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Abstract

The Hall waves and Hall instability of ideal conducting plasmas are studied. The single
fluid equations for systems with characteristic frequency larger than the ions gyro
frequency, in which the Hall term is taken into account in Faraday’s law, are employed.
Three modes exist for waves propagating perpendicular to the magnetic field and density
gradient. One of the modes is found to be always real while the other two may become
unstable. The real mode and one of the unstable modes are obtained from the splitting of
the fast magnetosonic mode due to the plasmas inhomogeneity while the third mode
disappears in homogeneous plasma. The stable mode represents a modified whistler wave
and its properties are studied and analyzed. The instability of the other two modes is
shown to be driven by the plasmas acceleration. Expression for the instability threshold
as well as the growth rate as functions of the wave number and the inhomogeneity scale
are obtained. The growth rate depends linearly on the wave number and may lead to a
catastrophic instability in the short wave length limit. However, it is shown that this
problem may be resolved, by taking into account the electrons inertia, under which the
growth rate attains a maximum value at a certain finite wavelength and is non zero only
in a finite range of wave lengths.

It 1s further shown that perpendicular to the magnetic field is the direction of most
unstable wave propagation within a small range about it. In addition, wave propagation in
arbitrary direction is investigated and the homogeneous whistler wave is found to be

destabilized due to the plasma inhomogeneity.
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1. Introduction

Magnetized plasmas have been the focus of intensive investigation during the last few
decades due to their relevance and importance to a wide range of laboratory and
technological applications as well as to wide variety of astrophysical phenomena. Thus,
modern laboratory and technological research includes such applications as
thermonuclear fusion reactors, radiation sources and plasma etching in the
microelectronic industry, while astrophysical phenomena range from low-frequency
oscillations of the terrestrial magnetosphere through solar bursts to the acceleration of
intergalactic energetic particles. In particular, wave propagation and instabilities play an
important role in the evolution of magnetized plasmas under such as plasma heating in
the laboratory and space as well as contributing to anomalous transport processes.
Traditionally, waves that are characterized by wave lengths that are much bigger than the
Larmor radius of both the electrons and the ions and by frequencies that are much higher
than the gyro frequencies of the above two species, were investigated. The response of
the plasma to such long wavelength low frequencies perturbations may be described by
the magnetohydrodynamic (MHD) model. However, recently there is a growing interest
in phenomena that are characterized by an intermediate range of frequencies and wave
lengths, i.e, by wavelengths that are bigger than the Larmor radius of the electrons but
smaller than that of the ions and frequencies that are higher than ions gyro frequency and
smaller than that of the electrons. The response of the plasma to such perturbations is
described by an extended theory that is called Hall MHD (HMHD) which is obtained
from the MHD model by taking into account the Hall effect. Examples of laboratory
situations in which such parameter regime is relevant are axial plasma implosion in Z-
pinches in schemes to reach inertial confinement for thermonuclear purposes and in
capillary discharges aimed at producing high intensity radiation in wave length range
between UV and X rays. In such devices a high current is driven along their axis. This
results in an azimuthal magnetic field that compresses the plasma (figure 1.1). The

characteristic frequencies that describe some of the regions in devices as Z-pinch and



capillary discharge are found to be in the range between the ion's to the electrons gyro
frequencies and hence those regions should be described by the HMHD equations.
Brushlinskii and Morozov [1] were the first to recognize the importance of the Hall
instability. They have encountered large oscillations in their numerical simulation of
plasma acceleration in channels and have shown that those oscillations result from the
non evolutionarity of the HMHD equations due to the Hall instability. No detailed
discussion, however, was presented by them. Later on, Huba [2], and Huba and hassam
[3] have presented an analysis of the Rayleigh-Taylor as well as the drift instability in
HMHD plasmas while Almaguer [4] investigated the role of resistivity in such
instabilities. Recently, Zhu et al [5] have investigated the extension of the Ballooning
modes in HMHD plasmas and their relevance in some space applications. Apart from the
instabilities, the stable modes of wave propagation in HMHD plasmas were also
extensively studied over the last two decades. Thus, one of those stable modes has been
found to describe a fast non dissipative penetration of magnetic field into the plasma and
provides the basis for modern concepts of plasma opening switches [6] and [7]. In the
current work we present a detailed analysis of the stable as well as the unstable modes in
accelerating inhomogeneous HMHD plasmas. In particular, we demonstrate the existence
of an acceleration-driven instability and derive the conditions for its occurrence as well as
its growth rate. In section 2 we lay the theoretical basis of the current analysis and discuss
wave propagation in two-fluid homogeneous plasmas and discuss the transition to single
fluid theories. A detailed analysis of the stable as well as the unstable modes, that
propagate perpendicular to the magnetic field in inhomogeneous accelerating plasmas
and close to perpendicular propagation is presented in section 3 while propagation with

an arbitrary angle to the magnetic field is discussed in section 4.
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Figure 1.1 The geometry of a Z-pinch. Current is applied to the plasma in the direction shown, resulting in

an azimuthal magnetic field. The consequent Lorentz force results in plasma compression.



2. Theoretical model

2.1 The two-fluid model

Consider a fully ionized plasma that is composed of singly charged ions and electrons.
Each of the species is treated as a fluid that interacts with the other fluid through the self
consistent electromagnetic fields. Thus, the fluid equations for the ions (properties of the
ionic fluid are denoted by subscript i) and the electrons (properties of the electronic fluid

are denoted by subscript e) are:

Continuity equation for ions:

%+V(niUi) =0 2.1)
ot
Continuity equation for electrons:
0
e sV, U,)=0 2.2)
ot

Momentum equation for ions:
ou, 1
nl.ml.(a—’+(Ul.V)Ul.) =nel E+—U,xB|-VP. -V 7w, +p,
t c

Momentum equation for electrons:

neme(age +UVU,) = —nee(E +er xBj—VPe -V.m, +p,
t c



The stress tensor has been split into an isotropic part P and an anisotropic partz. The

terms p, and p, represent momentum exchange between electrons and ions and

according to momentum conservation these two forces must be equal and with opposite

signs i,e, p, =—p, - Neglecting viscosity tensor for cold plasma (neglecting the =

term), the equations of motion are:

for electrons:
0 1
neme(a—UeJr(UeV)Ue):—nee(E +—Ue><Bj—VPe, (2.3)
t C

for ions:

nm, (aéU; +UVU,) = nie(E Ay, xBj—vg : (2.4)
t c

The continuity and momentum equations are supplemented by Maxwell's equations that

are given by:

Faraday's law: VxE = —la—B , (2.5)
c Ot
. OE
Ampere's law: cVxB - 8_ =47 . (2.6)
t

Where the electric current density J is given by:

J =enU, -nU,) . 2.7)

In addition, equations of state are needed in order to provide relationship between the
thermodynamic properties of the plasma such as the pressure, temperature and density.

