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1. Introduction

Rock slope failures involving single plane sliding or toppling have
been studied extensively in the past. The problem has typically been
formulated for the case of a block on an inclined plane. The model of
a block on an inclined plane can help simulate many problems in
rock slope engineering: it can be used to represent finite rock blocks
formed by intersections of steeply inclined joints and shallowly
inclined bedding planes and thus it can sometimes be used to
simulate landslides or rock slides. The simplicity of the model and
its attractive applicability calls for development of analytical solu-
tions as these are quite useful in practice.

A block on an incline has four different possible modes of failure
(Fig. 1): (1) static stability, (2) downslope sliding, (3) toppling and
sliding simultaneously and (4) rotation and toppling. The failure
mode is controlled by the geometry of both the block and the
inclined plane, and the frictional resistance of the interface between
them, the three of which are defined by three angles as follows
(Fig. 1): δ, the block aspect angle defined by the ratio of the block
width b and height h; α, the inclination angle of the slope, will be
referred to herein as the slope angle; and ϕ, the friction angle of the
interface between the slope and the block. Any combination of these
three angles will determine whether the block will move or not, and
if so, what will be the mode of its first motion. Clearly, correct
assessment of the failure mode is a prerequisite for correct risk
assessment and sound support design.

Ashby [1] and Hoek and Bray [2] derived and plotted the modes
of failure for the case of block on an incline in δ–α space using
static limit equilibrium analysis (LEA). Static LEA implies finding

the forces acting on the block at a state of limiting equilibrium,
namely, before imminent failure. Ashby's [1] and Hoek and Bray's
[2] chart is presented in Fig. 2.

According to results of the static LEA performed by Ashby [1]
and Hoek and Bray [2], when αoϕ the block will either be
stable (δ4α) or topple (δoα). When α4ϕ the block will either
slide (δ4α), or slide and topple simultaneously (δoα). The
original boundaries between those failure modes are assigned
numbers here (Fig. 2); these numbers will be referred to herein
when discussing failure mode boundaries.

Voegele [3] compared the analytical results with distinct
element method (DEM) simulations and discovered that in some
cases while the block should have failed in sliding and toppling
according to the mode chart in Fig. 2, in fact it experienced sliding
alone when studied with DEM. Thus, he concluded that the Hoek
and Bray [2] chart was too elementary to predict the exact
dynamic behavior of slender blocks resting on an inclined plane.

Bray and Goodman [4] re-visited this problem and treated bound-
ary 3 in Fig. 2 as a “dynamic” boundary. Their approach changed the
condition for sliding to α4ϕ, and δZϕ (Fig. 3). Yu et al. [5] later
found that results of DEM simulations and physical models agree with
Bray and Goodman's [4] modified chart.

Sagaseta [6] argued that Bray and Goodman's modification
is correct but incomplete because at boundary 4 the state of
equilibrium is dynamic rather than static; the derivation of the
equilibrium equations for that boundary is provided in his paper.
Yeung [7] studied this problem with the two dimensional
Discontinuous Deformation Analysis method (2D-DDA, [8–11])
and compared his results to the chart published by Bray and
Goodman [4]. He discovered that while 2D-DDA results agree with
the first three boundaries, reassuring the modification of Bray and
Goodman [4] to boundary 3, there is a discrepancy between
the results obtained by 2D-DDA and the behavior predicted by
boundary 4 in Bray and Goodman's chart. In some cases, while
Bray and Goodman's chart predicts sliding and toppling, DDA

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijrmms

International Journal of
Rock Mechanics & Mining Sciences

1365-1609/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijrmms.2013.08.035

n Correspondence to: The Department of Geological and Environmental Sciences,
Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
Tel.: þ972 8 6477855; fax: þ972 8 6472997.

E-mail address: birangony@gmail.com (G. Yagoda-Biran).

International Journal of Rock Mechanics & Mining Sciences 64 (2013) 122–131



Author's personal copy

results suggest toppling only. This led Yeung [7] to treat boundary
4 as a dynamic boundary as well. The analytical solution for
boundary 4 as derived by Yeung [7] is presented in the next
paragraph, with incorporation of dynamic effects into the solution.

When a block is on the verge of toppling, the hinge (center of
rotation; Fig. 4) tends to move upslope. This movement may
prevent sliding, even when permissible by virtue of kinematics,
namely when ϕoα. Boundary 4 distinguishes between toppling

with and without sliding, therefore the analytical solution derived
by Yeung [7] assumes limiting friction (ϕ¼α). Fig. 4 schematically
describes the state of forces acting on the block at boundary 4.

