Sample Preparation for MALDI-TOF

Samples for MALDI-TOF analysis need to meet certain requirements for obtaining good spectra. The more careful you prepare samples (including early steps of isolation and preparation) the more likely a successful analysis will be. Here are some guidelines of which kind of treatment is advantageous for mass spectrometric analysis and which is not:

- ➤ Avoid the use of non-volatile agents like salts (NaCl, CaCl2, KH2PO4), detergents (Tween, Triton, SDS), chaotropic agents (Urea, Guanidinium salts) and solvents like DMSO or Glycerol.
- ► If you can't avoid these agents, purify. Dialysis and RP-HPLC are good purification methods if you use volatile solvents and buffers. After purification, lyophilize if possible. Ion exchange beads may work well for salt removal.
- ➤ Suitable solvents are ones that are volatile. For sample work up and purification: water, ammonium hydrocarbonate, ammonium acetate, ammonium formiate, acetonitrile, trifluoroacetic acid.
- ▶ Quantitate the sample you are going to provide for analysis by methods like: photometry (OD), and ELISA. HPLC is useful since it allows for purification and quantitation in a single procedure. The range for many samples/preparations is not very large,

therefore it is necessary to have a good estimate of the sample amount because the sample amount may need to be varied on the target.

- ➤ The total amount of sample needed for MALDI analysis depends on the sample type.
- ▶ Give information like: structure, sequence, molecular weight, type of compound, biological activity, chemical reactivity, pH, sample amount/concentration, describe purification/isolation with focus on relative agents/solvents, known or suspected impurities, suitable solvents, hazardous properties: radioactivity, carcinogenicity, poison, or explosive.

For removing contaminants and interfering substances you can used : Microcon centrifugal filteration (3 kDa cut-off), Mini-dialysis, TCA acetone precipitation, C18 or C4 micro-reversed-phase chromatography (Zip tipping), and Amersham 2D clean-up. When submitting samples, please use a sample container of appropriate size. Two μL of sample is more easily recovered from 0.5mL Eppendorf tubes than from 1.5mL . Prerinsing the tube with methanol or acetonitrile lowers the chemical background for low concentration samples or complex mixtures.

Table shows the *MAXIMUM* concentration of surfactants, buffers and salts permissible in MALDI. *N/A* means that technique is not compatible with *ANY* amount of indicated compound. (Modified from "The Expanding Role of Mass Spectrometry in Biotechnology" by Gary Siuzdak, 2003, p. 84-85)

Surfactants, Buffers, Salts	Concentation, mM
TRIS	100
HEPES	100
BICINE	50
Urea	500
Guanidine, HCl	250
Dithiothreitol	500
Glycerol	130
n-Octyl-b-glucopyranoside	3.4
n-Octyl-sucrose	N/A
n-Dodecyl sucrose	N/A
n-Dodecyl maltoside	N/A
Octyl thioglucoside	N/A
n-Hexyl glucoside	N/A
n-Dodecyl glucoside	N/A
PEG1000	N/A
PEG2000	0.5
Triton X-100	1.6
NP-40	1.7
Zwittergent, 3-16	2.6
Tween20	N/A
Thesit	N/A
SDS	0.35
LDAO	4.4
CTAB	N/A
CHAPS	0.16
Sodium Cholate	N/A
Sodium Taurocholate	N/A
Sodium Azide	15
NH4CHO3	50
NaCl	50
Sodium Acetate	50
NaHPO4	10
TFA	N/A