This will be discussed in section 2.3.



Thus, equations (2.1) — (2.7) constitute a set of partial differential equations that describe
the self consistent evolution of the hydrodynamical properties of the plasma and the

electromagnetic fields.

2.2 Wave analysis

The first step in wave analysis is to separate any variable in the equation into two parts:
an equilibrium part and a perturbation. Assuming that the perturbations are very small in
comparison to the equilibrium quantities allows linearizing the equations by neglecting
powers (higher than the first) of the perturbation, leaving only terms that are of first order
in the perturbations. Thus, the evolution of the perturbations is described by a set of
linear partial differential equations.

All the perturbed quantities are expressed as superposition of planar waves with
frequencies @ and a wave vector k. Due to the linearity of the equations only a single
component of the fourier decomposition need to be examined for each variable f.

Thus,

f — fO +flei(K~r—{ur) , (28)

2 = k(x+13+1.2) r=xx+yy+zzZ,

where f° is the equilibrium part and f' is the perturbation amplitude.

Substituting expression (2.8) into equations (2.1) — (2.6) results in a linear and
homogeneous set of algebraic equations for the amplitudes of the perturbed physical
quantities. The condition for existence of nontrivial solution is that the determinant of the
matrix of the coefficients of the above linear system is zero. This condition results in a
polynomial equation for @ as a function of k and is called dispersion equation. Since
there are no source terms, the solutions of the dispersion relation for @ describe all the

natural modes of the waves. If some of the roots of the dispersion relation are complex



there is an exponential growth of the perturbations. This exponential growth represents an
instability.

It is assumed now that the plasma is cold, homogeneous and stationary. The direction of
the magnetic field is chosen to be along the z axis and the x direction is chosen (without
loss of generality) to be the direction of propagation of the wave perpendicular to the
magnetic field, such that

k = ksin@x+kcos@7,

Where @ is the angle between the magnetic field and the wave vector. Assuming that the
plasma is cold means that we neglect the pressure terms in equations (2.2) — (2.3). By
solving equations (2.2) and (2.3) the velocity component of electrons and ions can be
found:

e, (ioE, —QE))

uax 2 2
m, (0" —£2))

) 2.9

e, (i0E, + Q,E,)

“ m, (@ —27)

u

9

ie E
u — az,

az

m,®

where o =1i,e for ions and electrons respectively, and:

is the gyro frequency for ions or electrons respectively.

Inserting (2.9) into (2.7) we find the current density vector, which is related to the electric

field by the conductivity tensor [o] in the following way:

J, :ZO'U.EJ. )
j



The dielectric permittivity tensor[¢] can now be found according to the following

definition
dri
D = E+?J Z GE -
And is given by
g 1&g, 0
[el=|—-ig, & O], (2.10)
0 0 g
where
* w*
e =1-y —~ =— &, =1- re . 2.11
D Y oy Z Tony ST @b
and
4dme*

is respectively the ions and electrons plasma frequency.

Finally, the dispersion equation can be expressed in terms of the component of the

permittivity tensor (Ref. [6] and [7]):

An* +Bn*+C =0, (2.12)

where the unknown is the refractive index defined by n = k¢/w and

A=g sin’ 0+, cos’ 0,
B=-¢¢&,(1+cos’ 0)— (&) —&;)sin’ 6,

C=¢,(¢' -&)).

The solution of equation (2.12) is given by:



1 —~B++B* —4AC

2A

(2.13)

It can be shown that B> —4AC > 0. Hence, n, as given by equation (2.13), may be either
pure real or pure imaginary. This means that for a given real @, k may be either pure real
or pure imaginary. Waves cannot propagate in regions that are characterized by pure
imaginary values of k and hence going throughn” =0, a transition is made from a region
of transparency to the wave to region of evanescence. Thus, the case n° =0 is called
cutoff and a wave is reflected from a cutoff surface.

The limit of n®> — oo is called resonance frequency. Waves propagating in this
frequency will be absorbed. These two conditions on n” establish the range of @ at
which waves can propagate.

Equation (2.12) is a fifth order polynomial equation for @ and hence defines five
branches of wave propagation. There are three resonances that are defined by the

condition A = 0. For low density plasma (®,, << £2,):

2
@
. :Qe(1+%Q—”;sin2 0),

e
2 = o
w, =®,, cost,

e

o) = Qi(l—% tan’ ).

m.

l

The expression for the first resonant frequency is valid for all angles. In particular, for
0 = /2 it is called the upper hybrid frequency and given by (This expression holds for

both low as well as high density plasmas):

w, =42 + o, .

The expressions for the other two resonant frequencies are valid only under the condition:

10



m
cos? @ >>—< .
m.

1

In the case that the last inequality is not satisfied, the last two resonant frequencies for

0 — x/2 are given by:

For dense plasmas the second resonant is called the lower hybrid frequency and is given

by:

8o

There are three cutoff frequencies that are determined from the condition n° =0 and are

given by:

Propagation parallel to magnetic field

Solving for € =0 yields:

2 2
. ®, o,

nog te, =i @7 2) olot2) (2.14)
o,, o,

l_a)(a)+.(2€)_a)(a)—.0i)

One of the modes is given by:

11



[ 2 2
w = a)pe+a)pl.

which represents langmuir oscillations. Solution (2.14) for the rest four modes is shown
in figure 2.1 while the four roots of (2.12) as a function of k are shown in figure 2.2, the

latter are also called branches of wave propagation.

