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Formation of Long-Term Locomotor Memories Is
Associated with Functional Connectivity Changes in the
Cerebellar–Thalamic–Cortical Network
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Although motor adaptation is typically rapid, accumulating evidence shows that it is also associated with long-lasting behavioral and
neuronal changes. Two processes were suggested to explain the formation of long-term motor memories: recall, reflecting a retrieval of
previous motor actions, and faster relearning, reflecting an increased sensitivity to errors. Although these manifestations of motor
memories were initially demonstrated in the context of adaptation experiments in reaching, indications of long-term motor memories
were also demonstrated recently in other kinds of adaptation such as in locomotor adaptation. Little is known about the neural processes
that underlie these distinct aspects of memory. We hypothesize that recall and faster relearning reflect different learning processes that
operate at the same time and depend on different neuronal networks. Seventeen subjects performed a multisession locomotor adaptation
experiment in the laboratory, together with resting-state and localizer fMRI scans, after the baseline and the locomotor adaptation
sessions. We report a modulation of the cerebellar–thalamic– cortical and cerebellar– basal ganglia networks after locomotor adaptation.
Interestingly, whereas thalamic– cortical baseline connectivity was correlated with recall, cerebellar–thalamic baseline connectivity was corre-
lated with faster relearning. Our results suggest that separate neuronal networks underlie error sensitivity and retrieval components. Individual
differences in baseline resting-state connectivity can predict idiosyncratic combination of these components.
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Introduction
Motor adaptation refers to the process by which subjects modify
their behavior by changing their internal model based on sensory
prediction errors that are perceived from the environment
(Shadmehr and Mussa-Ivaldi, 1994; Wolpert and Kawato, 1998).
In dozens of trials, subjects modified their motor commands to

account for the perturbation and to bring their performance er-
rors back to baseline levels (Thoroughman and Shadmehr, 1999).
These adaptation processes were accompanied by after-effects,
indicating that the adaptation was driven by adaptation of inter-
nal models, and by savings—faster adaptation for repeated expo-
sures to the same perturbation, which is assumed to be the
outcome of a consolidation process (Ebbinghaus, 1913; Shad-
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Significance Statement

The ability to shape our motor behavior rapidly in everyday activity, such as when walking on sand, suggests the existence of
long-term motor memories. It was suggested recently that this ability is achieved by the retrieval of previous motor actions and by
enhanced relearning capacity. Little is known about the neural mechanisms that underlie these memory processes. We studied the
modularity in long-term motor memories in the context of locomotor adaptation using resting-state fMRI. We show that retrieval
and relearning effects are associated with separate locomotor control networks and that intersubject variability in learning and in
the generation of motor memories could be predicted from baseline resting-state connectivity in locomotor-related networks.
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mehr and Brashers-Krug, 1997; Della-Maggiore and McIntosh,
2005; Krakauer et al., 2005; Debas et al., 2010; Landi et al., 2011).
Currently, savings in motor adaptation is explained by two different
processes: recall, reflecting a retrieval of previous successful actions
(Huberdeau et al., 2015), and increased error sensitivity, which is an
enhancement of the learning when the same perturbation is intro-
duced again (e.g., faster relearning; Herzfeld et al., 2014).

Adaptation is not restricted to reaching movements and can
be seen in other behaviors such as walking. In locomotor adaptation,
subjects walk on a split-belt treadmill that imposes different walking
speeds to each leg. When exposed to such a perturbation, subjects
change the velocity of the right and left strides to maintain the
stability and the efficiency of their walking pattern (Reisman et
al., 2005; Choi et al., 2009). As in the case of reaching, locomotor
adaptation shows both recall and relearning effects, suggesting
the existence of separate long-term locomotor adaptation mem-
ory components (Malone et al., 2011; Mawase et al., 2014, 2016;
Roemmich and Bastian, 2015).

