Nikon offers total software solution covering image capture, archiving, and analysis.

NIS-Elements is an integrated software imaging platform developed by Nikon which delivers comprehensive microscope control, image capture, documentation, image analysis and data management. NIS-Elements handles multidimensional imaging tasks flawlessly with support for capture, display, peripheral device control, and analysis & data management of images of up to six dimensions. The system also contributes to experiment efficiency with an intuitive image analysis feature set and database building capabilities developed to handle archiving and management of large numbers of multidimensional image files.

Unified control of the entire imaging system offers significant benefits to microscopists for cutting-edge research, such as live cell imaging.

The NIS-Elements suite is available in three packages scaled to address specific application requirements.

- **NIS-Elements AR** is optimized for advanced research applications, featuring fully automated acquisition and device control through full 6D (X, Y, Z, Lambda (Wavelength), Time, Multipoint) image acquisition and a wide range of image analysis.

- **NIS-Elements BR** is suited for standard research applications, photodocumentation of fluorescent samples and image analysis including intensity and counting measurements. It features acquisition and device control through 4D (up to four dimensions can be selected from X, Y, Z, Lambda (Wavelength), Time, Multipoint) acquisition.

- **NIS-Elements D** supports color documentation requirements in bioresearch, clinical and industrial applications, with basic measuring and reporting capabilities.
Why NIS-Elements?
As a leading microscope manufacturer, Nikon realizes the importance of providing its customers with system-based solutions to free them to focus on their projects and research and not on the complexities of the microscope. Never before has a software package offered such comprehensive control of microscope systems, image acquisition, image analysis and data management.

Total Imaging Solution
In designing and bringing to market the most technologically advanced optical systems, Nikon has worked very hard to provide a “total imaging solution” that meets the ever-evolving demands of the microscope user.

•Highest Quality Optical Performance
The world-renowned Nikon CFI60 infinity optical system effectively set a new standard for optical quality by providing longer working distances, higher numerical apertures, and the widest magnification range and documentation field sizes.
As a leader in digital imaging technology, Nikon recognized the importance of adapting its optics to optimize the digital image. Nikon’s new objectives and accessories are specifically engineered for digital imaging.
Because what you see depends greatly on the quality of your microscope, we strive to power our microscope systems with optical technologies that are nothing but state-of-the-art.

•Diverse Line of Powerful Digital Cameras
Image capture has become a high priority in microscopy and the demand for products that deliver high quality and versatile functionality has grown considerably in recent years. In accordance, Nikon offers a full line of digital cameras, addressing the varied needs of microscopists in multiple disciplines. Each Nikon digital camera is designed to work seamlessly with Nikon microscopes, peripherals, and software. With Nikon Digital Sight (DS) series cameras, even novice users can take beautiful and accurate microscopic images. For the advanced researcher, hi-resolution image capture and versatile camera control is fast and simple. Together with Nikon’s new software solutions, image processing and analysis have reached new levels of ease-of-use and sophistication.

•Intelligent Software Solutions
Designed to serve the needs of advanced bioresearch, clinical, industrial and documentation professionals, NIS-Elements provides a totally integrated solution for users of Nikon and other manufacturers’ accessories by delivering automated intelligence to microscopes, cameras, and peripheral components. The software optimizes the imaging process and workflow and provides the critical element of information management for system-based microscopy.

Multi-layer Document Structure
NIS-Elements uses a sophisticated image documentation structure making it possible to achieve non-destructive archiving of image data including annotation (arrows, lines, text notes), measurement data, binary data for storing results of threshold or classification processes, and meta-data information for recording acquisition and device conditions at the time of image acquisition.
Image Acquisition

NIS-Elements offers the most suitable image acquisition for various applications with the integrated control of the camera, motorized microscope and peripheral devices.

Multichannel (multi color)

NIS-Elements can acquire full bit depth multi-color images, combining multiple fluorescence wavelengths and different illumination methods (DIC, phase contrast etc.), while offering independently scalable channels.

Z-series

Through motorized focus control, NIS-Elements reconstructs and renders 3D images from multiple Z-axis planes.