In the high frequency range, there are two modes that can be determined by neglecting
the ionic contribution to the dielectric permittivity tensor. Both modes are circularly
polarized in the plane perpendicular to the magnetic field, one of which is right hand
polarized and has a resonant frequency that is the electron gyro frequency and the other is
left hand polarized and has a resonant frequency that is the ions gyro frequency. The first
is called extraordinary wave and it rotates in the same sense as the electrons and hence,
for frequencies near the electron gyro frequencies the electrons can absorb energy from
the wave. The second mode is called ordinary wave and regarding the electrons, this
mode does not have a resonant since the electric field rotates in opposite sense to the

electrons. It can be seen in figure (2.1) that for very high frequencies both waves behave

like electromagnetic waves in vacuum i,e, n*=1or w=kc.
For frequencies below the electrons gyro frequencies the ionic contribution should be

retain. There are two branches of electromagnetic waves in that limit (@ << Q2,):

the Alfven wave:

w=kV,cosb,
and the fast magnetosonic wave:
w=kV,,
where
v __B_
4mm,

is the Alfven velocity. Both expressions are valid for any angle of propagation.

12



For intermediate frequency range such that the frequencies approach the ions gyro
frequency, the refractive index of the Alfven wave tends to infinity, which means that it
has a resonant for that frequency. In that intermediate range the Alfven branch is often
called the ion cyclotron wave. For the fast magnetosonic wave in the range

(Q; << w << Q,) the dispersion relation is called the Whistler wave and is given by:

KV,
w=—->"cosf.
Qi
Alfren TWhistler
1 Fast Magnetosome ]
2 ob— 1 /‘ """ Ordinary —— ' "'I'"x-:'x'tf'aaraj}{ax%;”"""""""
- e
I
s
/ / ]
/ /
r / ]
[ !
i |
| | ]
! )
Il 1 | 1 1 [ L 1 1 1
0 Qi Q‘e

Figure 2.1: The refractive index as a function of the frequency @ for propagation parallel to the

magnetic field.
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Figure 2.2: The frequency @ as a function of k for propagation parallel to the magnetic field.

Propagation perpendicular to magnetic field

Solving for 6 = /2 yields:

nf=lg —-g . (2.15)

In the high frequency limit, the perturbed electric field of the ordinary mode is along the
magnetic field and hence, the later does not influence the propagation of that mode. This
is the reason it is called ordinary mode. The extraordinary mode has a resonant frequency
which is the upper hybrid frequency and it exists on both its sides with two cutoffs. The
extraordinary mode has components of the perturbed electric field both parallel as well
perpendicular to k. For very high frequencies though, it becomes transverse
electromagnetic wave in vacuum ( @ = kc ). In the low and intermediate limits, the Alfven
wave disappears and the fast magneto-sonic branch has a resonance at the lower hybrid

frequency.

14
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Figure 2.3: The refractive index as a function of the frequency @ for propagation perpendicular to the

magnetic field.
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Figure 2.4: The frequency @ as a function of k for propagation perpendicular to the magnetic field
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2.3 Single-fluid model

So far the electrons and the ions have been considered as two separate fluids that interact
with each other through the electromagnetic waves. However, for some purposes both
ions and electrons may be viewed as a single effective fluid. The single fluid is
characterized by an average mass density and average fluid velocity that are defined in
the following way:

p =nm;+nm,,

U nmU, +nmU,

n.m; +n,m,

And a pressure that is the sum of the partial pressures of the ions and the electrons:

Due to the large ratio of the ion mass to electron mass the fluid properties are
approximately given by those of the ion fluid, taking into account quasineutrality, i,e,
n,=n,=n:

p = nm;,

2
=

The equations that govern the motion of the single fluid may be obtained in the following
way: the mass conservation equation for the fluid is derived by multiplying the continuity
equations (2.1) and (2.2) for ions and electrons by the electrons and ions mass

respectively, and adding the two equations. The result is:

2—’;+v-(pU)=0. (2.16)

16



The momentum equation for the single fluid is obtained by adding (2.3) and (2.4):

p%—lt]+p(UV)U _I*B _gp. (2.17)
C

An additional equation is obtained by replacing U, in the momentum equation for the

electrons (2.3) by expression derived from equation (2.7):

U, :U—L,
ne
results in:
E:_lUxBJXB_VPe—me{ﬁ(v—ij}. (2.18)
c nec ne ot ne

Neglecting electron inertia results the following equation:

E--tuxpsT>B_VE
C nec ne

which is also known as the generalized ohms law.

In order to determined under what circumstances the term that represents the electron
inertia may be neglected we examine the ratio of inertia term to the Lorentz force term in

the electron momentum equation. This ratio is given by:

wm,c

@
Be Q5

Thus in the limit of £2, >> w electron inertia can be neglected.

17



Applying the curl operator to both sides of equation (2.18) and inserting Faraday's law
results in:

B B +myxI>B
ot pe

)+ﬁanVPe =0. (2.19)

The set of hydrodynamic and Maxwell's equations are supplemented by equations of
state. Thus, assuming that the plasma is an ideal gas that is characterized by a specific

heat ratio ¥, the following thermodynamic relations are employed:

P = pRT ,
and

P=C(s)-p".
Under either isothermal or isentropic flow, the above two relations result in:
VP=a’Vp, (2.20)

where a is either the isothermal or isentropic sound velocity and C is a function of the

entropy s.

With the definition of (2.20) the last term in equation (2.19) is equal zero
To summarize, the partial differential equations that govern the evolution of the plasma

within the single fluid approach are:

P vy =0, (2.21a)
ot
a—B—Vx(UxB)+mV><(JXB):O, (2.21b)
ot pe
Sv+wvw I8 2VP _y. 2.21¢)
ot pc P

18



MHD and HMHD

The third term on the left hand side of equation (2.21b) is known in the literature as the
Hall term. In order to examine its magnitude relative to the other terms in the equation,

the following estimate is carried out:

JxB
mvx( ) 2np2 2y72
pe mck”B KV, 0,
~ — ~ . (2.22)
oB —iwB4npe 2 o
Ot

As may be realized from the previous section, in the low frequency limit, i,e, @ << 2,
o is of the order of kV,. Hence, the ratio in (2.22) is of the order of a)/ €., which is

much smaller than unity. This means that the Hall term may be neglected in equation
(2.21b). The model that result from omitting the Hall term from equation (2.21b) is called

Magnetohydrodynamic (MHD) and is characterized by @ << £2, << (2, which means that
both ions and electrons are magnetized.
The term kZVA2 / Q,.Z is sometimes called the Hall parameter and it can also be written in

terms of the plasma ion frequency:

Turning now to the higher frequency range, i,e, @ >> (2. (but still neglecting electron

inertia so that @ << £2,) it is seen in (2.22) that k°V? /€2, >>1 in such a way that the ratio

in (2.22) is of the order of unity or higher. Hence, the Hall term has to be retained in
equation (2.21b). The resulting model is called Hall Magnetohydrodynamic (HMHD) and
describes magnetized electrons (@ << £2,) and unmagnetized ions (@ >> £2,).

