumed maximum displacement ratio 
(g2), and the dynamic control pa-
rameter (k01). 

3. The nature and evolution of the 
computational error. 
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2 EXPERIMENTAL SETTINGS 

The physical modeling used in this research was per-
formed by Wartman (1999) at the Earthquake Simu-
lation Laboratory of the University of California at 
Berkley. The tests were performed on a large hy-
draulic driven shaking table, producing accurate, 
well controlled, and repeatable motions to frequen-
cies up to 14 Hz. The table was driven by a 222.4 
kN (50 kip) force, 15.24 cm (6 in.) hydraulic actua-
tor range manufactured by MTS. The system was 
closed loop servo controlled. A Hewlett Packard 
33120A arbitrary function generator produced the 
table command signal.  
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Figure 1. a) General view of the inclined plane and the sliding 
block (top); b) Sliding block experimental setup and instrumen-
tation location (bottom). Source: Wartman (1999). 

 
An inclined steel plane was fitted to the shaking 

table. The plane inclination was set to 11.370 during 
the rigid block tests. The steel rigid block was 2.54 
cm (1 in.) thick, with area of 25.8 cm2 (4 in.2), and 
weight of 1.6 kg (3.5 lbs). Linear accelerometers 
were fitted on top of the sliding block and the in-
clined plane. Displacement transducers measured the 
relative displacement of the sliding block, and of the 
shaking table (Fig. 1) 

Geotextile and geomembrane were fitted to the 
face of the sliding block and the inclined plane re-
spectively. The static friction angle (φ) of the inter-
face was determined using tilt tests and a value of 
φ = 12.70±0.70 was reported. Kim et al., (1999) 
found that the geotextile – geomembrane interface 
friction exhibited pronounced strain rate effects, and 
reported an increase by 20% over a log-cycle of 
strain rate. Wartman (1999) showed that the friction 
angle of the interface was controlled by two factors: 
1) amount of displacement; and 2) sliding velocity. 
For the range of velocities and displacements at-
tained at the shaking table experiments the back-
calculated friction angle was in the range of φ = 140 - 
190 (Fig. 2). 
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Figure 2. Back analyzed friction angles as a function of aver-
age sliding velocity for the rigid block tests, from Wartman 
(1999). 

 
At its present stage of development DDA accepts a 

constant value of friction angle. Therefore a represen-
tative value of friction angle (φav ) should be chosen for 
the validation study. The value of φav was determined 
as follows. First, the measured displacement of the 
block was differentiated with respect to time and hence 
the velocity record was attained. Next, the velocity 
content was computed. Taking as an example, the 2.66 
Hz input motion frequency test showed that the veloc-
ity upper bound value was bellow 10 cm/sec (4 in/sec), 
refer to Figure 3a. This value was attained only for 



short periods of time during the test. The velocity con-
tent chart shows that 70% of the velocities fall under 
the value of 2.54 cm/sec (1 in/sec), refer to Figure 3b. 
Taking the value of 2.54 cm/sec as the upper bound 
velocity, the corresponding friction angle is φav < 17o, 
while φav = 16o is the most likely value. 
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Figure 3. a) Displacement derived velocity, 2.66 Hz frequency 
sinusoidal input test; b) Velocity content of the 2.66 Hz fre-
quency sinusoidal input test. 

 
In this study sinusoidal input motion tests were used 

for validation. A Typical sinusoidal input motion is 
shown in Figure 4. The motion was ramped up linearly 
for 1.5 seconds to insure shaking table stability, fol-
lowed by full amplitude for duration of 2 seconds, and 
finally ramped down for 1.5 seconds. Eight different 
tests were used for validation (Tab. 1). 

 
Table 1. Input motion summary: ω is the input motion fre-
quency,  dT is the shaking table displacement, dB is relative 
block displacement, and ah is maximum horizontal table accel-
eration. 
 