Time Lapse

Time lapse imaging in NIS-Elements is easily configurable simply by setting the time interval and duration of capture. The Perfect Focus System of the motorized inverted microscope Ti-E enables high-accuracy image capture without focus drifting even during extended time time-lapse experiments.

Multipoint Experiments

NIS-Elements’ motorized stage control offers automated travel to multiple stage points of the sample of a multi-well plate or dish. Stage points are memorized and can be saved and loaded for future imaging sessions.
Image Stitching (Large image)

Large Image Acquisition generates a single high-magnification wide field-of-view image by automatically stitching multiple adjacent frames from a multipoint acquisition using a motorized stage or from multiple single images captured from a previous session. Users can easily select image acquisition ranges and areas from low magnification images.

Multidimensional imaging

ND Acquisition
NIS-Elements captures images in a combination of multiple dimensions such as Time-Lapse, Multichannel, Z-series, and Multipoint. It is also possible to create and manage the acquisition of a multi-dimensional dataset with a thirty-minute time lapse of two wavelengths and a Z series across each well of a multi-well plate.

ND Stimulation
NIS-Elements controls photo stimulation and image acquisition.

ND Simultaneous Stimulation
NIS-Elements enables image acquisition during photo stimulation.

ND Sequential Acquisition
NIS-Elements allows various sequential imaging experiments to be combined with other functions, such as simultaneous photo stimulation and imaging, or multidimensional acquisition.

* Available dimensions vary depending on the package.
Optical Configuration

Presets or ‘Optical Configurations’ can be saved for each observation method such as FITC fluorescence and DIC imaging, memorizing the settings of the microscope, camera and peripheral devices. The optical configurations are created through a one click set up and are displayed as icons in the tool bar for easy access and use.

Movie Capture, Fast Image Capture

NIS-Elements has several options to observe and capture a sample’s change and fast movement.

Fast Time Lapse

Fast Time Lapse is designed for ultra high-speed cameras. The hard disk drive can be used together with PC memory to enable a longer acquisition time.

RAM Capture

RAM Capture allows for acquisition at the fastest possible rate of the camera. A RAM buffer is utilized to enable capture and retrieve a high speed time lapse, which aids in the capture of fleeting events such as calcium sparks, motility and translocation.

AVI Live-Stream Capture

AVI Acquisition automatically captures live data into an easily exportable and viewable AVI format.

Time Saving Acquisition by Hardware Optimization

Triggered Acquisition

Triggering external devices directly from the camera enables synchronized control of various devices such as the laser unit without passing through the PC. This allows for the fastest performance of the system components for multi-wavelength excitation in TIRF observation.

Ti-recipe

This function enables the HUB-A controller of the motorized inverted microscope Ti-E to control both image acquisition and change of fluorescent filter, motorized stage and fluorescent shutter by directly connecting the camera and a HUB-A controller without passing through a PC. As a result of optimizing the communication times of all connected devices, acquisition times for multi-dimensional datasets are greatly reduced.

*Some cameras are not compatible with this function. For more information, please contact Nikon or its authorized representative.

NI-DAQ Control

TTL and analog signal input/output with NI-DAQ Control enables experiments using various triggerable devices. Device triggering minimizes imaging time lag when used to control a Piezo Z device, shutter and wavelength switching, as it performs at the faster rate of the device without software communication delay. The calibration of analog signal output from devices to such as temperature enables data to be measured and observed during experiments.
Display and Data Processing

Various methods are available for displaying and processing captured images and datasets.

Multi-dimensional Image Display

NIS-Elements displays time lapse, multi-channel, multiple X, Y, Z positions in an intuitive layout, which allows for automatic playback and the ability to select subsections of the data to be saved as a new file.

Merge Channels

Multiple single channel images (ex., two from three-channel acquisition images) can be merged together to create an overlay of full depth separately scalable images. With AR and BR, images can be merged by simply dragging the tab of one image onto another image. With D, images are merged by selecting each image for red, blue, green and brightfield channels.