Compelling evidence suggests that the cerebellum and the
motor cortex are involved in the adaptation and acquisition of
new locomotor behaviors (Morton and Bastian, 2006; Ilg et al.,
2008). Damage to the cerebellum compromises adaptation per-
formance of walking tasks (Horak and Diener, 1994; Morton and
Bastian, 2006). Excitability changes in the cerebellum are corre-
lated with the magnitude of behavioral adaptation during walk-
ing in healthy individuals (Jayaram et al., 2011). Studies show that
the descending component of the midline vermis and fastigial nuclei
output of the cerebellum are involved in the control of whole-body
posture and locomotion (Chambers and Sprague, 1955; Ghez and
Thach, 2000) and receive inputs from the motor cortex (Coffman et
al., 2011) through pathways that involve the thalamus (Middleton
and Strick, 1994; 1997). Although the involvement of the cerebellar–
cortical pathway in locomotor adaptation learning is well estab-
lished, the neural substrates of the formation of long-term motor
memories of adaptation are still largely unknown.

Here, we investigate the neuroanatomical and behavioral cor-
relates of adaptation, recall, and relearning. Adaptation describes
the short-term error reduction when subjects are exposed to the
external perturbation for the first time (i.e., short-term process;
day 2). Recall refers to the retrieval of a previous motor pattern
from the memory and is approximated by the initial bias ob-
served when subjects returned to the experimental setup 24 h
after the first learning session (with no washout between the ses-
sions; day 3). Relearning effect describes the enhancement of the
adaptation process when subjects are exposed to the same pertur-
bation again (after a washout session; day 3). Both recall and
relearning reflect the formation of a long-term memory of the
motor adaptation learning. We took advantage of recent studies
showing that fMRI signals during rest are affected by previous
neural activity (Fox and Raichle, 2007; Tambini et al., 2010;
Makin et al., 2013; Stagg et al., 2014; Hahamy et al., 2015), by
offline consolidation processes (Albert et al., 2009a; Censor et al.,
2014; McGregor and Gribble, 2015) and reflect individual traits
that are correlated with performance in a variety of cognitive and
motor tasks (Taubert et al., 2011; Vahdat et al., 2011; Cole et al.,
2014; Bassett et al., 2015; Sampaio-Baptista et al., 2015).

Materials and Methods
Subjects. Seventeen healthy adult subjects (eight females, mean age
27.94 � 12.69 SD years, mean weight 58.71 � 12.69 kilograms) were
recruited to and gave written consent to participate in the study, which
was approved by the Helsinki committee of the local Institutional Review
Board of Soroka Medical Center, Beer-Sheva, Israel. Subjects were naive

to the purpose of the study and none of them had a history of neurolog-
ical disease and/or psychological disorders.

Experimental procedure. The study was composed of three split-belt
walking sessions performed in the laboratory and two MRI sessions. On
the first day, subjects first underwent a familiarization baseline walking
session on a custom treadmill. After this baseline session, subjects were
transported to the MRI room and underwent the first MRI scan. Subjects
then went home and were instructed not to walk on a treadmill later that
day. On the subsequent day, subjects came to the laboratory and per-
formed a split-belt treadmill adaptation session that lasted 20 min. They
were then transported to the MRI room and underwent an identical MRI
session to the one performed the previous day. Approximately 24 h later,
subjects came again to the laboratory and were retested on the split-belt
treadmill for retention estimation (see Fig. 1 B, C).

Behavioral task. Subjects participated in three behavioral sessions on
three consecutive days (see Fig. 1 B, C). On the first day, subjects were
familiarized with the experimental setup and underwent 20 min of base-
line walking on a custom split-belt treadmill (ForceLink). During base-
line, they walked with the two belts linked at a slow speed (0.7 m/s).
Subjects were then transported to the imaging center and underwent the
first MRI scan (i.e., scan1) which lasted �1 h. On the second day, subjects
underwent the second behavioral session consisting of a perturbation in
the speed of the belts. During the split-belt adaptation condition, subjects
walked for 20 min in a split-belt regimen in which each leg was exposed
simultaneously to a different belt speed with the ratio of 1:2. The domi-
nant leg walked at the slower speed (0.7 m/s) and the nondominant leg
walked at the faster speed (1.4 m/s). Immediately after this session, sub-
jects were transported to the imaging center and underwent the second
MRI scan (i.e., scan2). The transportation from the laboratory to the
scanner was done to prevent washing out the adapted pattern, which was
shown previously to occur if subjects walk overground immediately after
adaptation (Torres-Oviedo and Bastian, 2012). On the third day, subjects
returned to the laboratory and performed three consecutive blocks of
walking. In the first block, subjects were exposed to the same split-belt
condition for an extra 10 min (the dominant leg was set to walk at
0.7 m/s, whereas the nondominant leg was set to walk at 1.4 m/s). In the
second block, belts were tied together and the adapted pattern was
washed out. This session lasted 10 min (with the two belts tied together at
a slow speed of 0.7 m/s). The subject then readapted to the split-belt
perturbation for another 20 min. Each minute of walking on the split-
belt treadmill included �40 strides. Each stride started at left initial con-
tact on the force plates and terminated at the subsequent initial contact of
the same leg. Subjects were not notified concerning the perturbation
schedule.

