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Abstract—Online signature verification technologies, such as
those available in banks and post offices, rely on dedicated
digital devices such as tablets or smart pens to capture, analyze
and verify signatures. In this paper, we suggest a novel method
for online signature verification that relies on the increasingly
available hand-worn devices, such as smartwatches or fitness
trackers, instead of dedicated ad-hoc devices. Our method uses a
set of known genuine and forged signatures, recorded using the
motion sensors of a hand-worn device, to train a machine learning
classifier. Then, given the recording of an unknown signature
and a claimed identity, the classifier can determine whether the
signature is genuine or forged. In order to validate our method, it
was applied on 1980 recordings of genuine and forged signatures
that we collected from 66 subjects in our institution. Using our
method, we were able to successfully distinguish between genuine
and forged signatures with a high degree of accuracy (0.98 AUC
and 0.05 EER).

I. INTRODUCTION

Financial fraud is a common occurrence across the globe,
causing a significant amount of damage to the economy.
According to recent surveys of consumer fraud [1], the Federal
Trade Commission estimated that 37.8 million incidents of
fraud took place in 2011 in the US only and the Financial
Fraud Research Center estimated that $40 to $50 billion is lost
to fraud annually.

Despite the prevention efforts of banks, businesses and the
law enforcement community, according to a 2012 survey by
the Association for Financial Professionals [2], paper checks
continue to lead as the payment type most susceptible to
fraudulent attacks and as the payment method accounting for
the largest dollar amount of loss due to fraud. According
to another survey [3], in 2011 alone, the American Bankers
Association estimated the use of paper checks in 34 trillion
dollars, and the losses due to check fraud in 1.2 billion dollars.

Paper checks as well as other legal, financial and admin-
istrative documents rely on the handwritten signature as an
important behavioral trait to verify a person’s identify. One of
the main reasons for its widespread use is that the process of
collecting handwritten signatures is non-invasive and familiar,
given that people routinely use signatures in their daily life
[4].

In a typical handwritten signature verification system, a user
claims to be a particular individual, and provides a sample of
her signature. The role of the verification system is to determine,
based on the signature sample, whether the user is indeed who
he/she claims to be.

Depending on the data acquisition type, signature verification
methods can be classified into two approaches: the offline
approach relies on the static handwriting image and the online
approach relies on the dynamic trajectory of the pen tip. While
the latter approach usually requires a designated ad hoc device
(commonly called a digitizer), the additional time dimension
provides valuable information about the signature, therefore
leading to a higher verification performance in general [5].

In this paper, we suggest a new approach for signature
verification that is based on data acquired from hand-worn
devices. Hand-worn devices, such as smartwatches and fitness
trackers, are becoming increasingly adopted by consumers, and
according to recent reports, one out of every six people in the
US already use a smartwatch [6] and the overall smartwatch
market is expected to reach 373 million devices by 2020. We
hypothesize that it is possible to verify handwritten signatures
accurately by analyzing motion data (i.e., accelerometer and
gyroscope measurements) collected from hand-worn devices.
We base our hypothesis on the assumption that people adopt
a specific signing pattern over the years that is (1) unique
and very difficult for others to imitate, and (2) this uniqueness
can be captured adequately using the motion sensors of a
hand-worn device.

Our approach attempts to combine the benefits of both the
offline and online verification approaches. Similar to the offline
approach, our approach does not require a designated ad hoc
device to capture the signature. The collection of the signature
itself can take place on a regular sheet of paper (as is the
case of many types of contracts, receipts and other documents
that have not yet been digitized) using a hand-worn device.
Like the online verification approach, our approach is able to
comprehensively capture the dynamics of the signing process.

Following this approach, we develop a concrete method for
online signature verification based on motion data collected
from hand-worn devices. We address the signature verification
task as a machine learning classification problem. Our method
uses a set of known genuine and forged signatures, recorded
using the motion sensors of a hand-worn device, to train a
machine learning classifier. This model learns the indicators that
allow to distinguish between genuine and forged signatures. It
is important to note that we use a single global model that was
learned from a training dataset comprising a relatively small
set of users. In other words, we do not generate a personalized
classification model for each user. Then, given the recording of
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an unknown signature and a claimed identity, our classification
model can determine whether the signature is genuine or forged.