The block is under pure rotation, therefore its angular accel-
eration €θ at the hinge and at the centroid is identical. The forces
acting on the block are its weight mg, acting at the centroid, the
normal from the incline N, and the limiting friction force N tan ϕ,
both acting at the hinge. Applying Newton's second law, both
parallel and perpendicular to the slope, and taking moments about
the centroid of the block, three equations with four variables
( €θ, €u, ϕ and N) can be written as

mg sin α�N tan ϕ¼m €u cos δ ð1Þ

N�mg cos α¼m €u sin δ ð2Þ

N tan ϕ
h
2
�N

b
2
¼ 1
12

mðh2þb2Þ €θ ð3Þ

The following equation relates €θ and €u:

€u¼ 1
2
€θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þb2

q
ð4Þ

Solving the set of equations yields the following equation for a
friction angle satisfying boundary 4, with any combination of α
and δː

tan ϕ¼ 3 sin δ cos ðα�δÞþ sin α
3 cos δ cos ðα�δÞþ cos α

ð5Þ

or

tan α¼ 3 cos 2δ tan ϕ�3 sin δ cos δþ tan ϕ
3 sin 2δ�3 sin δ cos δ tan ϕþ1

ð6Þ

A modified chart for different modes after correction of boundary
4 for dynamic LEA is presented in Fig. 5 following Yeung [7],
for the case of ϕ¼301. With the modified boundary 4 Yeung has
obtained good agreement between 2D-DDA and the modified
kinematic chart.

In a classic paper Goodman and Bray [12] further developed a
static LEA solution for the toppling failure of multiple blocks, when
the slope is represented by a series of blocks resting on a stepped
basal discontinuity. They distinguished between three modes:
block toppling, flexural toppling, and both block and flexural
toppling. Following Goodman and Bray, flexural toppling and
block toppling have been further investigated by many groups,
both analytically [13–19], experimentally [13,20] and numerically
[16,21,22]. The mode of block slumping has also been studied
analytically, experimentally and numerically by [23].

Fig. 1. Sign convention for the block on an inclined plane model used in this paper.

Fig. 2. Kinematic conditions for sliding and toppling for a block on an inclined
plane – static analysis; after [1].

Fig. 3. Kinematic conditions for sliding and toppling with the modified boundary 3;
after [4].

Fig. 4. The dynamics of the block at boundary 4. The block is toppling, hence it has
rotational acceleration from which linear acceleration €u is derived, and is on the
verge of sliding. The rotation hinge is marked with a star; after [7].
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2. Three dimensional visualization of the kinematic
mode chart

In the introduction section we have shown that the mode of
failure of a single block on an incline depends on three variables:
the angles α, ϕ and δ. A three dimensional representation of the
mode chart is therefore called for, as presented in Fig. 6. The 3D
space, the three axes of which are the three angles, is divided into
the four regions of block behavior, namely Mode 1 – stable, Mode
2 – sliding, Mode 3 – sliding and toppling, and Mode 4 – toppling.
Consider Fig. 6a, the different failure modes are plotted as follows:

Mode 1, the stable mode, is above the red surface (delineating
the α¼δ surface) and to the left of the blue surface (delineating
the α¼ϕ surface).

Mode 2, the sliding mode, is above the green surface (delineat-
ing the ϕ¼δ surface) and to the right of the blue surface
(delineating the α¼ϕ surface).
Mode 3, the sliding and toppling mode, is below the green
surface, indicating the ϕ¼δ surface, and in front of the curved
surface representing Eq. (6) (note that in this view the curved
surface is actually behind the green surface).
Mode 4, or the toppling mode, is below the red surface,
indicating α¼δ , and behind the curved surface representing
Eq. (6).

Fig. 6a presents the 3D space from a point of view similar
to those of Figs. 2, 3 and 5 but for different values of ϕ. In Fig. 6b
we map the 3D boundaries as viewed from vector (�1, �1, �1).
When using (�1, �1, �1) as a viewing vector, vector (1, 1, 1)
is reduced to a point, and the surfaces separating the different
modes are reduced to lines. With this mapping the 3D space
appears as a 2D space where it is easier to perceive the boundaries
between the four modes.

3. Adding pseudo-static inertia force to toppling analysis

When trying to determine stability and failure mode under
seismic conditions, a common practice in geotechnical engineering
is to impose a static force, acting at the centroid of the block
in the direction that drives the failure, which simulates the
destabilizing effects of an earthquake. Typically, the peak ground
acceleration (PGA) of the earthquake record is converted into a
pseudo-static horizontal force F acting at the centroid, normal-
ized by the block weight W, and the pseudo-static coefficient k is
defined, i.e. F ¼ kW . Fig. 7 illustrates the schematics of the block on
an incline problem with a horizontal static force F. When adding
the pseudo-static force F, a new angle β is introduced, defined here
as the angle between the block self-weight W and the resultant of
force F and block self-weight W (see Fig. 7), namely:

tan β¼ F
W

¼ k ð7Þ

Fig. 6. Kinematic conditions for toppling and sliding. (a) a point of view similar to Figs. 2, 3 and 5. (b) Isometric point of view, viewing vector (�1, �1, �1).

Fig. 5. Kinematic conditions for sliding and toppling with modified boundary 4, for
ϕ¼301; after [7].
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In this section a mode analysis for the block on an incline problem
with horizontal force F ¼ kW is derived.