Test ω  dT  dB  ah  
 Hz cm cm g 
1 2.66 0.889 5.367 0.28 
2 4 0.559 6.604 0.25 
3 5.33 0.305 3.341 0.19 
4 6 0.254 3.647 0.19 
5 6.67 0.254 3.410 0.22 
6 7.3 0.228 3.353 0.22 
7 8 0.228 3.937 0.23 
8 8.66 0.019 2.882 0.21 
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Figure 4. Shaking table typical sinusoidal input motion, 2.66 
Hz frequency (Test 1 at Table 1) 

 

3 DDA FUNDAMENTALS AND NUMERICAL 
SETTINGS 

3.1 DDA formulation 

DDA models a discontinuous material as a system of 
individually deformable blocks that move independ-
ently without interpenetration. In the DDA method 
the formulation of the blocks is very similar to the 
definition of a finite element mesh. A finite element 
type of problem is solved in which all elements are 
physically isolated blocks bounded by pre-existing 
discontinuities. The blocks used in DDA can assume 
any given geometry, as oppose to the predetermined 
topologies of the FEM eleme nts. 

DDA first order displacement approximation as-
sumes that each block is a constant strain/stress ele-
ment. The displacements (u, v) at any point (x, y) in 
a block i , can be related in two dimensions to six 
displacement variables 
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where (u0, v0) is the rigid body translations of a spe-
cific point (x0, y0) within a block, (r0) is the rotation 
angle of the block with a rotation center at (x0, y0), 
and εx, εy and γxy are the normal and shear strains of 
the block. For a two-dimensional formulation of 
DDA, the center of rotation (x0,  y0) coincides with 
block centroid (xc,  yc). Shi (1988) showed that the 
complete first order approximation of block dis-
placement takes the following form 
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This equation enables the calculation of displace-
ments at any point (x, y) of the block when the dis-
placements are given at the center of rotation and 
when the strains are known. 
In DDA individual blocks form a system of blocks 
through contacts among blocks and displacement 
constrains on a single block. For a block system de-



fined by n blocks the simultaneous equilibrium 
equations are 
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where Kij are 6 × 6 sub-matrices defined by the 
interactions of blocks i and j, Di is a 6 × 1 displace-
ment variables sub-matrix, and Fi is a 6 × 1 loading 
sub-matrix. In total the number of displacement un-
knowns is the sum of the degrees of freedom of all 
the blocks. The diagonal sub-matrices Kij represent 
the sum of contributing sub-matrices for the i-th 
block, namely block inertia and elastic strain energy. 
The off diagonal sub-matrices Kij (i ≠ j) represent the 
sum of contributing sub-matrices of contacts be-
tween blocks i  and j and other inter-element actions 
like bolting. 

The simultaneous equations are derived by mini-
mizing the total potential energy Π of the block sys-
tem. The i-th row of (3) consists of six linear equa-
tions 

6,,1,0 Κ==
∂

Π∂
r

d ri

 (4) 

where dri are the deformation variables of block i. 
Full detail of stiffness matrix and load vector assem-
bly is found in Shi (1993). 

The solution to the system of equations (3) is 
constrained by inequalities associated with block 
kinematics, no penetration and no tension condition 
between blocks. The kinematic constrains on the 
system are imposed using the penalty method. Con-
tact detection is performed in order to determine 
possible contacts between blocks. Numerical penal-
ties analogous to stiff springs are applied at the con-
tacts to prevent penetration. Tension or penetration 
at the contacts results in expansion or contraction of 
the “springs”, which adds energy to the block sys-
tem. Thus the minimum energy solution is one with 
no tension or penetration. When the system con-
verges to an equilibrium state the energy of the con-
tact forces is balanced by the penetration energy, re-
sulting in inevitable very small penetrations. The 
energy of the penetrations is used to calculate the 
contact forces, which are in turn used to calculate 
the frictional forces along the interfaces between 
blocks. Shear displacement along the interfaces is 
modeled using Coulomb - Mohr failure criterion. 
Fixed boundary conditions are enforced in a manner 
consistent with the penalty method formulation. Stiff 
springs are applied at fixed points. Displacement of 
the fixed points adds considerable energy to the 
block system. Thus, a minimum energy solution sat-

isfies the no displacement condition of the fixed 
points. 

The solution of the system of equations is itera-
tive. First, the solution is checked to see how well 
the constrains are satisfied. If tension or penetration 
is found along contacts the constrains are adjusted 
by selecting new position for the contact springs and 
a modified versions of [K] and { }F are formed for 
which a new solution is attained. The process is re-
peated until each of the contacts converges to a con-
stant state. The positions of the blocks are then up-
dated according to the prescribed displacement 
variables. The large displacements and deformations 
are the accumulation of small displacements and de-
formations at each time step. 