Image Processing

Image Filtering, Color Adjustment

*Usable functions vary depending on the package. With NIS-Elements image processing tools, it is possible to modify image display and feature extraction using various filters for, for example, sharpness, smoothing and detection. White balance and RGB/HIS balance adjustment are additional available options.

Arithmetic operation (Image arithmetic)

NIS-Elements enables arithmetic operations such as addition, subtraction, multiplication and division on an image or between multiple images. Arithmetic operation between multiple images is also possible.

Arithmetic operation (Image averaging)

NIS-Elements reduces the noise of an image by averaging multiple sequential images such as time-lapse images. Rolling averaging that does not reduce frame rate is available as well.
Z-Series Image Display

Z-series images can be displayed in various formats such as max. and min. projections, X-Z axis and Y-Z axis cross-sectional slice view and 3D volume view. Rotatable 3D volume rendered views from 3D datasets are easily converted to an AVI or MOV format for file sharing and export.

Deconvolution

3D Deconvolution
Haze and blur of the acquired fluorescence image can be eliminated. By reassigning out-of-focus intensities back to the spatial locations to where they originated, the intensity of the image is kept and allows for quantitative analysis. Algorithms for wide-field fluorescence, point-scanning confocal and spinning-disk confocal images are available.

2D Deconvolution
The 2D deconvolution module can be applied to a live image or an already acquired dataset. The module also allows the elimination of out-of-focus blur from live images and multidimensional images.

Extended Depth of Focus (EDF)

With motorized focusing
The EDF function selects the in-focus area from multiple Z-stack images, and produces one all-in-focus image. The composite image can be viewed and rotated as a virtual 3D image, as it contains Z-axis information.

With manual focusing
An all-in-focus image is created in real-time in synchronization with the rotation of the focus knob. While the focus is manually adjusted, the in-focus areas of the image at different depths are successively captured and combined for the EDF image.
Measurement and Analysis

Manual Measurement (Interactive Measurement) and Image Annotation

Interactive Measurement allows easy measurement of length and area by drawing lines or an object directly on the image. The results can be attached to the image, and also exported as text or to an Excel spreadsheet. Annotations such as arrows, circles, squares, text are also available display options.

Histogram/Intensity Line Profile/Intensity Surface Plot

Histogram measurement measures the intensity distribution of pixels across the whole image or a defined region. An intensity line profile measurement shows the intensity distribution on a defined line. The Intensity Surface plot shows the intensity distribution of an image with the height of the z-axis line.

Auto Measurement (Object Counting)

Auto measurement measures the number or area of objects which are extracted from images by the creation of a binary layer through thresholding using RGB/HIS or intensity values. The results can be listed or exported as text or an excel file. It is possible to save and reuse thresholding parameters.

ROI Statistics

*Usable functions vary depending on the package.

Common pixel measurements such as area, maximum or minimum intensity are possible with the user defined ROI (Region Of Interest).

ROI or multiple ROIs statistic results for a single image or a multi-dimensional dataset are displayed and easily exported as text or an excel file.

Classifier

Object Classifier

Object classifier uses objects identified by thresholding along with additional features such as shape factors, and other statistical methods including nearest neighbor and neural networks for classifying objects into multiple categories. It is also possible to teach the module based on interactive ‘picking’ of image pixels.

Pixel Classifier

This function classifies each pixel in the image with RGB/HIS and intensity across the whole image. Results are reported in percentage and it possible to save and reuse parameters across a large sample of images. Multiple binary layers are also displayed with multiple colors on the image and are available with other analysis tools within the software package.
Time (Intensity) Measurement

Time measurement creates a graph of sequential intensity changes while time-lapse imaging or from captured time-lapse images. Ratio view function* allows the measurement of the ratio of two wavelengths across multiple ROIs and shows the ratio value by pixel. Numeric data and graph images are exportable and the measurements on the graph are available as well. (* Only with AR)

Calcium & FRET

Ca²⁺ ion concentration calibration of the ratiometric fluorochrome Fura2, for example, is available using an easily configurable wizard. Corrected FRET image and FRET efficiency, reported in percentage is also available using three filter sets (three types of excitation–fluorescent combination: "Donor – Donor," "Acceptor – Acceptor" and "Donor – Acceptor") and two bleed-through factors.