3.1. Boundary 1: between toppling and stable modes

The forces acting on the block at this boundary are W, F, N
and the frictional resistance. At the onset of toppling the normal
and the frictional forces act at the hinge, therefore they do not
contribute to the moments acting on the block. In order for
the block to remain stable against toppling, the line of action of
the resultant of F and W must pass through the hinge, and so it
produces no moments as well. In other words, the stabilizing
moments have to be equal to the driving moments at a state of
limiting equilibrium

1
2
bW cos α¼ 1

2
hW sin αþ1

2
hF cos αþ1

2
bF sin α ð8Þ

Inserting the definition of β into Eq. (8) yields

b
h
¼ sin αþ cos α tan β

cos α� sin α tan β
¼ tan αþ tan β
1� tan α tan β

¼ tan ðαþβÞ ð9Þ

Therefore at the point of limiting equilibrium with respect to
toppling

δ¼ αþβ ð10Þ
If δoαþβ, the block will topple. If δ4αþβ, the block will not
topple.

3.2. Boundary 2: between sliding and stable modes

At the point of imminent sliding friction is limiting, therefore
the force preventing sliding at the point of limiting equilibrium
with respect to sliding is N tan ϕ. Force equilibrium parallel to the
sliding direction yields

N tan ϕ¼ F cos αþW sin α ð11Þ
Force equilibrium perpendicular to the sliding direction yields

N¼W cos α�F sin α ð12Þ
Inserting Eq. (12) into Eq. (11), and using results from Eq. (9), yields

tan ϕ¼ F cos αþW sin α
W cos α�F sin α

¼ sin αþ cos α tan β
cos α� sin α tan β

¼ tan ðαþβÞ

ð13Þ
Therefore the limiting condition for sliding is ϕ¼ αþβ.

3.3. Boundary 3: between sliding and slidingþtoppling modes

Bray and Goodman [4] treated boundary 3 as a dynamic one,
since the block is both sliding and on the verge of toppling.
According to Newton's second law, the force equilibrium in the

downslope direction is

F cos αþW sin α�N tan ϕ¼m €u ð14Þ
Force equilibrium perpendicular to the slope yields

N¼W cos α�F sin α ð15Þ
Finding €u from Eqs. (14) and (15), and using Eq. (7), yields

m €u¼ F cos αþW sin α� tan ϕðW cos α�F sin αÞ
¼W ½ tan β cos αþ sin α� tan ϕð cos α� tan β sin αÞ�

ð16Þ
Since the block is on the verge of rotating, the sum of moments
about the hinge is (see Fig. 7)

h
2
F cos αþb

2
F sin αþh

2
W sin α¼ b

2
W cos αþh

2
m €u ð17Þ

Substituting Eq. (16) into Eq. (17) yields

b=h¼ tan ϕ δ¼ϕ ð18Þ
Therefore, the limiting condition for dynamic equilibrium for
boundary 3 is δ¼ϕ.

3.4. Boundary 4: between toppling and slidingþtoppling modes

Yeung [7] treated boundary 4 as a dynamic boundary because
at this boundary the block is toppling and on the verge of sliding.
According to Newton's second law, force equilibrium in the down-
slope direction yields

F cos αþW sin α�N tan ϕ¼m €u cos δ ð19Þ
and the force equilibrium perpendicular to the slope yields

F sin αþN�W cos α¼m €u sin δ ð20Þ
Taking moments about the centroid (since at the onset of sliding
the angular acceleration is uniform about the block) will again
yield Eq. (3). Solving Eqs. (3), (4), (19) and (20) yields

tan ϕ¼ 3 sin δ cos ½δ�ðαþβÞ�þ sin ðαþβÞ
3 cos δ cos ½δ�ðαþβÞ�þ cos ðαþβÞ

¼ 3 sin δ cos ðδ�ψ Þþ sin ψ
3 cos δ cos ðδ�ψ Þþ cos ψ

ð21Þ

The complete derivation of boundary 4 is provided in the
Appendix.

To summarize, in the case where a horizontal force of size
F ¼ kW acts on the centroid of the block, the boundaries of
the failure modes become a function of three angles: ϕ, δ and
ψ¼αþβ, instead of α for the case of gravitational loading alone.
Alternatively, if using k instead of β is preferable in the definition
of ψ, then

ψ ¼ tan�1 kþ tan α
1�k tan α

ð22Þ

4. Verification of the dynamic toppling and sliding
boundaries with DDA

As mentioned earlier, Yeung [7] verified the 2D-DDA with the
analytical solutions of mode analysis under gravitational loading.
He found that the 2D-DDA results agreed well with the analytical
solution for sliding or toppling and has utilized the DDA results to
modify the dynamic boundary between toppling and slidingþtop-
pling (boundary 4). Here we use both 2D and 3D-DDA to verify our
pseudo-static analysis which considers an additional inertia force.
DDA basics will not be reviewed here; the fundamentals of DDA
have been published by Shi and Goodman [11]; for a comprehen-
sive review see [24]. The extension of DDA to three dimensions has
been published by Shi [25] and will not be reviewed here either.

Fig. 7. Force diagram for a block on an incline with pseudo-static force F. The hinge
of rotation is marked by a star.
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Since the 3D-DDA code is relatively new, it has not been
extensively verified as the 2D-DDA code. We begin with verifica-
tion of 3D-DDA using the existing analytical solution for the four
failure modes of the block on an incline problem, discussed in
Section 4.1. Once verified, we use 2D and 3D-DDA to confirm our
modified boundaries which also consider pseudo-static loading, in
Sections 4.2 and 4.3, respectively.