Knowing that V, =ke for Alfven waves phase velocity it follows that for the MHD

approximation k must be small in order to keep these terms small. That corresponds to

long waves in the MHD limit.

19



In the MHD limit we are left with the single fluid system of equations which contain the

single fluid momentum equation, Ohms law and continuity equation.

Finally, we would like to express the current density J in terms of the magnetic field B.
In order to do that we examine the ratio of the two terms on the left hand side of

Ampere's law (2.6):

6£
o  Eoo
cVxB c¢Bk

From Faraday's law it follows:
Bw E o
oc -
c B kc

oF
L a (o) L
cVxB kc n?

It follows that forn® >> 1, the displacement current may be neglected. Thus, the resulting

HMHD equations are:

Svswvw+ar Y- L vuBxB=0. (2.23a)
ot p A4np
B U xB)+emvx| VBB (2.23b)
ot 4rpe
HMHD Term
op
L+ V(pU) =0, (2.23¢)

20



2.4 Frozen in magnetic field
In order to investigate the relative motion of the magnetic field lines and the plasma we

examine the time variation of the magnetic field flux. The latter is defined for an arbitrary

surface in the following way:

¢=J'B-dS.

Assuming that the surface is moving with a velocity V, ¢ changes due to time variation
in B as well as due to the change of the surface itself, as a result of its motion effect of

convection. Thus, the total rate of change of ¢ is given by:

oS
— = |—:dS+|B-—
dt I ! ot

Letting dl be a unit vector lying on the circumference of S. Due to the velocity V the
surface sweeps out an area Vdtxdl in time dt (figure 2.5). Applying Gauss theorem to

the volume created by the motion of the surface yields:
j B-— = 3§B (V xdl)
Substituting for the change in the surface S and summing along the circumference of S:
a9 _ i‘;—f-ds +§B-(V xdl).
Finally, using stokes theorem for the second term on the left hand side results in:

j[——vx(v xB)} (224

S

21



Sifttdt)

Figure 2.5: Due to the velocity V the surface S sweeps out an area Vdt xdl in time dt.

Consider now the MHD model and assume that V is the fluid average velocity U. In this
case, using equation (2.21b) it is readily seen that d¢/dt =0. This means that the
magnetic field lines are convected along with the fluid mass elements and are thus said to
be frozen into the fluid.

Turning now to the HMHD model, we assume that the velocity V is the electrons velocity

U,. Expressing U, in terms of U and J and inserting the result into equation (2.24)

yields:

JxB

ne

a9 _ 1|98 _ dS =
i ![at Vx(UxB)+V x( )} ds =0. (2.25)

Equation (2.25) means that the magnetic field is now frozen into the electronic fluid. In
this sense, HMHD, in contrast to MHD, is not a truly single fluid model and as will be
seen later this gives rise to phenomena such as non diffusive magnetic field penetration

that are unique to the parameter range that defines the HMHD model.
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2.5 Waves in hot homogeneous plasmas

MHD Waves in homogeneous plasmas

Considering equations (2.23a) — (2.23c) in the MHD limit and taking into account the

pressure term in (2.23a) we obtain the following dispersion equation:

o’ -0’k (@ +V, (+cos’ O) + 0’ k*V,> cos? O (V,> +2a*)—k°V,*a* cos* @,  (2.26)

where @ is the angle between the wave and the magnetic field. V, is the Alfven velocity

that was defined in the section 2.2. Thus, we obtain three possible modes:

Alfven waves

®w=kV,cos@,

and fast magnetosonic and slow magnetosonic waves (correspond to the =+ signs

respectively):

o =k’ %[(az +V.H)+ J(a2 +V,2)? —4a’V,’ cos’ 9] (2.27)

Two limits of equation (2.27) are of interest, namely, parallel and perpendicular to the

magnetic field propagation.

Parallel propagation to magnetic field; i,e, d =0:

The Alfven wave turns into o =kV/, .

Fast Magnetosonic and Slow Magnetosonic modes turns into the Alfven Waves and
sound waves.

The perturbations that characterize the Alfven wave are the velocity component
perpendicular to the magnetic field and a magnetic field perturbation which is also
perpendicular to the unperturbed magnetic field. The relation between those perturbations

is given by:

23



where the subscript x denotes the direction perpendicular to the unperturbed magnetic
field. This result emphasizes the fact that the magnetic field is frozen into the ions fluid in
the MHD model.

Perpendicular propagation to magnetic field; i,e, 8 = 7/2:

The Alfven and the Slow Magnetosonic waves disappear and only the Fast Magnetosonic

mode exists and is given by:
w=kya*+V,’
: . : , 1, , B . o
For this magnetosonic wave we can write: V), =—(a p+4—). This phase velocity is
yo, /4

exactly like sound waves velocity but instead of thermal pressure we have the total
pressure which is the sum of the thermal and magnetic pressures.

The perturbations that characterize the fast magnetosonic wave are of the velocity
component perpendicular to the magnetic field, a magnetic field perturbation which is
parallel to the unperturbed magnetic field and a perturbation in the density. The

perturbations as functions of the magnetic field perturbation are given by:

1

u,  _b
B?

Wita B

and

p_b
p B’
where the subscript z denotes the direction parallel to the unperturbed magnetic field.

These waves are longitudinal waves, with a pressure wave that moves in the wave

direction like sound waves.