Behavioral estimate of adaptation, recall, and relearning effect. Because
we were studying motor adaptation, which is thought to be an error-
driven process, we adopted the step asymmetry as our measure of the
motor error in each gait cycle as follows: step asymmetry � (left COP
length � right COP length)/(left COP length � right COP length), where
COP is the center of pressure, the length of which was calculated as the
distance between the point where the foot touched the belt and the toe of
the opposite leg lifted off the belt (data were sampled at 500 Hz). When
the step asymmetry value is zero, it describes symmetric walking and,
when it is other than zero, it means that the gait is not symmetric (Reis-
man et al., 2005). The underlying assumption of the locomotor adapta-
tion task is that the deviation of the step length from zero is proportional
to the error signal that subjects perceive and try to reduce through the
adaptation process (Reisman et al., 2009; Torres-Oviedo et al., 2011).
“Adaptation” in day 2 was quantified as the difference between initial
errors at the early phase of the adaptation session and asymptotic perfor-
mance (i.e., error at the late phase of the adaptation) of the same session.
Initial error was quantified as the mean of the first two strides in the
adaptation phase while asymptotic performance was related to the mean
of the last 50 strides. “Relearning effect” (increased error sensitivity), or
enhancement in the learning rate during readaptation, was estimated as
the signed difference between mid-errors during readaptation of day 3
and mid-errors during adaptation of day 2. Mid-adaptation error was
quantified as the mean of the strides 3–50. These mid-errors represent a
common model-free approximation for learning rates in locomotor ad-

350 • J. Neurosci., January 11, 2017 • 37(2):349 –361 Mawase et al. • Neural Correlates for Long-Term Locomotor Memory



aptation. The advantage of this estimate of learning rate is that it does not
rely on an assumption regarding a specific pattern of adaptation, as
would, for example, a single or double exponential fit. “Recall” of the
adapted pattern 24 h later was estimated as the initial bias observed 24 h
after the initial learning session. The initial bias was quantified as the
difference between initial error of day 3 and the initial error of day 2.
Relearning effect and initial bias are illustrated in Figure 2A. Our esti-
mates of adaptation, relearning effect, and recall are consistent with con-
vention and have been used commonly in human locomotion literature
(Malone et al., 2011; Mawase et al., 2014). Repeated-measures one-way
ANOVA was used to test for adaptation, recall, and relearning. When
ANOVA revealed significant effect, post hoc analysis was conducted using
the Holm–Sidak test to correct for multiple comparisons.

MRI sessions. Two identical sessions were performed on days 1 and 2.
Each session began with a T1-weighted high-resolution anatomical scan
followed by a 12 min resting-state fMRI scan, which was followed by a 9.5
min localizer scan and diffusion tensor imaging (DTI) scan (not reported
here). During the T1-weighted high-resolution anatomical scan, subjects
were allowed to close their eyes. In the resting-state scan, subjects were
instructed to rest quietly with their eyes open and to focus on a cross sign
(�) viewed through mirror glasses that reflect the screen view. In the
localizer scan, subjects were instructed to move their limbs as cued by a
string shown in the screen. Specifically, five conditions were performed
in this scan: (1) right leg movements (movements of the ankle), (2) left
leg movement, (3) right and left legs’ movements, (4) right wrist move-
ments, and (5) left wrist movements. During movement blocks, subjects
were instructed to keep their head stable and to move only the corre-
sponding limb at a frequency of 1 Hz (i.e., 1 cycle per second) as
demonstrated by the experimenter before the scans. Specifically, hand
movement blocks involved slow cyclic wrist movements of the corre-
sponding hand that were �10 cm in amplitude in an outward direction
away from the body in the sagittal plane and leg movement involved slow
cyclic ankle stepping of the corresponding leg that were �10 cm in am-
plitude. Movement blocks were interleaved by rest periods of 10 s that were
cued by a “�” sign on the screen. In total, the localizer scan includes five
repetitions of each of the five movement conditions. Both scans (i.e., scan1