In order to validate our method, it was applied on 1980
recordings of genuine and forged signatures that we collected
from 66 subjects in our institution. Using our method, we were
able to successfully distinguish between genuine and forged
signatures with a high degree of accuracy (0.98 AUC and 0.05
EER).

The rest of this paper is structured as follows: In section
II we provide the relevant background and list related work.
Section III outlines the proposed method. In section IV we
describe the experiment we conducted to collect genuine and
forged signatures. In section V we detail the evaluation of our
system. In section VI we discuss a potential deployment of
our system. Section VII summarizes the paper and proposes
directions for future work.

II. BACKGROUND & RELATED WORK

In this section, we provide the relevant background, describ-
ing the main concepts and methods of two related areas of study:
(1) handwritten signature verification and (2) authentication
via wearable devices.

A. Handwritten Signature Verification

Signature verification systems aim to automatically classify
query signatures as genuine (i.e. confirm that they were signed
by the claimed user) or forged. Such systems usually consist
of an enrollment phase, during which a system’s user provides
samples of his/her signature, and an operation (or classification)
phase, in which the user claims the identity of a person and
provides a query signature. The system then classifies such a
query signature as either genuine or a forgery.

Depending on the data acquisition type, signature verification
methods can be classified as online (dynamic) or offline
(static). Traditional signature verification methods are based
on the offline handwriting image. In this case, the signature
is represented as a digital image, usually in grayscale format,
comprising of a set of points S(x,y); 0 ≤ x ≤ H; 0 ≤ y ≤W ,
where H and W denote the height and width of the image.

In contrast, online signature verification methods take the
dynamic writing process into account [4]. A signature is
represented by a pen tip trajectory measurement that captures
the position of the pen over time; depending on the digitizer,
this may be accompanied by additional measurements of the
pressure and pen inclination. In this case, the signature is
represented as a sequence S(n); n = 1, . . . ,N, where S(n) is the
signal sampled at time n ·∆t and ∆t is the sampling interval
[7]. Clearly, the additional time dimension captured by online
methods provides valuable information about the signature,
leading to a higher level of verification performance in general
[5].

Our approach attempts to combine the benefits of both the
offline and online verification approaches. Similar to the offline
approach, our approach does not require a designated ad-hoc
device to capture the signature. The collection of the signature
itself can take place on a regular sheet of paper (as is the

case of many types of contracts, receipts and other documents
that have not yet been digitized) using a hand-worn device.
Like the online verification approach, our approach is able to
comprehensively capture the dynamics of the signing process.

Two approaches to online signature verification can be further
distinguished. Feature-based methods represent signatures with
feature vectors while function-based methods take the complete
time sequence into account [8]. The former provide a data
security advantage because the original signatures do not have
to be stored in a database; however, the latter tend to achieve
better verification performance.

State-of-the-art methods for function-based verification in-
clude hidden Markov models (HMM) [9] and dynamic time
warping (DTW) [10]. HMMs are statistical models that require
a considerable number of reference signatures per user for
training. In contrast, DTW matches signatures directly with
reference samples of the claimed user and is particularly
useful if only a few reference signatures are available, which
is a typical scenario. More specifically, DTW computes a
dissimilarity score between two time sequences. Taking into
account the (possibly different) lengths of the two sequences,
the sequences are aligned along a common time axis such
that the sum of Euclidean distances between the feature
vectors along the warping path is minimal. With regard to
signatures, DTW matches two signatures by aligning the pen-
tip trajectory measurements along a common time axis. The
resulting distance depends on the sequence length of the two
signatures and needs to be compared with a threshold in order
to accept or reject the claimed identity.

Several variations of the function-based methods use a
Discrete Cosine Transform (DCT) or a Discrete Fourier
Transform (DFT) compression of the signal instead of using its
raw form. While mainly used in the field of speech recognition
[11], [12], some papers have tested the effect of using DCT
and DFT in signature verification systems. In [13] the authors
used DCT coefficients as features with which to train an online
signature verification model, without combining it with DTW,
and obtained satisfactory results. In another paper [14] the
combined use of Fourier descriptors along with DTW was
shown to improve the verification results when compared to
those obtained by simply using DTW on its own.

