Heterojunction Based Hybrid Si Nanowire Solar Cell

Muhammad Y. Bashouti
Alexandre Yersin Department of Solar Energy and Environmental Physics
Sde Boqer Campus, BGU

Material Growth
Surface Engineering
Characterization
Devices prototype
Table of Contents

Introduction
Important Features of Nanowires
Obstacles
Molecules

First Chapter: Growth of Silicon Nanowire
Top Down

Second Chapter: Surface Treatment & Characterization
Termination with Molecules: Grignard Reaction
Surface Transfer Doping

Third Chapter: Devices
Solar Cell

M. Y. Bashouti, BGU, 26.09.2016
Introduction

Important features of Nanowires
Obstacles
Molecules
Important features of Nanowires

- They represent the smallest efficient transport
- Increased surface scattering
- Orthogonal Junction
- Increased surface area
- Integration & Devices

M. Y. Bashouti, BGU, 26.09.2016
Obstacles for nanowire growth and surface modifications:

Native oxides

SiO$_2$ → Si

Lowest surface densities ever reported with thermal oxides! $\sim 10^{10}$ cm$^{-2}$ (Si surface density $\sim 10^{14}$ cm$^{-2}$). However:

Amorphous oxides:
(i) Dangling bonds
(ii) Induces trap states at the SiO$_2$/Si interface
(iii) Limits the effect of gate voltage
(iv) No direct chemistry with Si

Gold diffusion

Gold can behave as a catalyst. However:
(i) has a high diffusion coefficient 10^{-6} cm$^{-2}$sec (10^{-9}-10^{-14}) at 1100°C
(ii) Induces deep states inside the band gap

Obstacles on the Road

Obstacles for nanowire growth and surface modifications:

Native oxides

Gold diffusion

Lowest surface densities ever reported with thermal oxides! $\sim 10^{10}$ cm$^{-2}$ (Si surface density $\sim 10^{14}$ cm$^{-2}$). However:

Amorphous oxides: (i) Dangling bonds

(ii) Induces trap states at the SiO$_2$/Si interface

(iii) Limits the effect of gate voltage

(iv) No direct chemistry with Si

A promising approach to overcome the aforementioned obstacles is to use molecules. Main advantages are as follows:

- Terminating dangling bonds → low surface state density
- Systematic dipoles → (work function design, surface dipoles)
- Negative dipoles
- Positive dipoles
- Controlling the molecular density
- Controlling cross-linking
- Stabilizing the surface (superior oxidation resistance)
- Molecular surface transfer doping: Controlling the doping level and type (p or n) through organic molecules.
Chapter 1
Realizing \textbf{Si Nanowires} (Si NWs)

Top Down (Wet and dry etching)
Realizing Si Nanowire: Top down

Top down approach: Wet etching

Bottom Up: CVD process

Main Advantages wet chemistry
- No need for special equipment's
- Fabricating Si NWs in a few minutes
- Large areas (4 inch)
- High aspect ratio
- Diameter of sub-micro

Realizing Si Nanowire

Top down approach: Wet etching
(two step process)

Step 1
(5-60)s
Solution 1 (masking)
AgNO₃/HF

Step 2
(0.5-60)min
Solution 2 (etching)
H₂O₂/HF

Main Advantages
- No need for special equipment's
- Fabricating Si NWs in a few minutes
- Large areas (4 inch)
- High aspect ratio

M. Y. Bashouti, BGU, 26.09.2016
Top down approach: Wet etching (two step process: step II – Etching time)

5min

30min

70min

Titled image

4 inch Si wafer

M. Y. Bashouti, BGU, 26.09.2016
Nano local electrochemical reaction

Cathode Reaction:

\[4Ag^+ \rightarrow 4Ag_{(s)} + 4h^+ \]

Anode Reaction:

\[Si_{(s)} + 2H_2O + 4h^+ \rightarrow SiO_2 + 4H^+ \]

\[\text{down arrow} \ 6HF \]

\[H_2SiF_6 + 2H_2O \]

Total Reaction

\[Si_{(s)} + 4Ag^+ + 6HF \rightarrow 4Ag_{(s)} + H_2SiF_6 + 4H^+ \]
Top down approach: Wet etching
(the mechanism)