and scan2) were identical and lasted �1 h. Scan1 was performed on the first
day, immediately after baseline evaluation of walking, and Scan2 was per-
formed on the subsequent day immediately after the adaptation session.

MRI acquisition. MRI scans were performed in the imaging center at
the Soroka Medical Center using a 3 tesla Philips Achieva MRI scanner
(Koninklijke; Philips Electronics). Functional data were collected by us-
ing a gradient echo EPI, with voxel size of 3 � 3 � 3 mm, TR � 2000 ms,
TE � 35 ms, 35 axial slices per TR with a 0.6 mm gap, 96 � 96 acquisition
matrix, flip angle of 77°, and FOV 192 mm to cover the entire cerebellum
and cerebral cortex. We used a gap of 0.6 mm (20% of slice thickness) to
reduce the crosstalk between slices. The first two volumes were discarded
to allow magnetization to reach equilibrium. A high-resolution anatomical
image was acquired using a single T1-weighted anatomical scan (with voxel
size of 1 � 1 � 1 mm, TR � 8.165 ms, TE � 3.74 ms, 256 � 256 acquisition
matrix). The FOV covered the entire cerebrum and the cerebellum.

Preprocessing of functional data. fMRI data preprocessing was per-
formed in Brain Voyager QX 2.80 (Brain Innovation) and includes the
following steps: (1) removal of the first two functional images of each run
series to allow stabilization of the magnet; (2) slice-time correction; (3)
head motion correction using trilinear interpolation; (4) temporal high-
pass filtering (0.0045 Hz cutoff frequency); and (5) spatial smoothing
using Gaussian kernel (FWHM of 6 mm). Functional images were then
aligned to the T1-weighted structural image and incorporated into the
3D datasets through trilinear interpolation. Data were then transformed
into Talairach space and z-normalized.

Regions of interest (ROIs). Three ROIs along the cerebellar–thalamic–
cortical pathway of the left, nondominant, leg were examined. Our re-
gions include ipsilateral cerebellar cortex, contralateral primary motor
cortex (M1), and contralateral thalamus. For connectivity analysis, the
coordinates of the cerebellar and cerebral regions were identified using a
localizer scan that was performed after the resting-state scan. The coor-
dinates in each of the ROIs were selected on the basis of activation peaks
obtained from the block design analysis. The entire contralateral tha-

lamic coordinates were defined for each subject using automatic anatom-
ical segmentation performed by FreeSurfer software (Reuter et al., 2012).
We then averaged the BOLD signal across all voxels of the ROI for the
functional connectivity analysis. We chose this approach based on the
observation that the resting-state activation in the thalamus is highly
correlated across space. For each subject, we obtained the mean BOLD
signal of each ROI by defining a mask around the seed in the standard
space. The cortical ROI was on average a sphere of radius 7 � 0.15 mm
(mean � SEM) with its center located at the activation peak. The cere-
bellar ROI was on average a sphere of radius 5.5 � 0.15 mm and the
thalamic ROI was on average a sphere of radius 12 � 0.15 mm.

Distortion and change in activation concerns during the localizer scans.
Performance of leg movements during the localizer may lead to signifi-
cant head motions and to inhomogeneities in the magnetic field, which
would result in erroneous selection of ROIs. To ensure that this distor-
tion was not present in our data, we performed three control analyses: (1)
we verified that head motion did not exceed a threshold of 1 mm and did
not differ between scans; (2) to address possible inhomogeneities in the
magnetic field, the alignment of the functional data was based on its first
volume, which is the optimal volume for the intensity-driven fine tuning
alignment step and is not affected by movement because subjects are at
rest at this stage; and (3) to address specifically the concern that inhomo-
geneities in the magnetic field may lead to erroneous activation patterns,
we ran a general linear (GLM) model with predictors associated with
the movement conditions (without a convolution with an HRF) and
searched for activation outside of the brain. We found no significant
activation of voxels outside the brain. Together, the above results support
the conclusion that our movement epochs did not elicit marked inho-
mogeneities in the magnetic field.