DDA time integration scheme adopts the New-
mark (1959) approach, which for a single degree of 
freedom can be written in the following manner: 
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where  u&&, u& , and u   are acceleration, velocity, and 
displacement respectively, t∆  is the time step, 
β and γ are the collocation parameters defining the 
variation of acceleration over the time step. Uncon-
ditional stability of the scheme is assured for 

5.02 ≥≥ γβ . DDA integration scheme uses 
5.0=β  and 1=γ , thus setting the acceleration at 

the end of the time step to be constant over the time 
step. This approach is implicit and unconditionally 
stable. 

 

3.2 Numerical implementation of DDA 

Computer implementation of DDA allows control 
over the analysis procedure through a set of user 
specified control parameters. The control parameters 
are: 

1. Dynamic control parameter (k01) – 
defines the type of the analysis re-
quired, from static to fully dynamic. 
For static analysis the velocity of 
each block is set to zero at the begin-
ning of each time step, 001 =k . In 
the case of the dynamic analysis the 
velocity of each block at the end of a 
time step is fully transferred to the 
next time step, 101 =k . Different 
values from 0 to 1 correspond to dif-
ferent degrees of damping or energy 
dissipation. 

2. Penalty value (g0) – is the stiffness of 
the contact springs used to enforce 
contact constrains between blocks. 

3. Upper limit of time step size (g1) – 
the maximum time interval that can 



be used in a time step, should be cho-
sen so that the assumption of infini-
tesimal displacement within the time 
step is satisfied. 

4. Assumed maximum displacement ra-
tio (g2) – the calculated maximum 
displacement within a time step is 
limited to an assumed maximum dis-
placement in order to ensure infini-
tesimal displacements within a time 
step. The assumed maximum dis-
placement is defined as )2(2 hg ⋅ , 
where h is the length of the analysis 
domain in the y-direction. 2g is also 
used to detect possible contacts be-
tween blocks. 

In this study the recently developed C/PC version 
of DDA (Shi, 1999) is used. In this version, dynamic 
acceleration can be input directly, and updated at 
every time step. A necessary condition for direct in-
put of dynamic acceleration is that the numerical 
computation has no artificial damping because arti-
ficial damping may lead to energy losses. In DDA 
the solution of the equilibrium equations is per-
formed without damping. 

4 RESULTS OF VALIDATION STUDY 

4.1 DDA calculation vs. Analytical Model 

A Fourier series composed of sine components 
represents the simplest form of harmonic oscilla-
tions, in general notation:  

∑
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where ai and ωι  are the amplitude (acceleration in 
this case) and frequency respectively. 

The displacement of a mass subjected to dynamic 
loading is attained by double integration of the ac-
celeration record (Eq. 6) from θ to t:  
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where θ is the time at which yield acceleration ay 
is attained. Goodman and Seed (1965) showed that 
for frictional sliding of a single block on a cohe-
sionless plane the down slope horizontal yield accel-
eration is ga y )tan( αφ −= , where φ is the friction 
angle and α is the plane inclination. 

Hatzor and Feintuch (2001) showed that for an 
acceleration function consisting of sum of three si-
nes DDA prediction are accurate within 15% of the 
analytic solution, provided the numeric control pa-
rameters g1, g2 are carefully optimized, and without 
application of damping. Moreover, they argued that 
the influence of higher order terms in a series of sine 
function is negligible. Hatzor and Feintuch demo n-

strated their validation for a1 = ω1 = 1, a2 = 
ω2 = 2, a3 = ω3 = 3.  The prescribed values produce a 
low frequency dynamic input assuring nearly con-
stant block velocity, which was attained at the be-
ginning of the analysis (ca. 20% of elapsed time). 