Object Tracking

2D tracking of an object utilizes the threshold of objects over time and produces measurements such as velocity, acceleration, and distance from a specified origin. The tracking module offers both automated tracking and manual tracking methods.
GA (General Analysis)

General Analysis streamlines the setup of image analysis combining functions, such as image preprocessing and thresholding, processing of binary images and features, and measurement settings.

- GA creates a new measurement area by combining multiple binary layers, and creates a new measurement parameter by applying these custom measurement settings.
- Each setting can be stored as a recipe that can be rerun for routine analysis under the same conditions across multiple datasets.

Option

- Image preprocessing
- Setup of multiple analysis tasks
- Image thresholding
- Processing of binary layers (measurement areas)
- Measurement parameters

Output of analyzed results

Automated Measurement results

Object catalog
The HC Template is a dedicated software module within NIS-Elements.

- It allows fully automated acquisition and analysis of a large number of high-content, multi-dimensional images with integrated control of the high-speed motorized focus and stage of Ti-E motorized inverted microscope, camera and peripheral devices.
- HC Template within NIS-Elements allows for quick experimental setups with several autofocusing options and an immediate view of measurement data well by well during acquisition and via a heat map for trend observation and further analysis.

High Content Analysis System

- The microscope-based High Content Analysis System combined with the Ti-E offers a wide range of interchangeable options, including a full range of camera models, such as high-speed and high-definition cameras, as well as a choice of magnifications and fluorescence filters.
- High-speed peripheral devices are optionally available to boost throughput of integrated devices. These include the high-speed piezo Z-objective positioner for fast autofocusing and the automatic plate loader for auto analysis of multiple well plates.

High Content Analysis System

<table>
<thead>
<tr>
<th>Microscope</th>
<th>Motorized inverted microscope ECLIPSE Ti-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatible well plate types</td>
<td>6-, 12-, 24-, 48-, 96-well plates, 384-well plate (for fluorescence observation)</td>
</tr>
<tr>
<td>Multiple FOV experiments</td>
<td>Center, Covering, Random, Random+Center and Regular pattern in each well</td>
</tr>
<tr>
<td>Illumination methods</td>
<td>Fluorescence, Phase contrast, DIC</td>
</tr>
<tr>
<td>Image acquisition</td>
<td>Multichannel, Time lapse, Multidimensional imaging</td>
</tr>
<tr>
<td>Acquisition speed</td>
<td>2 min/96 well plate (1 point/well, 30 msec/shot, without Z stacking, PFS (Perfect Focus System))</td>
</tr>
<tr>
<td>Data visualization</td>
<td>Plate view, Sample labeling, Heat map, Graphing</td>
</tr>
<tr>
<td>Recommended objectives</td>
<td>5 Fluor 4x, Plan Fluor 10x, 5 Plan Fluor ELWD 20x/40x (phase contrast objectives can also be used for image acquisition)</td>
</tr>
<tr>
<td>Recommended imaging devices</td>
<td>Camera : DS-Qi2 (Nikon), Zyla sCMOS (Andor technology), IXon3 DU-897 (Andor technology)</td>
</tr>
<tr>
<td></td>
<td>Confocal microscope : A1+, A1R+, C2+ (Nikon)</td>
</tr>
</tbody>
</table>

High-speed Piezo Z-objective Positioner (Option)

- For fast autofocusing
 - Z travel range: Up to 200 nm
 - Z travel speed: 30 msec
 - Repeatability: ±5 nm

(Physik Instrumente (PI) GmbH & Co. KG)

Automatic Plate Loader (Option)

- For automatic imaging with multiple well plates
 - Number of well plates: Up to 20 plates
 - Loading speed: 30 sec/plate
 - Barcode reader option: 1D and 2D barcode

(Prior Scientific Instruments Ltd.)
Sequential HC Template workflow from acquisition to analysis

1 Experimental setups
The wizard format simplifies settings for each experimental parameter. It also enables sequential operational settings, such as well plate definition, acquisition patterns in a well, wavelengths, autofocus and image analysis.