In this paper we propose a verification method that combines
the function-based approach (using DCT and DTW) and the
feature-based approach.

B. User Authentication via Wearable Devices

A variety of recent works suggested the use of wearable
devices for the tasks of user authentication and gesture
recognition. Most of these works rely on the motion sensors
(typically accelerometer and gyroscope) embedded in these
devices to detect and understand unique movements of the
wearing person.

Wrist-worn devices, such as smartwatches and fitness track-
ers, have become perhaps the most popular category of wearable
devices, and many major manufacturers, including Samsung and
Apple, have released their devices recently. Since these devices
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Fig. 1. The training phase.

are worn on the wrist, they introduce a unique opportunity
to both detect and understand a user’s arm, hand and finger
movements as shown in [15]. In comparison, forearm devices
such as the one presented in [16], are very limited in detecting
fine gestures such as finger gestures or writing. Similarly, finger
worn devices such as the one introduced in [17], can be used
to understand users’ finger gestures and writing. However, this
is limited to the gestures of a specific finger, and gestures using
other fingers can not be identified. Wrist-worn devices are less
limited as they facilitate gesture recognition based on the arm,
the hand and all of the fingers.

While there has been a lot of research in the field of user
authentication using smartphone devices, there have been only
a few works that aimed to authenticate users using wearable
devices. For example, a recent study showed that it is possible to
distinguish between users who use the same objects (e.g., a light
switch, a refrigerator, etc.) [18] using continuous authentication.
Another research [19] aimed at authenticating users from a
short recording of their natural walk as captured by their
smartwatch. A recent patent [20] filed by Samsung suggests
a novel method by which the veins of a smartwatch user are
used to authenticate his/her identity.

Closer to the field of handwriting analysis, several recent
studies have tried to use motion data collected from wearable
devices to recognize different writing gestures such as inferring
the letter written. For example, the authors of [21] investigated
the task of writing in the air with a mobile device. In [22],
researchers suggested a platform for recognizing text written on
a whiteboard using a smartwatch. In [15], researchers tried to
infer letters written on a sheet of paper. With a totally different
purpose in mind, the authors of [23], tried to detect the letters
typed on a keyboard using a smartwatch. Similarly, in [24],
researchers presented a new attack method that allows attackers
to extract sensitive information such as credit card or phone

access PIN codes from motion sensors in wearable devices.
However, to the best of our knowledge, none of the existing

studies have addressed the task of handwritten signature
verification using motion data collected from wearable devices
in general and wrist-worn devices in particular.

III. THE PROPOSED METHOD

We hypothesize that it is possible to verify handwritten
signatures accurately by analyzing motion data (i.e., accelerom-
eter and gyroscope measurements) collected from hand-worn
devices. We base our hypothesis on the assumption that most
people adopt a specific signing pattern over the years that
is (1) unique and very difficult for others to imitate, and (2)
this uniqueness can be captured adequately using the motion
sensors of a hand-worn device.

We address the signature verification task as a machine
learning classification problem. Our method uses a set of
known genuine and forged signatures, recorded using the
motion sensors of a hand-worn device, to train a machine
learning classifier. This model learns the indicators that allow
to distinguish between genuine and forged signatures. Then,
given the recording of an unknown signature and a claimed
identity, the classifier can determine whether the signature is
genuine or forged.

It is important to note that we use a single global model that
was learned from a training dataset comprising a relatively small
set of users. In other words, we do not generate a personalized
classification model for each user. This global model is than
applied on new users (that were not part of the training dataset)
to classify signatures into genuine or forged.

We now describe the training phase and the enrollment and
operation phases of the verification process in details.
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A. The Training Phase

During the training phase, we assume that for each enrolled
user u we have a known set of genuine signatures Gu and a
known set of forged signatures Fu.

From the set of genuine signatures Gu of user u, we randomly
select a subset of genuine signatures to serve as her reference
signatures, denoted by Ru. The remaining genuine signatures
in Gu−Ru are denoted as Gu.

For each user u, for each signature s in Gu∪Fu, we apply
the following steps (also illustrated in Figure 1):

1) Normalization - We normalize each motion signal of the
signature.

2) Domain transformation - We apply DCT on each of
the normalized motion signals to represent them in the
frequency domain.