Nano local electrochemical reaction

Cathode Reaction:

\[4\text{Ag}^+ \rightarrow 4\text{Ag}_{(s)} + 4\text{h}^+ \]

Anode Reaction:

\[\text{Si}_{(s)} + 2\text{H}_2\text{O} + 4\text{h}^+ \rightarrow \text{SiO}_2 + 4\text{H}^+ \downarrow 6\text{HF} \]

\[\text{H}_2\text{SiF}_6 + 2\text{H}_2\text{O} \]

Total Reaction

\[\text{Si}_{(s)} + 4\text{Ag}^+ + 6\text{HF} \rightarrow 4\text{Ag}_{(s)} + \text{H}_2\text{SiF}_6 + 4\text{H}^+ \]
Chapter 2
Surface Treatment & Characterization

M. Y. Bashouti, BGU, 26.09.2016
Surface Modification

Molecules on Surfaces (Grignard Reaction, Electrografting)

Phase Transfer (From Cubic to Wurtzite)

Molecules

Direct Laser Writing

M. Y. Bashouti, BGU, 26.09.2016
Molecules on Surfaces: Grignard Reaction

- Characterization?
- Replacing oxide shell?
- Si-C bonds?
- Maximum Coverage?
- Stability?
- Oxidation Mechanism

Two Steps Reaction

\[\text{SiO}_2 \xrightarrow{\text{HF (30 sec)}} \text{Si} \xrightarrow{\text{PCl}_5 (10 \text{ min})} \text{Si} \xrightarrow{\text{RMgCl (2-24 hr)}} \text{Si} \]

Si2p & C1s of Terminated Si NW

Before Alkylation

Si2p

Si2p & C1s of Terminated Si NW

M. Y. Bashouti, BGU, 26.09.2016
Impact on Density of State (DOS)
In Suite Measurements

We followed the DOS by using the following:

1. Emission of Si2p
2. Photo-electron Yield (PYS)
3. Work-Function

![Band diagram of CH₃-SiNW, H-SiNW and SiO₂-SiNW surfaces. All the numbers are in eV unit.](image)

\[\chi_s = \Phi - E_g + (E_F - E_V) \]
\[\delta = \chi_s - \chi_B \]

<table>
<thead>
<tr>
<th></th>
<th>Si2p</th>
<th>EF-EVBM</th>
<th>(\Phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>99.77</td>
<td>0.83</td>
<td>4.32</td>
</tr>
<tr>
<td>H</td>
<td>99.70</td>
<td>0.98</td>
<td>4.26</td>
</tr>
<tr>
<td>CH₃</td>
<td>99.55</td>
<td>1.05</td>
<td>4.22</td>
</tr>
</tbody>
</table>

Photoemission of Hybrid Si NW

\[d = 100 \text{ nm} \]

\[h\lambda = (2-6 \text{eV}) \]

\[\lambda = 10 \text{nm} \]

\[\text{Si NW} \]

\[\text{C} - \text{Si} - \text{H} \]

\[g_{oc} = \text{occupied density of states} \]

\[E_{VL} = \text{Vacuum Level} \]

\[\hbar\omega = \text{optical excitation} \]

\[g_{oc}(E_{VL} - \hbar\omega) \propto \frac{dY}{d(\hbar\omega)} \]

\[E_C = \text{Conduction band} \]

\[E_V = \text{Valence band} \]
Chapter 3: Devices

Solar Cells
Projects: Brief Summary

Surface modifications
Devices: FETs, Solar Cells, Diodes & Transparent electrodes

Publications:

M. Y. Bashouti, BGU, 26.09.2016
Hybrid Solar Cells: PEDOT:PSS/ Si NW

M. Y. Bashouti, BGU, 26.09.2016
Hybrid Solar Cells: PEDOT:PSS/ Si NW

M. Y. Bashouti, BGU, 26.09.2016
Hybrid Solar Cells: PEDOT:PSS/ Si NW

Transparent electrodes

Summary

M. Y. Bashouti, BGU, 26.09.2016
Thank you for your attention!