- Define general job parameters
 - Z-stack
 - Sample labeling
 - Autofocus
 - Sending task completion by e-mail or SNS

- Well plate setting
 - Define well plate to use
 - Select well plate for image capture
 - Define XY image capture pattern inside a well

- Define optical configurations for image capture

- Define analysis
 (Set the custom image analysis using General Analysis on page 11.)

2 Progress display
Current well-plate acquisition point is displayed in real time along with a live image. Image analysis is conducted during image acquisition, allowing for immediate observation of data collection and experimental status.

3 Results display
Various formats are available for displaying results. Plate view is a centralized view that shows acquired images and all associated data. Sample labeling manages image data by linking cells by name, type and quantity of reagent. Heat maps visualize trends in measurement results and analytical values. Graphical displays of analytical values such as histograms, scatter plots and bar graphs are also available.
JOBS Editor

JOBS Editor is a visual programming tool that can create experimental templates (JOBS) simply by dragging and dropping the settings for “tasks” in the sequence of experimental procedures, such as sample definition, image acquisition settings and analysis settings, into the JOBS Editor window. The HC Template offers streamlined operation of high-throughput imaging/analysis. However, JOBS Editor enables easy creation of more complex and custom experimental templates, from image acquisition to analysis, by providing a number of available tasks, without the need of advanced data programming knowledge and the need for creating a macro.

Remote Database/JOBS Viewer* (for HC Template and JOBS Editor)

Enables image analysis and management of a large volume of high-content imaging data on an offline PC. Operating image acquisition and data analysis on separate computers boost total throughput.

General Analysis module is required for offline image analysis.
*JOBS Viewer is not available in some regions.

- Remote Database allows offline exchange of data between computers and network servers.
- Using JOBS Viewer and/or General Analysis, images acquired through HC Template or JOBS can be analyzed on a dedicated offline computer.
Others

HDR (High Dynamic Range) Image Acquisition

HDR creates an image with appropriate brightness in both the dark and bright regions in a sample by combining multiple images acquired with different exposure settings. It is also possible to create HDR images using multiple captured images.

Background Compensation

Background correction uses previously captured images to correct uneven background brightness while imaging or of captured images.

Database

Using the organizer function, captured images are displayed in thumbnails for easy retrieval of the desired image. By simply clicking on the thumbnail image in this view, the image is easily opened. Sorting and filtering this database of images and datasets using acquisition details such as objective settings, date and author is an easy method for data management as well.

Live Image Comparison

Live Compare enables easy image comparison between a sample image and a live image. Live observation side by side with a paused live image is also available in split screen mode.

Report Generation

Images captured with NIS-Elements have information such as acquisition details and analysis results, allowing export and PDF conversion of the image and the associated image header and data information.

User Rights/Control

For safe system management, it is possible to individually limit each user authorization using the user account of Windows® (such as the Administrator or Guest) or the user account of NIS-Elements. It limits the authorization and modification of the device settings (microscopes, cameras or others), optical configuration and layout editing.
GUI Option

Industrial Simple GUI

With D package, the simple GUI mode provides controls for the most common operations such as image capture and simple measurement.

Dark Color Scheme

This popular display option mode has a brightness level interface color palette suitable for use in a dark microscopy room.

Layout Manager

Layout manager enables customizing layouts of controls, toolbars and menus and application (image acquisition or measurement). Saving custom layouts is possible and accessible through one-click tab access.

Compatibility with Third-party Products

NIS-Elements is compatible not only with Nikon products but also with third-party products such as high-sensitivity CCD cameras and peripheral devices. Third party devices and cameras are easy to integrate through the NIS-Elements intuitive install and device manager.

Off-line Package for Analysis

The NIS-Elements off-line software package offers analysis tools such as intensity measurements and object counting of tiff and multi-dimensional format images captured with Nikon’s microscopes and third-party software.