3) Feature Extraction - for each of the normalized motion
signals (represented in the transformed domain) we go
over each of the reference signature sr in Ru, and calculate
the DTW dissimilarity score for the two corresponding
motion signals of s and sr. Then we choose the minimal
DTW score over all reference signatures.

4) Labeling - We label the instance as GENUINE if s ∈Gu
or as FORGED if s ∈ Fu.

5) Learning a Model - We use all labeled instances to train
a machine learning classifier. The trained model is later
used in the verification phase to distinguish between
unknown genuine and forged signatures.

We now describe in details the normalization, domain
transformation and feature extraction stages mentioned above.

1) Normalization: Each of the signatures go through a
normalization process in order to enable comparison by means
of an Euclidean distance. Recall that each signature is composed
of several (say D) motion signals, each of which is a time
sequence of real values. Each motion signal md , d = 1 . . .D, is
normalized separately using:

m̂d =
md−µmd

σmd

where µmd and σmd are the mean and standard deviation of
motion signal md respectively.

2) Domain Transformation: We transform each of the
normalized motion signals m̂d from the time domain to the
frequency domain by using Discrete Cosine Transform to obtain
a compressed representation of the signal, denoted by cd . We
do so by taking the first 20 DCT coefficients to represent each
motion signal (recall that the first coefficients retain the most
energy of the signal).

3) Feature Extraction: Given a questioned signature si, and
a set of reference signatures Ru, for each reference signature
sr ∈ Ru and for each one of the motion dimensions d = 1, . . . ,D
we define dis(si,sr,d) as:

dis(si,sr,d) = DTW (ci
d ,c

r
d)

where DTW is the dynamic time warping dissimilarity
function, ci

d is the d-th normalized and compressed motion
signal of the questioned signature si and cr

d is the d-th
normalized and compressed motion signal of the reference
signature sr .

Finally our vector of extracted features for a signature si and
the set of reference signatures Ru for the claimed user u, is
calculated as the minimal DTW distance between si and each
one of the reference signatures sr ∈ Ru (calculated separately
for each one of the D motion signal dimensions):

f (si,Ru) =< min
sr∈Ru

dis(si,sr,1), . . . , min
sr∈Ru

dis(si,sr,D)>

B. The Enrollment and Operation Phases

Every new (unknown) user u that would like to use the
proposed system, has to enroll first by providing its identity



and a set of (genuine) reference signatures Ru. This phase is
performed only once per user.

Then, given a new (unknown) signature s, a claimed identity
of an enrolled user u and a trained classifier C, we perform the
following steps. First the set of reference signatures Ru for user
u is retrieved. Then, the feature vector f (s,Ru) is calculated
as described in the previous subsection. Finally we apply the
classifier C on the tuple f (s,Ru) and return the classification
result (GENUINE or FORGED signature). The operation phase
is illustrated in Figure 2.

IV. DATA COLLECTION

In order to evaluate our method, we conducted an experiment
to collect genuine and forged signatures. In the following
subsections we describe the data collection system and the data
collection experiment.

A. The Data Collection System

We used the Microsoft Band [25] version 1 announced by
Microsoft in 2014, and a Samsung GT-N5110 tablet for the
experiment.

The Microsoft Band includes both an accelerometer and a
gyroscope sensors, and each sample of these sensors includes
three different types of measurements: (1) the acceleration
as measured by the accelerometer, (2) the angle acceleration
measured by the gyroscope, and (3) the angle velocity also
measured by the gyroscope. Each such type of information is
provided over three axes (X , Y and Z), resulting in a total of
9 different dimensions for each sample. Figure 3 depicts the
two sensors and the three axes of the Microsoft Band. These
9 dimensions provide an adequate infrastructure to test our
hypothesis about the uniqueness of the hand movement during
the signing process.

Fig. 3. The Microsoft Band’s sensors and axes. The figure was taken from
Microsoft Band SDK Documentation [26]

The Microsoft Band provides an SDK to communicate with
its sensors using an application installed on a paired Bluetooth
device. Therefore, we developed an Android application that
was installed on the paired Tablet (Samsung GT-N5110) in
order to obtain and record the measurements of its motion
sensors during the signing process. Each sensor was sampled
at the maximum rate it supports (62 samples per second).