24



HMHD Waves in homogeneous plasmas

The HMHD model differs from the two fluid one by neglecting in the HMHD the
electrons inertia, hence, the high frequency modes that were discussed in section 2.2 do
not exist within the framework of the HMHD model. Thus, in HMHD the parallel
propagation modes are the fast magnetosonic waves that are turns into whistler modes for

high k's with resonance at (2, and Alfven waves with resonance at (2

(see figure 2.2). The only non evanescent perpendicular mode is the fast magnetosonic

wave with a resonance at the lower hybrid frequency (see figure 2.4).
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3. HMHD Wave propagation perpendicular to
magnetic field in inhomogeneous plasma.

Until now, the wave analysis that was carried out in the previous sections for
homogeneous plasma is well known and can be found in papers and text books
(references [6] and [7]). In this chapter a detailed analysis of waves in the HMHD limit
for inhomogeneous plasma is presented. This constitutes the main contribution of this

work.
3.1 Basic model and assumptions.

In this section, wave propagation in inhomogeneous plasmas is considered such that the
wave vector is perpendicular to the magnetic field as well to the density gradient (Figure
3.1). The motivation for investigating such geometry is drawn from such devices as Z -
pinch and capillary discharge, in which both the plasma flow as well as the density
gradient are aligned along the radial direction, the magnetic field is azimuthal, while
short scale perturbations along the z - axis are experimentally observed.

Thus, the unperturbed state is characterized by a magnetic field that is aligned along the z
axis and a density gradient (which is in the direction of the flow) along the x axis.
Another simplification is made by taking the magnetic field gradient to be aligned with

density gradient:

B=Bx:,  p=pkx), k=kK.
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Figure 3.1: The wave vector is perpendicular to the magnetic field as well to the density gradient.

As a result, the acceleration of the plasma is in the x direction. From equation (2.21c¢) for

steady state:

2
W _www=TB_pYr _ _er +a2Vp}. (3.1)
dt pc P pl 8r
The perturbations are written in the following form:
B, =, '3+b, 5+b 2)e ",
U =@, '3+u,'d+u, 2)e ™, (3.2)
o, = plei(ky—wr).

It is further assumed that the perturbations wave length 27/k , is much smaller than the

characteristic scale of the inhomogeneity of the unperturbed state, such that:

kL, >>1, 3.3)
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where

/L, ~Vp/p~ VB/B.

Assumption (3.3) is also known as the method of frozen coefficient and means that the
coefficients of the perturbations are almost constant in compare with the perturbation.
Inserting (3.2) into equations (2.23a) - (2.23c), transforming to a local frame of reference
that moves with the plasma and linearizing around the unperturbed state yields the

following set of 7 equations:

b (4erpw+ckmB) =0, (3.4a)
p =B PpE) 1 (3.4b)
4erp w
(—ia)—ik Bmep jb; v B —ikBu! + ik 2B 2 (3.4c)
4mpe ) - 4mp’e
%bi —iou' =0, (3.4d)
P
2
KB 4 +ou’ + ka p =0, (3.4e)
4 y
4mp p
=By, (3.4)
- dmpw
u, p'—ikpu, —iwp' =0, (3.4¢2)

where the prime denotes differentiation with respect to the argument. Equations (3.4a),

(3.4b) and (3.4f) form a decoupled subsystem that gives a non zero solution for the

quantities b, and u in terms of b, along withb. = u, = u;, =0. This subsystem

corresponds to the following relation between @ and k:

:kV—AZ[—(U V)U +EJ, (3.5)
ol v 1,
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where

This is a new stable mode which depends on the inhomogeneity of the plasma and
disappears in homogeneous and constant flow plasmas. The rest of the eigen frequencies

and eigen functions are obtained by assuming that:

o= b = u =0.
Thus, using once again the condition k >>1/L, the solution for the second decoupled

subsystem, i,e: equations (3.1d) , (3.1e) and (3.1g), may be expressed in terms of the

perturbed magnetic field in the Z direction.

Bk’
P @ —a (.60
kBw
u, = @k =) b, (3.6b)
i =- 4:;@ b . (3.6¢)

Substituting (3.6a) — (3.6¢) into (3.4c) results the following dispersion equation that

provides a relationship between @ and k.

2 3 2
»’ +a)szz—a)k2VA2(l+ﬂ)+ KV

i~n i

U-V)U =0. (3.7

Equation (3.7) is an equation of order three with three possible roots one of which has to

be real and the other two may be either real or a pair of complex -conjugate roots. In the
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latter case, one of the two complex roots given rise to an unbounded exponential growth

of the perturbations, i.e, an instability.

3.2 Conditions for instability

Conditions for complex roots for equation (3.4) can be obtained as follows:

For any polynomial of order 3 of the form: x* +a,x*> +a,x+a; =0.

Changing variable:
reobiyy
3 b
results in:
y3+3py+2q=0,
where
1 al2 1 a,a, 2a13
=—(a,——), =—(a, — +—).
P 3( 2773 ) q 3( 3 3 27 )

If p<0 the conditions for complex roots is D > 0, where
D=gq’+p’

For equation (3.7) the coefficient p and ¢ are given by:

1 kv, }z AP

=—|—k*V 2(l+ )— -t
p 3{ A B 3L 202 9Ln2‘Qi2

n 1

kW;{U.VU v.a+p  2v/ } k"VA[U.VU 2V, }
q= + + = +

2 | Qv, 3L 27L°Q° 2 | Qv, 271L°Q°
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Consequently, the condition D > 0 yields the following condition on the acceleration for

instability:
(U -VU)* +b (U -VU) +¢c>0 , (3.8)
where
v’
—9L Q 1+ 2V,
27L, Q ( ( P- )
and
V (1+ﬁ)
= V., +4L, Q 1+
S (% (14 ).

n

The solution of (3.8) is given by:

U-VU :%[—bix/bz —4c] :
which means that if the acceleration satisfied the following inequalities:

U-vU <— —b—b* - 4c]
or

U-vU > —b+\/b2—4c]

Equation (3.7) posses two complex conjugated roots. In the HMHD limit V, /Q,L, >>1

these conditions are:

U-VU >iLan(1+/3)2 (3.9a)
or
4
U-VU < —%. (3.9b)
27102,
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It is noted that if L, is taken to be negative, the inequality signs change.

3.3 Solution

Figure 3.2 presents a plot of the roots of equation (3.7). The roots are marked with
numbers 1-3. In the MHD limit (kV,/£2 <<1), roots 1 and 2 converge to the fast

magnetosonic wave. In the HMHD limit, it is one of these roots that becomes unstable.