In order to attain a better understanding of the 
frequency effect upon the numerical solution we 
have extended the analysis to higher frequencies, 
constraining the peak horizontal acceleration to 
0.15g. A typical input motion of sum of three sines 
is presented in Figure 5a. The analysis was per-
formed for a single block resting on a plane inclined 
α = 150 to the horizontal. The block material proper-
ties were: density  = 2700 kg/m3, E = 5000 MPa, 
and ν = 0.25. The friction angle of the sliding plane 
was set to φ = 150, thus the yield acceleration (ay = 
0) was attained immediately at the beginning of 
analysis (θ = 0 sec). Three different sets of frequen-
cies were modeled (Tab. 2). Constant values of nu-
meric spring stiffness g0 = 1000 MN/m, assumed 
maximum displacement ratio g2 = 0.0075, and dy-
namic control parameter k01 = 1 were used.  

 
Table 2. Frequency sets for sum of three sines input function.  
Set ω1 (π), a1 (g) ω2 (π), a2 (g) ω3 (π), a3 (g) 
1 8, 0.1 4, 0.05 2, 0.025 
2 10, 0.1 5,0.05 2.5, 0.025 
3 15, 0.1 7.5, 0.05 3.75, 0.025 
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Figure 5. a) The loading function a(t) = a1sin(ω1t) + a2sin(ω2t)+ 
a3sin(ω3t); b) Comparison between analytical and DDA solu-
tion for block displacement subjected to a sum of three sines 
loading function. 
 

Each set was modeled twice, first the time step 
was set to g1 = 0.005 sec, then the time step was 
halved to g1 = 0.0025 sec. Comparison of analytical 
solution and numerical estimate of the total dis-
placement are presented in Figure 5b, generally 



showing excellent agreement between the analytical 
solution and the DDA solution, regardless of the fre-
quency set chosen. 

The absolute numeric error was defined in a con-
ventional manner 

(%)
d

dd
E N

N

−
=  (8) 

where d and Nd  are the analytical and the numeric 
displacement vectors respectively. ⋅ is the norm op-
erator, which for a 2-D displacement vector is 

 22 vud += . 

The numeric error for g1 = 0.005 sec simulations 
is within 4.5% (Figure 5). Halving the time step re-
duces the numeric error to 1.5%. 

We have further investigated the interrelationship 
of the numeric control parameters using the input 
function of set 2 (Table 2). Figure 6 shows the de-
pendence of the numeric error on the choice of the 
numeric control parameters g1, g2 and the numeric 
spring stiffness g0 (penalty value). It is found that 
for an optimized set of g1and g2 (g1 = 0.0025 sec 
and g2  = 0.0075) the DDA solution is not sensitive 
to the penalty value, which can be changed over a 
range of two orders of magnitude. Within this range 
the numeric error never exceeds 10% and in most 
cases approaches the value of 1%. Naturally, stiffer 
contact springs reduce the magnitude of displace-
ment until a certain minimum is reached. Further in-
crease in the spring stiffness results in an introduc-
tion of a large numeric error into the DDA solution. 
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Figure 6. Absolute numeric error of DDA ultimate displace-
ment prediction as a function of spring stiffness, for a sum of 
three sines loading function. 

 
Departing from the optimal g1, g2 combination 

results in increased sensitivity of the DDA solution 
to the penalty value. The departure from the analyti-
cal solution occurs at lower penalty values with in-
creasing time step size.  

4.2 DDA calculation vs. shaking table experiments 

It has been showed that there is a very good agree-
ment between the DDA and analytic solutions for 
the e block on an incline problem. However, the ana-
lytical solution is only an approximation of the 
physical problem with various simplifying assump-
tions including: perfectly rigid block, constant fric-
tion, and complete energy conservation. Comparison 
between DDA results and physical modeling can 
help us probe into the significance of these assump-
tions   

The frictional properties of the geotextile – ge-
omembrane interface are strain rate dependent as 
discussed above. Based on the criteria described ear-
lier the upper bound for interface friction angle was 
φav < 17o, with the φav = 16o being the most likely 
value. Consequently, the DDA analyses were per-
formed for friction angle values of φav = 17o and φav = 
16o. The numeric control parameters for the two fric-
tion configurations were: penalty value g0 = 
500*106 N/m, time step size g1 = 0.0025 sec, as-
sumed maximum displacement g2 = 0.005.  