Another concern is that the locomotor adaptation session will lead to
changes in the activation patterns that are measured during the localizer
scan and that these changes will subsequently bias the selection of the
ROIs. To address this concern, we ran a GLM model and calculated the �
values for each seed in each localizer scan (i.e., scan1 and scan2). We
found no evidence for changes ( p � 0.18) in activation related to training
and no correlation (r 	 0.32, p � 0.19) between learning metrics and
activation strength during the localizer sessions. We therefore conclude
that subjects demonstrated comparable functional activations in the lo-
calizer sessions across days.

Functional connectivity (FC). Several processing steps were used to
isolate the meaningful patterns of activation that are specific to the areas
of interest. All resting-state BOLD signals were first preprocessed as de-
scribed in the previous session. In addition, further steps were used to
clean the signals from global activation patterns: (1) temporal band-pass
filtering using an eighth-order Butterworth filter with cutoff frequencies
of 0.009 	 f 	 0.08 Hz to remove unwanted physiological signals such
as heart rate and respiratory signals (Fox and Raichle, 2007) and (2)
projection out the nuisance signals of white matter, CSF, and six motion
parameters (x, y, and z translations and rotations obtained from the
motion correction step in preprocessing). This step was conducted by
running a multiple GLM regression analysis with all nuisance signals.
The residual of this analysis was free from these components and was
used as the input for the subsequent correlation analyses.

For each subject, we then calculated the Pearson correlation coeffi-
cients (i.e., r) between the BOLD time courses of our predefined ROIs. To
minimize multiple comparisons concerns, we limited our correlation
comparisons to be within the cerebellar–thalamic– cortical pathway of
the left, nondominant, fast leg becausee it was shown that applying trans-
cranial direct current stimulation (tDCS) over the cerebellum ipsilateral
to the fast leg and not to the slow leg enhanced locomotor adaptation
(Jayaram et al., 2012). For statistical analysis across subjects, we first
converted the correlation coefficients (i.e., r) to normal distribution us-
ing z-Fisher’s transformation. These values were then normalized using
z-scores (i.e., normally distributed, zero mean, and unit variance). We
then calculated the change of functional connectivity (i.e., 
FC) after
adaptation as the change of FC from day 1 (before adaptation) to day 2
(after adaptation). The resulting values were compared with the null
hypothesis of no change in functional connectivity across days by using a
paired-sample t test with a significant level of 0.05. To correct for multi-
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ple comparisons, we used the Holm–Sidak t test and restricted our com-
parisons to be within the anatomical pathway (i.e., 3 ROIs for each
comparison; e.g., ipsilateral cerebellum– contralateral thalamus– con-
tralateral M1).

We used a Pearson correlation test (i.e., r) to examine the relationship
between the behavior measures and the FC. To verify that the correlation
results that we found among baseline functional connectivity, relearning
effect, and recall were not the result of the small sample that might be
affected by outliers, we used a bootstrap test to estimate the effect of
possible outliers on our results. Specifically, the bootstrap was performed
using 10,000 unique combinations drawn with replacement from the
subject pool. The 95% confidence intervals were calculated as the 2.5 and
97.5 percentile values from the distribution for each coefficient obtained
across the 10,000 fits. In addition, to verify that the correlation results
were not affected by outliers, we also ran a robust regression analysis
using the Matlab function robustfit(x,y) with a tuning constant of 2.795.
These analyses allow addressing the concern that the correlation that was
found was driven by an outlier.