The imaginary part of this root is shown with the dashed line.

3
25¢
2_
[2}
o /
v 15t \
1F
057
0 2 4 6 3
kv
£

Figure 3.2: Plot of the roots of Eq. (3.7). The dashed line represents the imaginary part of the complex
conjugate roots.
The parameters for this plot are: g =1, kL, =3, U-VU /LnkZVA2 =0.1

Stable mode

The mode that is denoted by subscript 1 in figure 3.2 remains always stable i.e, @, is

always real. In the MHD limitV, /L €. << 1, this mode may be presented as follows:
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+ U'ZVU L o Ya gl (3.10)

, =kVA{ 1+ 4

For homogeneous plasma this root turns into the fast magnetosonic wave.

In the HMHD limitV, /L, 2, >>1:

2 ) YL O. 2
o =k, YA UVU Q) [ L L 3.11)
Lo (Lo 4 v,

The first order term of @, in (3.11) does not depend on acceleration and looks like

modified whistler where k/L, replaces k”. As the acceleration grows the second order

term will gradually become effective.

Substituting the first order term of @, in (3.11) into (3.6a) - (3.6¢) yields:

1 2.1
% - (_Q‘;Ln j % (3.12)
A
and
it [’ij .
J ‘Qi ph ’
where

V,=o/k.

Relations (3.12) means that the relative perturbations in the ionic fluid are much smaller
than those in the electronic fluid and the magnetic field. Thus, while the ions are
practically immobile in this mode, the electrons are moving and carrying with them the
perturbations in the magnetic field, as was shown in section 2.4. Hence, this mode is

called magnetic field penetration mode. It is further noticed that its phase velocity is
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much bigger than the Alfven velocity V, . The magnetic field penetration mode provides

the basis to such devices as the plasma opening switch [9].

Unstable modes

The two other roots in the MHD limit are:

w2=kVA{W— UV L&, ol ]},

2Ln‘Qi2 (1 + ﬂ) VA Ln‘Qi
and
kU -VU
0, =—.
Q.0+ p)

It is readily seen that mode 3 disappears in inhomogeneous plasma while mode 2 turns

into the fast magnetosonic wave.

In the HMHD limit the two roots take the following form:

(3.13)
: LY . 2
0y, =k, 014 pr| LYV AP LBy [UVU A5 /) |
) L Q. 4 v, L, 4
Hence, the growth rate of the instability is given by:
2
LN N LAL AR (3.14)
L O 4

It is apparent from condition (3.14) that in order to obtain an instability the acceleration
has to be along the direction of inhomogeneity, as is indeed the case during the
compression and expansion stages in z-pinches and capillary discharges. In such

situations condition (3.9b) is not satisfied.
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Figure 3.3: The roots of Eq. (3.7) versus dimensionless acceleration {J . VU / Lan .

The parameters for this plotare: g=1, kL =3, kV,/Q,=2

It is seen from equation (3.14) and from figure 3.3 that as the inhomogeneity length scale
increases, a higher acceleration is needed in order to achieve the instability threshold.

This can also be seen from the instability criteria (3.9) and from figure 3.4.

Figure 3.4 represent the dependence of the growth rate on L, . It is seen from the figure

that as hall parameter increases, the growth rate y increases. This effect of hall parameter

on the instability can also be seen from figure 3.2.
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Figure 3.4: The value of the growth rate y versus the wave number kL, for different values of hall

parameter. The parameters taken for this plotare: g=0.01, U-VU/ L, kszz =0.1

The growth rate y increases linearly with k and tends to infinity in the limitk — oo. This
means that as the wavelength of the perturbation decreases, its growth rate increases
without a bound, thus leading to a nonphysical catastrophic behavior. This nonphysical
result is resolved when electron mass is re introduced into the HMHD equations. This

problem is considered in the next section.

Turning now to determining the properties of modes 2 and 3, we substitute expression

(3.13) into (3.6a) — (3.6¢) and to lowest order in L Q,/V, obtain:

! 1 202 T
%=—(ﬂ—z—€,2’ (1+ﬁ)2J %, (3.15)
A
LR A (3.16)
! kL, (1+8)° 2O
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From equation (3.15) it is seen that as in the magnetic field penetration mode, the relative
perturbations in the ionic fluid are much smaller than those in the electronic fluid. From
equation (3.16) it is seen that the ratio of velocity components is a ratio of two large
terms, namely (V,/Q.L )*and kL, so that the x and y components of the ions velocity
are comparable.

The electric field perturbations may be inferred from Faraday's law:

V X E'1 — _l%’
c Ot
which results in:
-kxE, =—B,,
and hence
E=2p | E =0 (3.17)
ck ~ '

Thus, for the two modes, the electric field perturbation lies in the xy plane so that both
modes are transverse to magnetic field. The ratio E / E can be calculated with the aid
of the permittivity tensor [¢] which was defined for the analysis of homogeneous
plasmas (2.10):

V-D=V:[¢]JE=0. (3.18)

The the result is given by

—i—, (3.19)

where ¢, and ¢, are defined in equation (2.11). Substituting the complex root into (3.19)

results in:

n

2
? oc kL, (ﬁj . (3.20)
c
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In the limit V;/c* <<1/kL, the y component of the perturbed electric field is much

bigger than the x component and hence, the wave is almost linearly polarized in the
direction of the wave. This means that VxE, ~0 so that these waves are almost

electrostatic waves.
3.4 Effects of electron inertia

In the previous section it was shown that the growth given in (3.14) increases linearly
with k and tends to infinity in the limitk — oo. In this section we show that this non
physical result is resolved when electrons inertia is taken into account. Doing so,

equation (2.23b) is modified. Following the same procedure that leads to the result

presented in the previous sections, result in replacing @ with a)(1+c2k2/ a);e) in the

three scalar equations that were derived from (2.23b). Hence, equation (3.7) turns into the
following modified dispersion equation:

(3.21)

o’ (1+k*c? | &> )+w2ﬂ—a}kzv (+ BA+k*c? 1)) + KV, U -VU =0
re QL 4 re Q '

i~n i

This dispersion equation is exactly like the dispersion equation that was considered in the

previous section except for the term k’c” / @}, that represents the finite electron's inertia.