B. The Data Collection Experiment
Data collection took place in two phases. In the first phase,

the participants (a class of 66 undergraduate students at our
institution) were asked to provide several samples of their
genuine signature on a tablet device, using the device’s digital
pen and while wearing a hand-worn device. In the second
phase, each participant was shown trace recordings of several
genuine signatures from the first phase, and was then requested
to forge these signatures. Again, this was done on a tablet
device, using the device’s digital pen and while wearing the
hand-worn device.

All 66 students attended the two sessions, which took place
approximately one week apart and together lasted a total of
3 weeks. Out of the 66 students both sexes were represented
fairly equally with a slight female majority of 39 (59%) female
students. Regarding the participants’ dominant hand, out of
the 66 there were 57 (86.4%) right-handed students and only
9 left-handed students (13.6%).

As an incentive to participate in the experiment, students in
the course received 1.5 bonus points to their final course grade
for completing the two phases of the experiment. Moreover,
in order to incentivize the participants to provide high quality
forgeries, half of the participants - the ones who were ranked
among the top 50% ’best forgerers’ - received an additional
0.5 points to their final grade.

The experiment was approved by the ethics committee of
our institute.

1) Phase 1: genuine signatures: In this phase, we collected
genuine signatures of 66 participants. Each one of the 66
participants was asked to provide 15 samples of their genuine
signature. They did so by signing on a tablet device, using the
device’s digital pen and while wearing a hand-worn device.
This process is illustrated in Figure 4.

Fig. 4. The signing process. Each participant was asked to provide 15 samples
of their genuine signature.

2) Phase 2: forged signatures: In the second phase, each
participant was asked to forge the signature of five other
chosen participants (see details below on how we chose the five
participants), that provided samples of their genuine signatures
in the first phase. For each one of these 5 chosen participants,
we randomly chose one of his/her 15 genuine signature samples,
and simulated its signing trace on the tablet screen (see Figure



5). Each simulation ran in a continuous loop for a time frame
of two minutes, and the participants were able to pause/play
the simulation at will within this time frame. Furthermore,
participants were instructed to practice tracing the signature as
accurately as possible in terms of speed, trajectory etc. during
the simulation.

 

1 2 

3 4 

5 6 

Fig. 5. Practicing a forgery. For each one of the five signatures the participant
had to forge, a video of the signing process was played on the tablet screen
in a continuous loop. The figure presents 6 frames taken at various points in
time of one such signature.

Immediately following each simulation the participants were
requested to provide three of their best forgery attempts of
the signature they had just seen - each attempt on a fresh
blank tablet screen - all while wearing the hand-worn device.
It is worth noting that participants were allowed to erase
forgery attempts until they were satisfied that their attempt
was good enough to count as one of the 3 submitted attempts.
This ensures us that the skilled forgeries are indeed of high
quality and are not affected by the transition from a simulated
environment to a non-simulated environment.

In order to ensure that in the second phase, we result in the
exact same number of forgeries for each genuine signature, we
performed the following procedure. We first fixed an ordering
of the 66 participants (the ordering was randomly generated).
Then, each participant was requested to forge the signatures of
the five participants that followed him/her in that fixed ordering
(in a cyclic manner).

In summary, our final signatures dataset contains 30 signa-
tures for each one of the 66 participants: 15 genuine samples
and 15 forgeries (5 different forgers that provided 3 forgeries
each).

Figure 6 illustrates one motion signal (accelerometer-Y ) for
a reference signature (black), a genuine signature (green) and
a skilled forgery (red). As can be seen in the figure, the signal
values of the reference signature are much closer to those of
the genuine signature than to those of the forged signature, and
therefore the DTW between the reference signature’s signal

and the genuine signature’s signal is much lower (68.7 vs.
124.93).
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Fig. 6. An illustration of one signal (accelerometer-Y ) for a reference signature
(black) a genuine signature (green) and a skilled forgery (red).

V. EVALUATION

In our evaluation we were interested to answer the following
three research questions: (1) How feasible is our approach to
detect forged signatures? (2) What is the contribution of each
motion signal to the task of forgeries detection? and (3) How
robust is our approach to the number of reference signatures
used?