Viewer Software

This is free software for image display of single images and datasets captured using NIS-Elements. Possible views include Tile View, Max/Min Projections and 3D Volume View. Saving multi-dimensional files into TIFF format is available as well. The viewer is downloadable from the Nikon website.

Software Upgrade Agreement (SUA) License

NIS-Elements can be upgraded for one year from the date of purchase. The Software Upgrade Agreement (SUA) License, which is purchasable in one-year license segments, extends the access to the latest version of NIS-Elements.
Supporting Broad Microscope Imaging

NIS-Elements is a common software platform for Nikon microscope systems, which allows the comprehensive control of wide range of functions for cameras, confocal imaging systems and super resolution microscopes.

NIS-Elements C

NIS-Elements C is an optimized software package for confocal imaging. It is compatible with high-speed/high-resolution confocal microscope A1+/A1R+, multiphoton confocal microscope A1 MP+/A1R MP+, confocal microscope C2+ and spectral confocal imaging systems.

N-SIM Analysis option

N-SIM Analysis option allows control of Nikon Super-Resolution Microscope N-SIM, which can achieve an image resolution of 85nm and temporal resolution of up to 0.6 sec/frame using high frequency Structured Illumination.

N-STORM Analysis option

N-STORM Analysis option enables control of Nikon Super-Resolution Microscope N-STORM, which realizes an incredible image resolution of approx. 20nm by utilizing STochastic Optical Reconstruction Microscopy (STORM).
<table>
<thead>
<tr>
<th>Features</th>
<th>AR</th>
<th>BR</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window style</td>
<td>MDI (Multiple Document Interface)</td>
<td>MDI (Multiple Document Interface)</td>
<td>SDI (Single Document Interface)</td>
</tr>
<tr>
<td>Dark color scheme</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>Industrial simple GUI</td>
<td>—</td>
<td>—</td>
<td>○</td>
</tr>
<tr>
<td>Camera control</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Microscope control</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>Nikon made peripheral control</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Non-Nikon peripheral control</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Live image capture</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Time-lapse image capturing (T)</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>Z-series image capturing (Z)</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>Multichannel image capturing (λ)</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>Multipoint image capturing (MP)</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Multidimensional image capturing</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>Stimulation experiment</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RAM capture</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HDR image capture</td>
<td>○</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>AVI live-stream capture</td>
<td>○</td>
<td>○</td>
<td>—</td>
</tr>
<tr>
<td>Objective calibration</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Capturing data savings (Meta-data)</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Image filtering</td>
<td>○</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Binary</td>
<td>○</td>
<td>△</td>
<td>▲</td>
</tr>
<tr>
<td>LUT (look up table)</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Histogram</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Manual measurement</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Auto measurement</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Intensity line profile</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Intensity surface plot</td>
<td>○</td>
<td>●</td>
<td>—</td>
</tr>
<tr>
<td>Time (Intensity) measurement</td>
<td>○</td>
<td>●</td>
<td>—</td>
</tr>
<tr>
<td>3D measurement</td>
<td>●</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Volume measurement</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Database</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Macro</td>
<td>○</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Advanced interpreter</td>
<td>○</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Report generator</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Live compare</td>
<td>○</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Volume view</td>
<td>○</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>EDF (Extended depth of focus)</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>3D surface view</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ratio view</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3D deconvolution</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AQ blind deconvolution</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2D real time deconvolution</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2D deconvolution</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3D deconvolution</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3D blind deconvolution</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wavelength switcher</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>TTL/analog I/O</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Object classifier</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Object tracking</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Calcium & FRET</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>General analysis</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HC Template</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>JOBS Editor</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N-SIM analysis</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N-SIM offline analysis</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N-STORM analysis</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N-STORM offline analysis*</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Metalogical analysis</td>
<td>—</td>
<td>—</td>
<td>●</td>
</tr>
</tbody>
</table>

○ : Full function △ : Limited function — : Not available ● / ▲ : Option

* N-STORM analysis is required.
NIS-Elements Supported Devices (ver. 4.30 or later)