The block and the incline are modeled in the DDA, and a
measurement point, of which displacements and rotations are
documented throughout the simulations, is placed at the hinge
(see Fig. 7). The displacements and rotations of the measure-
ment point for the first 0.5 s of the simulation are then
examined, and their values determine the nature of the failure
mode. It is important to state here that in DDA the rotations
are uniform throughout the block, because of the first order
approximation.

The following criteria are adopted to judge the obtained failure
mode from DDA output:

� The block is considered stable if the recorded displacements at
the measurement point are less than 0.001 m and attain
stabilization, and if the rotation is less than 0.0001 rad.

� The block is sliding if the displacements are more than 0.001 m
and the block accelerates, and if the rotation is less than
0.0001 rad.

Fig. 8. Flow chart describing criteria for determination of failure mode in numerical
simulations.

Table 1
Numerical and physical parameters used for 3D-DDA
verification study.

Parameter Value

Static-dynamic parameter 1 (fully dynamic)
Maximum displacement ratio 0.0001
Maximum time step interval 0.00001 s
Normal contact spring stiffness 1�109 N/m
Density 2730 kg/m3

Young's modulus 42.9 GPa
Poisson's ratio 0.18

Table 2
Numerical and physical parameters used for 2D-DDA ver-
ification study by Yeung [7].

Parameter Value

Static-dynamic parameter 0 (fully static)
Maximum displacement ratio 0.005
Maximum time step interval 0.05 s
Normal contact spring stiffness 1�1010 N/m
Density 3000 kg/m3

Young's modulus 10 GPa
Poisson's ratio 0.49

Table 3
Analytical mode analysis vs. 3D-DDA results for gravitational loading.

α ϕ δ Mode predicted by
analytical solution

Mode obtained by DDA

15 20 14 toppling toppling
15 20 14.4 toppling toppling
15 20 14.8 toppling toppling
15 20 15.2 stable stable
15 20 15.6 stable stable
15 20 16 stable stable
15 20 30 stable stable
15 20 50 stable stable
15 20 70 stable stable
40 20 19 slidingþtoppling slidingþtoppling
40 20 19.8 slidingþtoppling slidingþtoppling
40 20 20.2 sliding sliding
40 20 21 sliding sliding
40 20 30 sliding sliding
14 20 15 stable stable
14.8 20 15 stable stable
15.2 20 15 toppling toppling
15.6 20 15 toppling toppling
16 20 15 toppling toppling
30 20 15 toppling toppling
40 20 15 slidingþtoppling slidingþtoppling
50 20 15 slidingþtoppling slidingþtoppling
10 20 50 stable stable
19 20 50 stable stable
19.8 20 50 stable stable
20.2 20 50 sliding stable
20.6 20 50 sliding stable
21 20 50 sliding sliding
30 20 50 sliding sliding
40 20 50 sliding sliding
50 20 50 sliding sliding
30 40 30.96 stable stable
10 20 30.96 stable stable
50 60 56.31 stable stable
30 5 11.31 sliding sliding
10 5 8.53 sliding sliding
50 45 56.31 sliding sliding
30 40 11.31 toppling toppling
10 20 8.53 toppling toppling
50 60 38.66 toppling toppling
50 45 38.66 toppling toppling
30 30 11.3 slidingþtoppling slidingþtoppling
10 9 8.53 slidingþtoppling slidingþtoppling
22 20 50 sliding sliding
20.8 20 50 sliding sliding
15 20 10 toppling toppling
22 20 10 toppling toppling
30 20 11.31 toppling toppling
37 20 11.31 toppling toppling
37 20 15 toppling toppling
22 20 18 toppling toppling

Table 4
Physical and numerical parameters used in the 2D-DDA
with external force F.

Parameter Value

Static-dynamic parameter 1 (fully dynamic)
Maximum displacement ratio 0.001
Maximum time step interval 0.001 s
Normal contact spring stiffness 1�1010 N/m
Density 2730 kg/m3

Young's modulus 42.9 GPa
Poisson's ratio 0.18
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� The block is toppling if the displacements are less than
0.001 m, but the rotation is more than 0.0001 rad.

� The block is sliding and toppling if both the displacement is
larger than 0.001 m and the rotation is larger than 0.0001 rad.

A flow chart describing the failure mode judgment criteria for
DDA output is presented in Fig. 8. The numerical control para-
meters used in the DDA verification are provided in Tables 1 and 4.

4.1. Verification of 3D-DDA with mode analysis charts under
gravitational loading

The numerical and physical parameters used in the verification
study of the 3D-DDA are presented in Table 1. For the sake of
comparison with the original verification study performed by
Yeung [7] the control parameters used in his analysis are provided
in Table 2. As can be observed from Tables 1 and 2, the density and
Young's modulus are of the same order of magnitude, whereas the
time step interval and the normal contact spring stiffness in
3D-DDA are three and one orders of magnitude lower, respec-
tively. The friction angle selected for the study was 201 in most
analyses. The list of analyses performed in the verification study is
provided in Table 3. Projection of the results on the three-
dimensional mode chart is presented in Fig. 9. The agreement
between the 3D-DDA and the analytical solution is excellent.