A. Experimental Setup

As common in the field of signature verification, we
distinguish between random and skilled forgeries. In the case of
random forgeries, the forger has no information about the user
or the user’s signature and uses his/her own signature instead.
In this case, the forgery contains a different semantic meaning
than the genuine signature provided by the user, presenting a
very different overall shape. In skilled forgeries, the forger has
access to the user’s name and signature, and often practices
forging the user’s signature. This results in forgeries that have
stronger resemblance to the genuine signature, and therefore
are harder to detect.

Consequently, our evaluation focused on three different
verification tasks: discerning between a genuine signature and
a skilled forgery, discerning between a genuine signature and
a random forgery and finally discerning between a genuine
signature and any type of forgery.

For each user u, we randomly select 5 out of her 15 genuine
signatures in Gu to serve as her reference set Ru and 8 other
signatures as her genuine samples Gu. All of her 15 skilled
forgeries in Fu are used as skilled forgeries. As for random
forgeries, we randomly select 10 other users, and sample one
random genuine signature of the 15 available. This entire
process of randomized selection of signatures is repeated 25
times with different randomization seeds.

For each of these 25 repetitions, we apply a variation of
the known leave-one-out process, where instead of removing
one instance at a time, we remove one user at a time. That
is, on each round we use the signatures (genuine and forged)



of 65 users to train our model, and then test the model by
using it to classify the signatures (genuine and forged) of the
66-th user. This process has two main advantages. First, our
dataset is relatively small, and leave-one-out was shown to
work well with small datasets. Second, our variation simulates
a real-world scenario in which we only have a set of reference
signatures for the test users (i.e., we do not have additional
genuine nor forged signatures for them).

We report the average results over a total of 1650 executions,
comprised of 25 repetitions over 66 left-out users.

Four different machine learning models were evaluated to
allow for a versatile yet comprehensive representation of model
performances. These models include: naïve bayes (a simplified
yet fast approach), logistic regression (representing the linear
decision boundaries), random forest (representing the more
complex boosting models) and neural networks (allowing
for extremely complex decision boundaries). We used the
mentioned machine learning algorithms as implemented in
Weka [27] with their default parameters.

Similar to other studies in this field (e.g., [28]), performance
is evaluated in terms of the area under the receiver operating
characteristic curve (AUC) and the equal error rate (EER)
which is the point in the curve where the false acceptance rate
equals the false rejection rate. (Higher AUC values and lower
EER values represent better performing models).

B. Results

1) Verification Accuracy: We first report the results using 5
reference signatures. The results are summarized in figures 7
and 12.

As can be seen from the two figures, the results are quite
encouraging for all three verification tasks. The best results,
in all three tasks, were obtained by the Logistic Regression
classifier: AUC=0.978 and EER=0.040 in the skilled forgeries
task, AUC=0.981 and EER=0.039 in the random forgeries
task, AUC=0.980 and EER=0.054 in the any forgeries task, As
expected, our method performed slightly better in the case of
random forgeries than in the case of skilled forgeries.
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2) Features Analysis: In order to better understand the
classification power of the different features we used, we
repeated the same evaluation process that was described above,
each time using a different subset of features. More specifically,
we used the following seven subsets of features: 1) the three
X axis signals, 2) the three Y axis signals, 3) the three
Z axis signals, 4) the three Accelerometer signals, 5) the
three Gyroscope Acceleration signals, 6) the three Gyroscope
Velocity signals and 7) all nine signals. Figures 9 and 10 report
the obtained results (AUC and EER respectively) for these
seven subsets of features, focusing on the Logistic Regression
classifier and the “any forgery" verification task.