Nikon Cameras
- DS-R2
- DS-Q2
- CCU: DS-U2/L2 (for camera head DS-2Mv/Vi1/2MBWc/5M/5Mc/5i1/ Fi1c/5i1/1 (i1))
- CCU: DS-U3/L3 (for camera head DS-Vi1/Fi1/Fi1c/Qi1/Ri1/Fi2)
- CCU: DS-U2/L2 (for camera head DS-2Mv/Vi1/2MBWc/5M/5Mc/5i1/ Fi1c/5i1/1 (i1))
- DQC-FS

Third-party Cameras
- Photometrics
 - Evolve
 - CoolSNAP HQ2
 - CoolSNAP ES
 - Cascade 128+, Cascade 512+, Cascade 1K

- Andor Technology
 - Luca S, Luca R
 - iKon+ 997, 998, 985
 - iKon X3
 - iKon Ultra
 - iKon-M
 - Clara
 - Neo 2.5 sCMOS
 - Neo sCMOS
 - Zyla 5.5 sCMOS (3-Tag, 10-Tag)
 - Zyla 4.2 sCMOS

- QImaging
 - Retiga EXi Aqua/Blue
 - Retiga 2000R - Mono/Color
 - Retiga SPV + RGB-HM-S Slide
 - Rolera EM2

- QIClick
- QICAM

Hamamatsu
- ImagEM
- ImagEM 1K
- ImagEM X2
- ORCA-R2
- ORCA-Flash2.8
- ORCA-Flash4.0
- ORCA-Flash4.0 LT
- ORCA-D2
- ORCA
- C9100-02, C9100-12

Imaging Source
- DFK/DMK 31,41,51,72 series
- DFK/DMK 23U274
- DFK/DMK 23UP031
- DFK 23UM021
- DFK 23U445
- Others
- TWAIN Device

Nikon Microscope Devices
- Biological Microscope Ti (HUBCA, HUBCA-U, Ti-LAPP System*)
- Biological Microscope TE2000 (Perfect Focus System)
- Biological Microscope 90i (ND filter, Stage, DH-L/M)
- Biological Microscope 80i (DH-E/M, D-FL-E, C-Box/C-Box2)
- Biological Microscopes Ni-E, Ni-U, CI-E
- Fixed-stage Microscope FN1 + D-DH-E-A1*

- Stereo Microscope SMZ25/18/1270/1270/800N
- Multizoom Microscope AZ100M
- Industrial Microscope LV-N Series*
- Measuring Microscope MM-400/800N
- Metallurgical Microscope MA200
- Inspection Microscopes L200N/L300N
- C-HGFI HG Fiber Illuminator Intensilight
- C-LEDFI Epi-FI LED Illuminator
- Laser Module LU-N Series
- LV-NCT-N Nosepiece controller
- Ni-SH-CON

Third-party Devices
- Prior Scientific
 - ProScan III
 - ProScan II
 - Prior PCI II
- OptScan II ES10
- NZ100,200,400 NanoStageZ
- ES10ZE
- Ludl Electronic Products
 - MAC5000, MAC6000
- Mähräusser Wetzlar
 - TANGO Desktop, Tango PCI
- LSTEP
- Vincent Associates (Uniblitz)
 - VCM-D1
- Sutter Instrument
 - Lambda 10-2, 10-3, SC, 10-8, XL

Physical Instrument
- PL E-662, 665 (RS232)
- Photometrics
 - Dual View
 - ASI (Applied Scientific Instrumentation)
 - MS-2000
 - FW-1000
 - SC-2000

- National Instruments
- TTL Input/Output (NI Card)
- Tokai Hit
- WSKM
- Mad City Labs
- Nano-Drive
- Yokogawa
 - CSU-W1*
 - CSU-X1*

*1 Only compatible with 64-bit version OS
*2 Not compatible with 64-bit version OS
*3 Not compatible with LV-DAF Auto Focus Unit
*4 Only compatible with NIS-Elements AR

Supported Operation System
- Windows 7 Professional SP1 (32/64-bit version)
 - NIS-Elements AR and C are only compatible with the 64-bit version.