Seed voxel-based functional connectivity analysis. The second objective
of the current study was to explore the connectivity maps that were
calculated. For each ROI, the mean BOLD time course was used as a
predictor in a multisubject GLM to evaluate the functional connectivity
of that seed with every voxel in the brain. In addition, to account for
potential contributions of physiological noise, the time course of nui-
sance signals of white matter, CSF, and six motion parameters were also
included as predictors in the same GLM. This analysis ends with an
activation map of all voxels in the brain that correlated with the seed of
interest. We minimized detection of false positives (type II error) by
using a cluster-corrected familywise error rate correction at p 	 0.05. The
correction procedure used Monte Carlo simulations to calculate the
probability of having a cluster of a certain size being due to chance (noise)
alone; therefore, it computes the probability of a random field of noise
producing a cluster of a given size after the noise is thresholded at a given
level (Wymbs et al., 2012). Our z-statistic images then were projected
onto an inflated template brain. This analysis was conducted separately
for scan1 (before adaptation) and scan2 (after adaptation). For further
group analysis, we used random-effects analysis (RFX in Brain Voyager)
to compute across-day comparison (day 2 � day 1). To investigate the
strength of the connectivity changes at the single-subject level, we calcu-
lated the � values for each voxel underlying the connectivity maps in
individual participants. These values represent the strength of con-
nectivity between the seed area and the individual voxels. Analyses of
the distribution of the � values across subjects were done to estimate
connectivity patterns.

Independent component analysis (ICA). Data were further analyzed
using the ICA method in Brain Voyager. ICA estimates maximally statis-
tical independent, non-Gaussian components from resting-state fMRI
data. First, ICA was computed on the individual resting-state scans. We
chose a model order of 30 independent components that capture mostly
the full set of canonical networks as described previously (Beckmann et
al., 2005). We then classified the components based on previous knowl-
edge of the resting-state network patterns and focused on three networks
of interest (sensorimotor, cerebellar, and frontoparietal; Albert et al.,
2009b). This method allows identifying major networks on a subject-by-
subject basis during the resting-state scans and measuring changes in the
strength of these components after motor adaptation. For representation
purposes, activation maps showing each of the networks of interest were
projected on the inflated surface of the cortex. We compared the aver-
aged component related activation across the networks before and after
learning. We then examined the strength of these components on the
voxel level using contrasts by using “self-organizing group” in Brain
Voyager. We minimized detection of false positives (type I error) by
using cluster-corrected familywise error rate correction at p 	 0.05.

Results
Our protocol consisted of locomotor adaptation sessions in the
laboratory and resting-state fMRI scans. Specifically, participants
first performed a baseline locomotor task with no perturbation in
the laboratory and then a baseline resting-state fMRI scan. On the

following day, participants adapted to the split-belt perturbation
and performed another resting-state fMRI scan. Twenty-four
hours after adaptation, retention of the long-term locomotor
memory was assessed in the laboratory. Changes in resting-state
connectivity in the cerebellar–thalamic– cortical loop (Fig. 1A)
and intersubject correlations between connectivity in this net-
work and relearning effect and recall were examined to charac-
terize the neural basis of locomotor adaptation learning and
retention. Examination of the intrinsic resting-state functional
connectivity patterns allows overcoming artifacts that are associ-
ated with recording brain activation during locomotion and
therefore provides a unique opportunity to study the neural pro-
cesses that are involved in locomotor adaptation and retention.

Figure 1. Experimental design. A, Schematic diagram of the main neural pathways of inter-
est underlying locomotor adaptation: cerebellum, thalamus, and the motor cortex. B, Subjects
participated in 3 split-belt walking sessions performed in the laboratory and 2 MRI sessions over
3 subsequent days. On the first day, subjects first underwent a familiarization baseline walking
session on a customized treadmill. After this baseline session, subjects were transported to the
MRI room and underwent the first MRI scan. On the subsequent day, subjects came to the
laboratory and performed a split-belt treadmill adaptation session. They were then transported
to the MRI room and underwent an identical MRI session to the one performed the previous day.
Approximately 24 h later, subjects came again to the laboratory and were retested on the
split-belt treadmill for retention and savings estimation. C, On the first day, subjects performed
a baseline walking session for 20 min with no perturbation. They were then transported to the
scanner and underwent the first MRI scan. On the second day, subjects adapted to the split-belt
novel treadmill for 20 min while the nondominant leg walked on the fast belt (1.4 m/s) and the
dominant leg walked on the slow belt (0.7 m/s). Immediately afterward, subjects were trans-
ported to the scanner room and underwent the second MRI scan. Twenty-four hours later,
subjects returned to the laboratory and were tested for retention by walking for 10 min under
the perturbation of the previous day, followed by 10 min of washout (no perturbation condition:
equal speeds of 0.7 m/s in the both belts). Finally, subjects readapted for 20 min to the split-belt
perturbation.