4.2. Verification of the mode analysis charts with 2D-DDA for
pseudo-static force

The 2D-DDA has been verified many times in the past, and has
proved to be a useful and reliable tool for numerical modeling of
discontinuous problems in geomechanics and rock mechanics
[26–28]. Therefore we use the 2D-DDA to confirm the analytical
solution derived for a block on an incline subjected to gravity and a
horizontal pseudo-static force. The physical and numerical para-
meters used in the 2D-DDA simulations are presented in Table 4.
The time step size that can be used in the 2D-DDA is 100 times
larger than the one used in 3D-DDA.

Since the addition of an external force F introduces a new angle
to the mode chart, the angle ψ¼αþβ, different values for ψ can be
generated by changing β (through a change in F) without changing
α. This allows for fast modeling and multiple simulations using the
same DDA mesh. The α used in the verification study was 101.
Table 5 lists the different simulations and their results for the
2D-DDA verification.

Fig. 10 presents the results of the 2D-DDA simulations with
external force F in the ψ, ϕ and δ space. Note the excellent
agreement between the numerical DDA and analytical solutions.
As mentioned before, DDA simulation were performed with a fixed

Fig. 9. Results of 3D-DDA verification analysis with the analytical solution.

Table 5
Analytical mode analysis vs. 2D-DDA with horizontal force F.

ψ(αþβ) ϕ δ Mode predicted by
analytical solution

Mode obtained
by DDA

29 35 30.96 stable stable
29.5 35 30.96 stable stable
30 35 30.96 stable stable
30.5 35 30.96 stable stable
30.9 35 30.96 stable stable
31 35 30.96 toppling toppling
31.5 35 30.96 toppling toppling
32 35 30.96 toppling toppling
32.5 35 30.96 toppling toppling
30 50 30.96 stable stable
30.5 50 30.96 stable stable
30.9 50 30.96 stable stable
31 50 30.96 toppling toppling
31.5 50 30.96 toppling toppling
32.5 50 30.96 toppling toppling
18 20 30.96 stable stable
18.5 20 30.96 stable stable
19 20 30.96 stable stable
19.5 20 30.96 stable stable
19.8 20 30.96 stable stable
20.2 20 30.96 sliding sliding
21 20 30.96 sliding sliding
21.5 20 30.96 sliding sliding
22 20 30.96 sliding sliding
48 50 30.96 toppling toppling
49.8 50 30.96 toppling toppling
52 50 30.96 toppling toppling
35 30 30.96 sliding slidingþtoppling
36 30 30.96 sliding sliding
35 29 30.96 sliding sliding
35 25 30.96 sliding sliding
40 30 30.96 sliding sliding
45 30 30.96 sliding sliding
50 30 30.96 sliding sliding
60 30 30.96 sliding sliding
70 30 30.96 sliding sliding
80 20 30.96 sliding sliding
85 40 30.96 slidingþtoppling slidingþtoppling
66 40 30.96 slidingþtoppling slidingþtoppling
64 40 30.96 slidingþtoppling slidingþtoppling
62 40 30.96 toppling toppling
80 40 30.96 slidingþtoppling slidingþtoppling
82 50 30.96 toppling toppling
84 50 30.96 toppling slidingþtoppling
86 50 30.96 slidingþtoppling slidingþtoppling
80 60 30.96 toppling toppling
70 10 30.96 sliding sliding
70 20 30.96 sliding sliding
70 40 30.96 slidingþtoppling slidingþtoppling
70 50 30.96 toppling toppling
20 21 20.30 stable toppling
20 21 30.96 stable stable
20 21 40.03 stable stable
20 21 50.19 stable stable
20 21 60.11 stable stable
20 21 71.57 stable stable
20 19 20.30 sliding sliding
20 19 30.96 sliding sliding
20 19 40.03 sliding sliding
20 19 50.19 sliding sliding
20 18.9 60.11 sliding sliding
20 19 71.57 sliding sliding
20 80 20.30 stable stable
30 80 30.96 stable stable
40 80 40.70 stable stable
50 80 50.19 stable stable
60 80 60.40 stable stable
70 80 70.35 stable stable
20 80 19.80 toppling toppling
30 80 29.25 toppling toppling
40 80 39.35 toppling toppling
50 80 49.24 toppling toppling
60 80 59.53 toppling toppling
70 80 69.68 toppling toppling
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inclination angle of 101, and the angle ψ was altered by the force F.
A few simulations were performed with different inclination
angles, to make sure results of the simulations are repeated.

4.3. Verification of the mode analysis charts with 3D-DDA
for pseudo-static force

A similar process of verification was performed with the
3D-DDA. The physical and numerical control parameters are
identical to the ones used in the gravitational loading verification
in Section 4.1, and are listed in Table 1. The analyses performed in
this section are listed in Table 6, and results are plotted in Fig. 11.