This quantity is proportional to the electron mass and to the square of the wave number £.
It can be neglected if k is small yielding equation (3.17), but should be included for large
k's. The complex root of the equation normalized to the ions gyro frequency as a function

of kc/®,, is shown in figure 3.5 for three different values of #. The growth rate

(imaginary part) is plotted with a dashed line.
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Figure 3.6: The frequency and growth rate normalized with the ions gyro frequency versus the

normalized wave number kc/wpg for different values of 4. The parameters for this plot are:

L,=45, V,=109x10°, o, =56x10", U-VU =05Q’L (1+f3)’

i n

It can be seen from figure 3.5 that for a given value of £ , the growth rate is zero for

wave lengths that are shorter than some nonzero wave length 27 /k", that is given by

O WU -VU -\JL, 1+ p),

~ (3.22)

¢ JL. B2,

Thus, the system is stable for perturbation with k > k. In addition, a maximum in the

growth rate is achieved at a wave length 27 /k_,  which is given by (in the limit f << 1):

X

L O —2JL, (1+ B)2, +/12U -VU + L, (1+ B)> 2} 323

e 3JL, B2
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while the maximal growth rate is:

Y max ~ Dpe J§2(§3(§2(5§1 _8§2)_§3)+§;(§2 +S) , (3.24)

Q, CQ? 54/3(252 _§1)

1

where

‘51:V‘§3+9822 ) ‘fz:\/L_nQi ) & =12U0-VU.

It is easy to see from equations (3.22)-(3.24) and figure 3.5 that for smaller S the system

will be more unstable with bigger maximal growth rate and for a wider range of wave

lengths. Thus, the plasma thermal pressure has a stabilizing effect on the hall instability.

In the limit of k’c*/®;, <<1 and finite k, the quantities k', k,, and y tend to infinity,

> "Ymax

in accordance to the analysis in the previous sections.

In HMHD limit (V, /Q,L, >>1), the condition for instability is modified and takes the

following form:

U-VU > iLan(H B+ pk*c?lw,), (3.25)

which differs from (3.9a) only by the Sk’c’/?, term. It is easily seen from (3.25) that

in the range of short wave lengths, where the term k’c’ /a);e must be taken into account,

S make the instability condition harder to achieve and hence, increasing the pressure has

a stabilizing effect.
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3.5 Wave propagation almost perpendicular to magnetic field

So far waves that propagate perpendicular to the magnetic field have been considered. It
was shown that such waves are unstable under certain conditions. In this section it will be
shown that these waves are the most unstable among all waves whose direction of
propagation is in small vicinity around perpendicular propagation. The geometry remains
the same except for the wave vector which now forms a small angle 6 with the y axis as

shown in figure 3.6.

Vo
Figure 3.7: The wave vector now forms a small angle O with the y axis
k=ky+k.z=k(cosdy+sind2)~ kj+kozZ
The perturbations are written in the following form:

1A 1A LAy i(ky+okz—
B =, x+b, y+b, 2)e!oreen
U =@, 2+u, §+u, 2)e % (3.26)

1 _i(ky+dkz—art)

p=pe
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Inserting (3.26) into equations (2.21a) - (2.21c¢), linearizing around the unperturbed state

and neglecting terms proportional to 1/L, with respect tok, results in a linear and

homogeneous set of equations. The condition for the existence of non trivial solution

results in the following dispersion equation that provides a relationship between @ and k:

(3.27)

ot KLU DU VD o kY] (L,,w VU AViB+ LOMA) 52}02 N
je) Q; KLV

1

KVLVIAA+ B+ LWU-VUQ+ ) - kViB( oo U-VIUL,WU-VIU+V)
L0, 0’ KLV, B

In the limito — 0, equation (3.27) is simplified and can be written as follows:

(3.28)

{a)—kV—A(M+£]Hw3 +a)2kL—a)k2VA2(1+ﬂ)+ KV, (U-V)U} =0
Q0 QL Q

v, L,

i i~n i

Equation (3.28) corresponds to the dispersion equation obtained in the problem of

orthogonal propagation which was discussed in previous section.
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Figure 3.8: The frequency @ and the growth rate ¥ of the unstable mode as a function of the angle O .

The dotted line represents the solution in the limit v A / L >>1. The parameters for this plot:

B=1, k=06, L,=5 kV,/2 =10, 2 =48x10", (U-V)U=0.1LkV;

n

Thus, for a given k, it is readily seen that the maximum growth rate is attained for
perpendicular propagation, i.e, 0 =0. Furthermore the growth rate decreases as J is
increased until it reaches zero for a finite 6. Beyond that angle, the system is stable. In
order to obtain an estimate of the stabilizing effect of o, the frequency @ is expanded in

taylor series in 0 around zero:

0=w,+0,0+0,0" +.., (3.29)

where @, is the frequency that corresponds to 6 =0 which is known from the previous
chapter. Substituting (3.29) into (3.27), and taking @, to be the complex root from

previous chapter yields:
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w =0

Taking the HMHD limit V, /L, €2, >>1 for e, results in:

@ =HRT é%g [LV}JJ {HO[[L;/—QJ ]} o
\/(')_(Hﬂ)Z s A

L

The +signs correspond to the + signs of the imaginary part of the complex root so it
decreases the growth rate which has a maximum foro =0. Thus, equation (3.30)
demonstrates the stabilizing effect of a small deviation from exact perpendicular

propagation. The approximated solution for almost perpendicular propagation in the
HMHD limit (V, /L €2, >>1) may be given by @ = @, + ®,5” and is shown in dotted line

in figure 3.8.
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4. Three dimensional oblique wave

4.1 Basic model and assumptions

In this section, a first step is made towards a comprehensive study of wave propagation in
inhomogeneous HMHD plasmas such that the wave vector has non vanishing component
along any of the three axes. Thus, the same geometry as presented in the previous section
is considered, with the different that now the wave vector is characterized by three
arbitrary angles it forms with the three axes. The cosines of those angles are denoted by

[, ly, [, and all three are assumed to be of the same order.

Figure 3.1: The wave vector is characterized by three arbitrary angles it forms with the axes.