2.66 Hz input motion is discussed here in detail 
and the comparison results are shown in Figure 7. 
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Figure 7. a) Physical model sinusoidal input function, 2.66 Hz 
frequency; b) Comparison of measured displacement and DDA 
solution. 

 
With dynamic control parameter k01 = 1 the DDA 

solution for φav = 17o falls within 20% of the measured 
displacement (Figure 8). Furthermore, the DDA solu-
tion captures the major features of the displacement 
history. The onset of displacement for φav = 17o is at ay 
= 0.0985g according to the analytical solution of 



Goodman and Seed (1965). This result is contempo-
rary with both the DDA calculation and the measured 
record of displacement. When the acceleration falls be-
low the yield value the block eventually stops. This 
behavior is captured by the DDA computation as well.  

Setting φav = 16o reduces the accuracy of the DDA 
solution and the numeric error increases to approxi-
mately 80% (Fig. 8), but the ultimate displacement 
values are close, 0.055 m measured displacement 
compared to 0.093 m of calculated solution.  

Introducing some kinetic damping by reducing k01 
bellow 1 improves the agreement between DDA and 
the physical test. Setting k01 = 0.985, corresponding to 
1.5% velocity reduction, reduces the error to bellow 
10%. Furthermore, reduction of k01 improves the 
tracking of the displacement history by DDA. 

Plotting the relative numeric error (a non absolute 
version of Eq. 4) against the input motion frequency 
(Fig. 9) shows that in general DDA accuracy increases 
with higher frequencies, with the exception at 6 Hz. 
For φav = 16o and k01 = 1 the numeric error is always 
conservative, with the exception at 6 Hz. Reducing k01 
to 0.98 shows a similar effect for all frequencies, re-
ducing the numeric error bellow 10%. 

 

1 10 100 1000
Numeric Spring Stiffness (106 N/m)

1

10

100

1000

10000

100000

E
N

 a
t u

lti
m

at
e 

di
sp

la
ce

m
en

t (
%

)

Friction angle
16 (deg.)
17

Block Penetration
Region

Block Elastic Modulus (E) = 5*109 N/m2

 
 
Figure 8. Absolute numeric error of DDA ultimate displace-
ment prediction as a function of spring stiffness, for a sinusoi-
dal input function. All DDA solutions for time step g1 = 
0.0025 sec, and assumed displacement ration g2 = 0.005, dy-
namic control parameter k01 = 1. 

5 DISCUSSION 

The implicit formulation of DDA guarantees numeri-
cal stability regardless of time step size. However, it 
does not guaranty accuracy. Where the time step is too 
large or too small relative to the numeric spring stiff-
ness, loss of diagonal dominance and/or ill condition-
ing error may result, interfering with convergence to an 
accurate solution. With the penalty method, employed 
to prevent block penetration or tension between blocks, 
the theoretical solution is approached only when the 
penalty value approaches infinity. Nevertheless, too 
large penalty values may result in errors due to lack of 
diagonal dominance and/or ill-conditioning. 

The numeric implementation of DDA utilizes the 
SOR Gauss – Seidel equation solver. The convergence 
of the SOR equation solver is guarantied for diagonally 
dominant matrices: 

∑
≠
=

>
n

ij
j

ijii KK
1

 (9) 

Larger inertia terms on the diagonal of the global 
stiffness matrix increase the stability of the computa-
tion. A small time step size is needed to increase the 
inertia terms, which are inversely proportional to the 
square of time step. This effect can be seen in Figure 6. 
For small time steps (0.0025 sec) the numeric error 
does not exceed 10% for increasing penalty values up 
to 5*1010 N/m, higher values introduce significant er-
ror as the off diagonal sub-matrices become larger, re-
sulting in loss of diagonal dominance. Enlarging the 
time step results in reduction of the inertia term in the 
diagonal sub-matrices. Thus, for a given value of time 
step size the loss of diagonal dominance will occur at 
lower penalty values. 