Table 5 (continued )

ψ(αþβ) ϕ δ Mode predicted by
analytical solution

Mode obtained
by DDA

10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling
30 20 17.22 slidingþtoppling slidingþtoppling
40 20 12.95 slidingþtoppling slidingþtoppling
50 20 7.07 slidingþtoppling slidingþtoppling
60 40 33.02 slidingþtoppling slidingþtoppling
70 50 42.92 slidingþtoppling slidingþtoppling
80 62 53.06 toppling slidingþtoppling
20 10 6.05 toppling toppling
30 20 16.17 toppling toppling
40 20 11.97 toppling toppling
50 20 6.05 toppling toppling
60 40 32.05 toppling toppling
70 50 41.99 toppling toppling
80 62 52.00 toppling toppling
18 30 29.00 stable stable
50 30 29.00 slidingþtoppling slidingþtoppling
40 30 29.00 slidingþtoppling slidingþtoppling
35 30 29.00 slidingþtoppling slidingþtoppling
32 30 29.00 toppling toppling
50 35 29.00 toppling toppling

Table 6
Analytical mode analysis vs. 3D-DDA with horizontal force F.

ψ(αþβ) ϕ δ Mode predicted
by analytical solution

Mode obtained
by DDA

29 80 30.96 stable stable
29.5 80 30.96 stable stable
30 80 30.96 stable stable
30.5 80 30.96 stable stable
30.9 80 30.96 stable stable
31 80 30.96 toppling toppling
31.5 80 30.96 toppling toppling
32 80 30.96 toppling toppling
32.5 80 30.96 toppling toppling
33 80 30.96 toppling toppling
27 28 30.96 stable stable
27.5 28 30.96 stable stable
27.8 28 30.96 stable stable
28.2 28 30.96 sliding sliding
28.5 28 30.96 sliding sliding
29 28 30.96 sliding sliding
60 40 30.96 toppling toppling
60.5 40 30.96 toppling toppling
61 40 30.96 toppling toppling
61.5 40 30.96 toppling toppling
62 40 30.96 toppling toppling
62.5 40 30.96 toppling toppling
63 40 30.96 toppling toppling
63.5 40 30.96 slidingþtoppling slidingþtoppling
64 40 30.96 slidingþtoppling slidingþtoppling
64.5 30 30.96 slidingþtoppling slidingþtoppling
65 30 30.96 slidingþtoppling slidingþtoppling
65.5 30 30.96 slidingþtoppling slidingþtoppling
55 30 30.96 sliding sliding
55 30 30.54 sliding sliding
55 30 30.11 sliding sliding
55 30 29.68 slidingþtoppling slidingþtoppling
55 50 19.80 toppling toppling
20 21 20.30 toppling toppling
20 21 30.96 stable stable
20 21 40.03 stable stable
20 21 50.19 stable stable
20 21 60.11 stable stable
20 21 71.57 stable stable
20 19 20.30 sliding sliding
20 19 30.96 sliding sliding
20 19 40.03 sliding sliding
20 19 50.19 sliding sliding
20 18.9 60.11 sliding sliding
20 19 71.57 sliding sliding
20 80 20.30 stable stable
30 80 30.96 stable stable
40 80 40.70 stable stable
50 80 50.19 stable stable
60 80 60.40 stable stable
70 80 70.35 stable stable
20 80 19.80 toppling toppling
30 80 29.25 toppling toppling
40 80 39.35 toppling toppling
50 80 49.24 toppling toppling
60 80 59.53 toppling toppling
70 80 69.68 toppling toppling
10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling

Fig. 10. Results of 2D-DDA verification analysis with the analytical solution, with
the application of external force.
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Note the good agreement between the analytical solution and the
3D-DDA.

5. Discussion

To demonstrate the applicability of the newly incorporated
pseudo-static force in the failure mode chart for block on an inclined
plane, two cases of blocks with different geometries are presented
(Fig. 12), and the failure modes are calculated analytically. In the first
example, a block of height¼1 m and width¼1.19 m (δ¼501) is
resting on a plane inclined at α¼101. The friction of the interface is
ϕ¼301. Let us examine the mode of the block as a function of the k
value, i.e. the pseudo-static coefficient. As explained earlier, a change
in k will lead to a change in β, which in turn will change the value of
ψ. We start with a k value of 0, increase it by intervals of 0.1, up to 0.8,
and plot the combination of the three angles, δ, ϕ and ψ, for the
changing values of k on the three-dimensional plot (square symbols
in Fig. 12). For k values from 0 (no pseudo-static force) to 0.3, the
block remains in the stable region. For values of kZ0.4, the
combination of angles shifts the block to the sliding region. This
means that for the described set of angles, k value of 0.4 and greater
would cause the block to fail in sliding. In the second example, a
block of height¼1 m and width¼0.27 m (δ¼151) is resting on the
same incline as in the previous example (Fig. 12). For k¼0, the block
is at rest. Increasing k to 0.1 is sufficient to cause toppling, and the
block will shift to the mode of slidingþtoppling when k exceeds the
value of 1.35 (� symbols in Fig. 12). These two examples clearly
demonstrate how by simple calculations, our newmode chart can be
used in order to predict the mode of failure of a block on an incline,
when subjected to a pseudo-static force.