B=B(k, p=p(x), k=kitkij+ki=k(Z+]F+12).
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The perturbations are written in the following form:

1A N LAy k(L y+ y+l 2)-iot
B, :(bxx+by y+b, 2)e e

U1 — (Mxl.£+ uylj\] + uzl2)€ik(l‘y+l"HI‘Z)#M, (41)

_ 1 _ik(ly+l y+l z)—iot

pL=pe

Inserting (4.1) into equations (2.19a) - (2.19c¢), linearizing around the basic state results a

set of 7 equations:

—i(B'kLV; +&Q,B)b, +iBVk’Ib, — BV k’L |

y

b

z

' +iB*Q .kl u! (4.2a)

Z 1 X

BV (B/L, +iB'kl,— Bk*I> —= B")b, —iB*wX,b, + Bkl_V { (iB'+Bkl )b’

(4.2b)
+iB*Qkl u! —4iB'kl .7V} p' =0

B*k’11.Vb, —Bki.V; (iB—iB/L,+ Bkl )b} —iB*(klV, |L, + &Q,)b! 420)

+B*Q),(BiBkl )u! —iB*Q.kl u' +47iB'kl Vi p' =0 '
iBkl.V (b, +V }(B'—iBkl )b! —iB’wu =0 (4.2d)
—BKLV b, + Bkl Vb, + 47V Kkl p' + B*wu, =0 (4.2¢)
B'Vb! +idnpV k. p' +iB>wul =0 (4.2)
B*(I/L, —ikl yu, —iB*kl u, —iB*kl_u_ —i4zV wp' =0 (4.2g)
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4.2 Solution

The condition for having non trivial solutions for the linear homogeneous set of equations
(4.2a) — (4.2g) is that the determinant of the matrix of coefficient is zero. Inspecting

equations (4.2a) — (4.2g) reveals that that determinant may be written as:

D(w,k) = —ia)U+kleH+ikA+LiB : (4.3)

n

where U, H, A and B are 7x7 matrices that contain functions of the unperturbed state
and the direction cosines. In particular, A and B contains terms that result from the
inhomogeneity of the plasma. The significant different between the perpendicular
propagation (/, =0) and the general case is immediately obvious. Assuming that k is
large (in the sense discussed in the previous section), the former case is characterized by
a linear relationship between @ and k, while the dominant term in the latter case is the
one proportional to H and thus making @ proportional to k>. Consequently, the

frequency @ is expanded in a power series in the following way:
o =wk’ +ok+wo,+... (4.4)

Substituting (4.4) into the dispersion relation (4.3) yields a 14™ order polynomial in k.
The condition for non trivial solution is that each coefficient of this polynomial is zero.

Solving for the highest order in & results:

4.5)

This solution represents the whistler modes that are of electronic nature. This may be
seen by substituting (4.5) into (4.2a) - (4.2g). Leaving only terms which proportional to

k*results in:
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bl —_ x'z 1’
X 1_122 4
bl = i, =11 |
y 1_12 z

For high order of k, the only perturbations are of the magnetic field, other perturbations
including density are of smaller order. Taking into account that the magnetic field is
frozen into the electron fluid, this wave is an electron wave for first order approximation.
It may be seen from equation (4.5), that unlike the perpendicular propagation case, the
whistler mode exist in the oblique case also in homogeneous plasmas. As was describes
in the previous section, the whistler modes reemerges in a modified form in the case of
perpendicular propagation due to the plasma inhomogeneity. They were termed also fast
magnetic penetration mode and were found to be unconditionally stable. In order to
investigate the effect of the plasma inhomogeneity on the oblique whistler modes, the

next order contributions to @ are calculated. The result is given by:

LLWU-VU+VIA-P) LLL,WU-VU +Vi(+f)
2L Q 2L Q

w, =

Hence, the growth rate is:

1l
== k| (U-V)U +
=30 [( )

1

Vil+p)
L

n

} (4.6)

The growth rate (4.6) vanishes for homogeneous plasma but if the plasma has no

acceleration and still inhomogeneous we will still have instability. In that case this

instability will be of the orderkV? /2L, . In the MHD limit This quantity will be very

small hence, the growth rate will be very small.
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5. Summary

HMHD waves and instabilities in accelerating non homogeneous plasmas have been
investigated. In contrast to the MHD model, where both ions and electrons are
magnetized, the HMHD model is defined for regimes where electrons are magnetized and

ions are unmagnetized, i.e, Q, <<w<<Q,. The two fluid equations were used,

neglecting the contribution of electrons inertia (which defines the upper bound on the
frequency regime). The problem of waves orthogonal to magnetic field and density
gradient was considered. Linearizing around the basic state we have obtained a set of
linear equations for the perturbation. Assuming that the wave length of the wave is much
smaller than the inhomogeneity scale length, and looking for non trivial solution a
relation between @ and k (dispersion equation) has been obtained. This dispersion
equation was obtained also in [2] and is the same dispersion relation obtained in [1] and

[4] for zero acceleration.

The dispersion relation has three roots that represent three branches of wave propagation.
One of the branches is always stable, is related to the electrons, and has developed from
the fast magnetosonic mode as a result of the plasma's inhomogeneity. This mode is a
modified Whistler mode and provides the mechanism for fast non dissipative penetration
of magnetic field into the plasma. The same root is obtained and discussed in [4]. One of
the two other branches also obtained from the fast magnetosonic wave and when the
acceleration is big anough, it merges with the third branch, which is a new branch, into a
pair of complex conjugate modes one of which is unstable. The unstable mode was found
to be an electrostatic wave with growth rate that proportional to ions acceleration. This

growth rate is maximized when the wave is orthogonal to the magnetic field.

This unstable mode has a growth rate that is proportional to the wave number k. For
k — oo the growth rate tends to infinity which leads to catastrophic instability. This
problem is then ill-posed which is resolved when taking into account electron inertia.

Consequently it was found that the instability exists for a definite range of wave lengths
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and that the growth rate exhibits a maximum at a certain wave length. This maximum is
found to decrease in higher a temperature which also reduces the range of wave length

for which the instability exists.

Further discussion is made for oblique three dimensional waves. Expanding the
frequency in a power series in the wave number k and i.e, short wave lengths, it was
shown that the lowest order produced the Whistler mode whose frequency is proportional
to k* while the next order solution demonstrates that the plasmas inhomogeneity gives

rise to an instability of the whistler mode whose growth rate is proportional to k.
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