Figure 8 shows the accuracy of the DDA solution 
for different penalty values, for a given values of g1 
and g2. When the penalty is lower than 5*106 N/m in-
ter-block penetration occurs. For penalty values of 
5*106 N/m and up to 600*106 N/m the accuracy of the 
solution is well confined between relatively narrow er-
ror margins. With φav = 17o the error is reduced from 
110% to 20% over the studied range of penalties. Simi-
larly, with φav = 16o the error is reduced from 120% to 
80% over the same penalty range. When the penalty is 
exceedingly high an abrupt accumulation of error oc-
curs due to loss of diagonal dominance of the global 
stiffness matrix or due to matrix ill conditioning.  
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Figure 9. Numeric error of DDA ultimate displacement predic-
tion as a function of input frequency, for a sinusoidal input 
function 
 
Most of the error is accumulated at the beginning of 
the analysis and it declines with time, a phenomenon 
known as algorithmic damping (Figure 10). Similar 
observations were reported by Doolin and Sitar 
(2001) for the case of a gravity driven block. The 



maximum error value is a test artifact associated 
with the transition from a ramped motion to a steady 
sine input motion in the shaking table experiment 
and can be ignored. This trend is maintained here for 
all values of k01 selected; greater accuracy is at-
tained when k01 is optimized. Algorithmic damping 
is typical to implicit time integration schemes. In 
DDA, a Newmark type implicit, time integration 
scheme (collocation parameters are β = 0.5, δ = 1) 
assures unconditional stability of integration and 
high algorithmic damping (Wang et al., 1996). Thus, 
damping is performed without the introduction of 
energy consuming devices. The amount of algo-
rithmic damping depends on the time integration 
method, the time step size, and the natural period of 
the system. 

In this study we have limited the duration of the 
analysis to 5 seconds, in conjunction with the physi-
cal model. It has been shown that algorithmic damp-
ing reduces the numeric error as calculation evolves. 
Doolin and Sitar (2001) showed that error reduction 
is evident for sliding distances of up to 250m over 
16 sec. Thus, for larger time spans the error will de-
cline with calculation progress to a certain minimum 
value, further improving solution accuracy.  

 

1

10

100

1000

10000

E
N

 (%
)

0 0.2 0.4 0.6 0.8 1
Elapsed time / Total time

All DDA simulations for:
g1 = 0.0025, g2 = 0.005
g0 = 500*106 N/m, φ = 160

k01 = 1

0.985

k0.98
0.975

 
Figure 10. Numeric error evolution of DDA solution for sinu-
soidal input function at 2.66 Hz input frequency.  

 
Dynamic formulation of DDA is essentially un-

damped, thus for evolving systems the only way to 
dissipate energy is by frictional resistance. The 
physical model is however more complicated, en-
ergy losses trough structural vibrations, heat radia-
tion, drag, and other physical mechanisms are pre-
sent, and not accounted for by DDA. Reduction of 
the transferred velocity at each time step reduces the 
overall dynamic behavior of the discrete system 
without imposing ill – conditioning of the stiffness 
matrix (Wang et al., 1996). In a similar manner a 
quasy-static analysis is performed by setting k01  = 
0. Thus we recommend that for full-scale simula-
tions a certain amount of kinetic damping should be 
applied. 

McBride and Scheele (2001) showed similar ef-
fect for a gravity driven multi – block structure, 

showing that optimal results were achieved for k01  
= 0.8.  It is reasonable to assume that higher kinetic 
damping is required for multi – block structures, to 
account for a large number of contacts and block in-
teractions. However, this estimate should be exam-
ined in conjunction with the time step size and the 
penalty value. 

6 SUMMARY AND CONCLUSIONS 

• The results of the validation study 
show that DDA solution of an ideal-
ized system for which an analytical 
solution exists, is accurate. The DDA 
intra-block contact algorithm is there-
fore a true replication of the analyti-
cal model for frictional sliding. 

• The accuracy of DDA is governed by 
the conditioning of the stiffness ma-
trix. DDA solution is accurate pro-
vided that the chosen time step is 
small enough to assure diagonal 
dominance of the global stiffness ma-
trix. 

• Numeric spring stiffness should be 
optimized in conjunction with the 
chosen time step size to assure accu-
rate solution and to preclude ill con-
ditioning of the global stiffness ma-
trix.    

• Comparison between a shaking table 
model and DDA calculation shows 
that the DDA solution is conserva-
tive. For accurate prediction of dy-
namic displacement of single block 
on an incline a reduction of the dy-
namic control parameter (k01) by 2% 
is recommended. 
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