Now one may ask: why is pre-knowledge of the exact failure mode
required? In order to demonstrate the importance of determining the
failure mode of a block before a design strategy is decided, two
simulations were performed using the 2D-DDA, with k¼0, for
simplicity. The model used in the simulations is presented in Fig. 13.
The model consists of a fixed base block, inclined at α¼251, a fixed
back wall representing the rock mass, and a block which is kinema-
tically free to move (see Fig. 13). The block angle, δ, is 221. The block is
anchored to the back wall by three identical horizontal rock bolts
(Fig. 13). The stiffness of the rock bolts is 321.7 MN/m. In the first
simulation, the friction angleϕ is set to 151, a value that puts the block
in the sliding mode. In the second simulation, ϕ is set to 301, which
puts the block in the toppling mode. The physical and numerical
control parameters used in these simulations are listed in Table 4. In
Fig. 14 the bolt forces are plotted, for the two different simulations. As
can be observed from Fig. 14, when the block is sliding the forces that
develop at the different bolts are very similar, with differences of up to

5%. When the block is toppling however, there is a great difference
between the forces that develop in the different bolts, for example,
250% difference between the top bolt and the bottom one. This way,
when designing the support scheme for toppling failure, the engineer
can use shorter bolts for the bottom part, and long ones for the top,
while when designing support for sliding mode, similar bolt lengths
should be used at all slope heights. This demonstrates how

Table 6 (continued )

ψ(αþβ) ϕ δ Mode predicted
by analytical solution

Mode obtained
by DDA

30 20 17.22 slidingþtoppling slidingþtoppling
40 20 12.95 slidingþtoppling slidingþtoppling
50 20 7.07 slidingþtoppling slidingþtoppling
60 40 33.02 slidingþtoppling slidingþtoppling
70 50 42.92 slidingþtoppling slidingþtoppling
80 62 53.06 slidingþtoppling slidingþtoppling
20 10 6.05 toppling toppling
30 20 16.17 toppling toppling
40 20 11.97 toppling toppling
50 20 6.05 toppling toppling
60 40 32.05 toppling toppling
70 50 41.99 toppling toppling
80 62 52.00 toppling toppling
30 80 30.96 stable stable
30 80 29.25 toppling toppling Fig. 11. Results of 3D-DDA verification analysis with the analytical solution, with

the application of external force.

Fig. 12. Mode analysis for two block geometries: δ¼501 (square symbols) and
δ¼151 (� symbols). For both geometries α¼101 and ϕ¼301. The mode of the block
changes with changing value of k, the pseudo-static coefficient, denoted near the
symbols.

Fig. 13. The model used for the rock bolt force simulations.
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determining the failure mode of a block, both under static and
pseudo-static conditions, can greatly assist the engineer in designing
the most efficient support and stabilizing method.

6. Summary and conclusions

In this paper, we first review previous research regarding the
failure mode analysis for the problem of a block on an incline. We
plot, for the first time, the four possible modes (stability, sliding,
slidingþtoppling and toppling) in a three dimensional space,
as the modes are a function of three angles: the block angle δ
(block width/block height), the friction angle of the interface
between the slope and the block ϕ, and the inclination of the
slope α. We then derive a new failure mode chart, incorporating
the frequently used pseudo-static approach. We verify the numer-
ical 3D-DDA code with mode analysis for gravitational loading, and
then confirm the pseudo-static mode chart, derived in this paper,
with the 2D and 3D-DDA.

In the new chart, derived in this paper, the mode of failure of the
block is again a function of three angles: δ, ϕ, and a new angle,
ψ¼αþβ, where β is the angle between the resultant of the block
weight and the pseudo-static force applied on the block, and the
vertical direction. Verification of the 3D-DDA with the formerly
derived analytical solution for a block on an inclined plane under
gravitational loading alone proves the 3D-DDA can accurately solve
the problem. Furthermore, the 2D and 3D-DDA simulations of the
block subjected to pseudo-static horizontal force confirm the new
analytical boundaries derived here, and once again confirm the
dynamic nature of boundary 4, which separates toppling from sliding
and toppling.

When designing reinforcement for rock slopes that are suscep-
tible for either sliding or toppling failure modes, it is crucial to take
into account seismic forces that can affect the stability of the rock
mass. The new chart for failure modes, with the incorporation of a
pseudo-static horizontal force simulating the seismic force of an
earthquake, is an easy, more intuitive way to understand and
predict the behavior of rock masses subjected to seismic forces,
when those are modeled as a pseudo-static horizontal force. When
using the new chart, the pseudo-static force for the mode analysis
should be carefully selected, taking into account seismic hazard
assessments in the region discussed, and preferably site effects,
where these are known.
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Appendix. Derivation of boundary 4: between toppling and
slidingþtoppling

For boundary 4, which is a dynamic boundary between
toppling and toppling with sliding, the block is toppling, and on
the verge of sliding, i.e. friction is limiting. There are four unknown
variables {N, ϕ, ü, and θ}, and so four equations must be derived.
Forces in the downslope direction

F cos αþW sin α¼N tan ϕþm €u cos δ ðA:1Þ
Forces perpendicular to slope

F sin αþN¼W cos αþm €u sin δ ðA:2Þ
Moments about the centroid

1
2
Nh tan ϕ¼ 1

2
Nbþ 1

12
mðh2þb2Þ €θ ðA:3Þ

And the relationship between the linear acceleration and rotational
acceleration

€u¼ 1
2
€θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þb2

q
ðA:4Þ

Remembering that

h2þb2 ¼ h2 1þb2

h2

 !
¼ h2ð1þ tan 2δÞ ¼ h2

cos 2δ
ðA:5Þ

Eq. (A.4) can be re-written as

€u¼
€θh

2 cos δ
ðA:6Þ

€θ¼ 2 €u cos δ
h

ðA:7Þ

Inserting Eq. (A.7) into Eq. (A.3)