While we were did not observe major differences between the
classification performance of the different subsets of features,
minor differences did exist. For example, we see that the X
and Y features preform slightly better than the Z features. This
makes sense, as the signature process does not require sharp
lifting movements of the hand and therefore the Z axis is less
significant. Moreover, we see that the three sensor-based subsets
of features (i.e., Accelerometer, Gyroscope Acceleration and
Gyroscope Velocity) perform better than the axis-based subsets
of features (i.e., X , Y and Z), implying that all three axes are
important for verification. Finally, combining all nine features
together further improves the verification performance.
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Fig. 9. Verification performance for different subsets of features - AUC.
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3) How many reference signatures are needed?: In order
to test the effect of the size of Ru on the obtained results,
we also ran an analysis using varying amounts of reference
signatures, ranging between 2 to 7. Figures 11 and 12 report the
results for a varying number of reference signatures using the
Logistic Regression classifier. As can be seen in the figures, our
method was able to obtain impressive results, even when only 2
reference signatures were used (AUC=0.969 and EER=0.054).
As expected, the more reference signatures used, the better the
results - from AUC=0.969 and EER=0.054 using 2 reference
signatures to AUC=0.983 and EER=0.036 using 7 reference
signatures.
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Fig. 11. Verification performance for different numbers of reference signatures
and verification tasks - AUC.
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Fig. 12. Verification performance for different numbers of reference signatures
and verification tasks - EER.

VI. A POTENTIAL DEPLOYMENT OF THE SYSTEM

Imagine a customer, Alice, and a seller, Bob. Alice is
interested in purchasing a product that Bob offers and is

planning to pay Bob using a regular check (that she has to fill
and sign). We also assume a trusted third party (e.g., a bank),
TTP, that has deployed our verification model.

We suggest the following (skeletal) protocol for signature
verification:
• Step 0: Alice verifies its identity and provides a set of

reference signatures to TTP (such as the bank). This step
takes place only once for Alice.

• Step 1: Alice signs-in to a dedicated application of TTP
(the application may run on Alice’s hand-worn device or
on a separate paired device).

• Step 2: Alice signs the check while wearing the hand-worn
device and having the dedicated application running. The
application records the movement of the hand during the
signing process.

• Step 3: The application encrypts the signature’s recording
(using TTP’s public-key) and sends the ciphertext to TTP.

• Step 4: TTP decrypts the ciphertext using its private key.
• Step 5: TTP retrieves the the set of reference signatures

for the signed-in entity.
• Step 6: TTP executes our verification model on the claimed

identity, the recorded signature and the set of reference
signatures, and returns the classification result (GENUINE
or FORGED) to Bob.

Finally, it is worth noting that the protocol described above
is not significantly different than existing protocols that banks
employ for voice authentication, and therefore suffer from the
same type of adversarial attacks (and solutions). For example,
in order to avoid a man-in-the-middle replay attacks, in which
an adversary has managed to copy a (ciphertext) recording of
the signature, and can use it over and over again, the application
can concatenate the signing time to the signature in Step 3, so
that TTP will be able to check whether the signature was signed
recently in Step 4. We postpone a more thorough analysis of
such potential attacks to the full version of this paper.

VII. SUMMARY AND FUTURE WORK

In this paper, we suggested a new approach for online
signature verification that is based on data acquired from hand-
worn devices. In order to evaluate our method, we conducted an
experiment involving 66 participants from our institution. The
participants provided both genuine and forged signatures while
wearing a hand-worn device equipped with a dedicated software
that we developed to record motion data (i.e., accelerometer and
gyroscope). Finally, by analyzing the data, we demonstrated
that our method was able to verify signatures with a high
degree of accuracy.

An inherent limitation of our proposed solution is that people
must wear the hand-worn device on their dominant hand, which
we assume to be the hand they use to sign. Unfortunately,
according to a recent survey (including approx. 4000 subjects)
only 34% of the people wear a watch on their dominant hand
[29]. If we assume this percentage to be valid also in the case of
hand-worn devices (especially smartwatches), this implies that
66% of the people using our system must move the hand-warn



device from their non-dominant hand to their dominant hand
before signing, therefore making our system less user-friendly.

In future work, we plan to compare our approach with
existing state-of-the-art methods for offline and online signature
verification. We would also like to investigate the option of
combining data extracted from the wearable device with data
collected from a tablet device to achieve even higher verification
accuracy. Such a verification scheme may be found useful in
cases where digitizers are already available (e.g., banks), and
a wearable device can be added to obtain a higher level of
assurance. Finally, we would like to extract data from additional
sensors (besides the accelerometer and gyroscope) such as
heart-rate variability and others, and evaluate their impact on
verification performance. The heart-rate sensor, for example,
was proven to be useful for detecting lies and is commonly
used in lie detector machines.
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