NIS-Elements is compatible with all common file formats, such as JPZ, JPG, TIF, BMP, GIF, PNG, ND2, JFF, JTF, AVI, ICM/DS. ND2 is a special format for NIS-Elements. ND2 allows storing sequences of images acquired during nD experiments. It contains information about the hardware settings and the experiment conditions and settings.
The pE-2 is a fluorescence LED illumination system which provides controllable light with a choice of 20 wavelengths.
This modular system accepts LAMs (LED Array Modules) selected from CoolLED’s wide range of LED wavelengths. These LAMs can be interchanged by the user so that different LED wavelengths can be illuminated depending on the application. The system can drive up to 4 LED wavelengths.

Recent developments in LED technology have enabled increased intensity in what was historically the weaker green-yellow-red (“GYR”) region of the LED spectrum. A new wide spectrum GYR LAM is now available and can readily be fitted to new and existing pE-2 systems. The graph shows the greater comparative intensity of this LAM over the previous LED wavelengths available for this spectral region.

To specify LED wavelength (XXX) see LED Wavelengths (http://www.coolled.com/product-detail/led-wavelengths/) To specify microscope code (YYY) see Adaptors (http://www.coolled.com/product-detail/adaptors-2/) To specify power cable (ZZ): 10 = Australia, 20 = Europe, 30 = UK, 40 = USA

Warranty:
System = 12 months, LEDs = 36 months

Environment & Safety
LED products are more sustainable and energy efficient than conventional illuminators. CoolLED’s products have the following benefits:

- Mercury-free
- Energy efficient: 80% less power
- Long lifetime (typically 25,000 operating hours)
- No bulb replacements
- Reduced risk of eye damage
- Quiet operation
- No special disposal regulations

Control & Interface

Manual: Manual control pod
Remote: Ethernet
USB switching speed <10 milliseconds
TTL switching speed <300 microseconds

Power

Power requirements: 100-240V a.c. 50/60Hz, 1.5A
Power consumption:
7.6W (standby), 97W (1 wavelength full intensity),
174W (2 wavelengths full intensity)

Dimensions

pE-2 Light Source: 140mm(w) x 250mm(d) x 215mm(h) - Weight 5.6kg
pE-2 Collimator: 75mm(w) x 143mm(d) x 134mm (h) – Weight 1.16kg
pE-2 Control Pod: 95mm(w) x 110mm(d) x 40mm(h) - Weight 0.55kg

For more information on how CoolLED products can help you, contact us now:

t: +44 (0)1264 323040 (Worldwide) 1-800-877-0128 (USA/Canada)
w: www.CoolLED.com
e: info@CoolLED.com

www.CoolLED.com
Inverted Microscope with option for live imaging

Nikon

Model: Eclipse Ti-E

Equipped with:

- fluorescence LED illumination system (GFP/FITC; Cy3/TRICl; Dapi)
- joystick motorized stage
- DS-Qi1Mc, Nikon, Monochrome Digital Camera
- CO₂ and temperature controlled microscope cage

https://www.nikoninstruments.com/Products/Cameras/Camera-Heads/DS-Qi1

- NIS elements imaging software

Typical application:

Immunofluorescence studies

Live/dead assay

Live cell imaging

Tracking of cell movement (phase contrast and fluorescence)

Migration assays (wound healing)

Location: Building 39, 3rd floor, Room 325
תוספות ציוד:
- מערכות פלאורסצנליות עם תאורה LED
- במכה מונעת בדרדרת יוזמיך
- מצלמה מונוכרם דיגיטלית מותצאת Nikon

CO₂-גלוב לב克拉ט תמפרטורה

NIS elements - תוננنغ הרמה

אוסף השימורים:
- מחסן של בוסס אימונופוליאנ Clarex
- מ벳ה הים
- דירומת של חלבון חום
- מעקב של תנועת התא (בחובבי אור פלאורסצנליים)
- מעבדה היגרה

ميعון: בניין 39, קומה 3, חדר 325

כמות המשתמשים: 6 קבוצות מחקר
- בינוני-90, בשעות בשורות
- קיימים בשתי קבוצות למשך לילה