Nðh tan ϕ�bÞ ¼m
6

h2

cos 2δ
2 €u cos δ

h
¼ mh €u
3 cos δ

ðA:8Þ

m €u¼N
3 cos δðh tan ϕ�bÞ

h
¼ 3N cos δ tan ϕ�b

h

� �
¼ 3N cos δð tan ϕ� tan δÞ ðA:9Þ

Remembering that F ¼W tan β, and inserting Eq. (A.9), Eq. (A.1)
becomes

W tan β cos αþW sin α¼N½ tan ϕþ3 cos 2δ tan ϕ� tan δ
� ��

N¼ Wð tan β cos αþ sin αÞ
tan ϕþ3 cos 2δð tan ϕ� tan δÞ ðA:10Þ

Inserting Eqs. (A.10) and (A.9) into Eq. (A.2) yields

W tan β sin αþ Wð tan β cos αþ sin αÞ
tan ϕþ3 cos 2δð tan ϕ� tan δÞ

¼W cos αþ3Wð tan β cos αþ sin αÞ sin δ cos δð tan ϕ� tan δÞ
tan ϕþ3 cos 2δð tan ϕ� tan δÞ

ðA:11Þ
Finding a common denominator and eliminating it on both sides of
the equation yields

3 sin α cos 2δð tan ϕ� tan δÞ tan βþ sin α tan ϕ tan β
þ sin αþ cos α tan β

¼ 3 cos α cos 2δð tan ϕ� tan δÞþ cos α tan ϕ

þ3 sin δ cos δð cos α tan βþ sin αÞð tan ϕ� tan δÞ ðA:12Þ
The left hand side of Eq. (A.12) becomes

tan ϕð sin α tan βþ3 sin α cos 2δ tan βÞ
�3 sin α sin δ cos δ tan βþ cos α tan βþ sin α

Fig. 14. The forces developed at the rock bolts for the two simulations. Triangular
symbols: ϕ¼151, the block is sliding. Square symbols: ϕ¼301, the block is toppling.
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The right hand side of Eq. (A.12) becomes

tan ϕð3 cos α cos 2δþ cos αþ3 sin δ cos δ cos α tan β
þ3 sin δ cos δ sin αÞ
�3 cos α sin δ cos δ�3 sin 2δ cos α tan β�3 sin 2δ sin α

Combining from both sides of Eq. (A.12) all the expressions multi-
plied by tan ϕ gives

3 sin α tan β cos 2δþ sin α tan β�3 sin δ cos δ sin α
�3 sin δ cos δ cos α tan β
�3 cos α cos 2δ� cos α

Multiply by cos β

3 sin α sin β cos 2δþ sin α sin β�3 sin δ cos δ sin α cos β
�3 sin δ cos δ cos α sin β�3 cos α cos 2δ cos β
� cos α cos β¼ 3 cos 2δð sin α sin β� cos α cos βÞ
�3 sin δ cos δð sin α cos βþ cos α sin βÞþ sin α sin β
� cos α cos β¼�3 cos 2δ cos ðαþβÞ
�3 sin δ cos δ sin ðαþβÞ� cos ðαþβÞ

Combine from both sides of Eq. (A.12) all the expressions that are
not multiplied by tan ϕ

3ð sin α tan β sin δ cos δ� sin 2δ sin α� sin 2δ cos α tan β
� cos α sin δ cos δÞ
� sin α� cos α tan β

Multiplying by cos β

3ð sin α sin β sin δ cos δ� sin 2δ sin α cos β� sin 2δ cos α sin β

� cos α sin δ cos δ cos βÞ
� sin α cos β� cos α sin β¼ 3½ sin δ cos δð sin α sin β

� cos α cos βÞ� sin 2δð sin α cos βþ cos α sin βÞ�
� sin α cos β� cos α sin β¼ 3½� sin δ cos δ cos ðαþβÞ
� sin 2δ sin ðαþβÞ�� sin ðαþβÞ

Combine both expressions

tan ϕ¼ 3½ sin δ cos δ cos ðαþβÞþ sin 2δ sin ðαþβÞ�þ sin ðαþβÞ
3½ sin δ cos δ sin ðαþβÞþ cos 2δ cos ðαþβÞ�þ cos ðαþβÞ

¼ 3 sin δ½ cos δ cos ðαþβÞþ sin δ sin ðαþβÞ�þ sin ðαþβÞ
3 cos δ½ cos δ cos ðαþβÞþ sin δ sin ðαþβÞ�þ cos ðαþβÞ

ðA:13Þ
And finally

tan ϕ¼ 3 sin δ cos ½δ�ðαþβÞ�þ sin ðαþβÞ
3 cos δ cos ½δ�ðαþβÞ�þ cos ðαþβÞ ðA:14Þ
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