352 • J. Neurosci., January 11, 2017 • 37(2):349 –361 Mawase et al. • Neural Correlates for Long-Term Locomotor Memory



Locomotor adaptation: adaptation, recall, and
relearning effect
Subjects participated in three behavioral sessions in the labora-
tory conducted on 3 consecutive days. On the first day, subjects
underwent 20 min of baseline walking, with no perturbation, on
a custom split-belt treadmill (ForceLink). On the second day,
subjects were exposed to an unexpected perturbation in the speed
of the belt, in which the dominant leg walked at a slower speed
compared with the nondominant leg (adaptation block, 0.7 vs 1.4
m/s, respectively). On the third day, subjects returned to the lab-
oratory and performed three consecutive blocks of walking—
adaptation, baseline, and readaptation (Fig. 1A). Subjects were
not notified and were typically unaware of the perturbation
schedule. The main measure of performance in the locomotor
adaptation task is step asymmetry, which is measured in each gait
cycle (Reisman et al., 2005). The underlying assumption of the
locomotor adaptation task is that the deviation of the step asym-
metry from zero (symmetric walking) is proportional to the error
signal that subjects perceive and wish to reduce through the ad-
aptation process (see Materials and Methods).

Three measures of locomotor adaptation were examined: ad-
aptation, recall, and relearning (Fig. 2). Adaptation describes the
short-term error reduction of step asymmetry when subjects are
exposed to the external perturbation for the first time (i.e., short-
term process). The relearning effect describes the enhancement
of the adaptation process when subjects are exposed to the same
perturbation again (after a washout session). Recall refers to the
retrieval of a previous locomotor pattern from the memory and is
approximated by the initial bias observed when subjects returned
to the treadmill 24 h after the first learning session (on day 3, with
no washout on the treadmill between the sessions). Both relearn-
ing and recall reflect the formation of a long-term memory of the
locomotor adaptation learning. Subjects managed to reduce the
error induced by the perturbation and showed a significantly
smaller error at asymptote compared with their initial error at
early adaptation (t(16) � 7.47, p 	 0.0001; Fig. 2A). Subjects also
adapted faster to the perturbation on day 3, indicating a relearn-
ing effect (t(16) � 8.05, p 	 0.0001; Fig. 2A,B), and showed a
significant recall expressed by the large initial biases that were

recorded during the first block of day 3 (t(16) � 4.03, p � 0.0029;
Fig. 2 A,B). The relearning effect and recall were not correlated
(r � 0.012, p � 0.64; Fig. 2B), indicating that these measures may
be related to separate processes. Altogether, the data collected in
the three sessions in the laboratory consist of information about
both short- and long-term learning and retention of adaptation
to a split-belt locomotor perturbation. We used here the mid-
errors as a model-free approximation for learning rates estimate.
The advantage of this estimate of learning rate is that it does not
assume that the subjects follow a specific learning function. Notably,
our model-free estimate (i.e., mid-errors) was significantly corre-
lated with a model-based learning rate as estimated by two-term
exponential function (average R2 �0.82�0.02 SE) for the quality of
the model fits and (r � �0.78, p 	 0.00024) for the correlation
between the estimated parameters and the mid-errors.

Alteration of cerebellar–thalamic– cortical functional
connectivity after locomotor adaptation
The goal of the study was to search for the neural correlates of
short- and long-term locomotor adaptation effects by investigat-
ing functional connectivity patterns between ROIs. To avoid
multiple comparison concerns, we restricted our analysis to ROIs
in the cerebellum, the thalamus, and the motor cortex (Fig. 1A).
We chose these areas due to the well established functional role of
this network in adaptation learning (Fabre et al., 1979; Martin et
al., 1996; Chen et al., 2006) and based on the anatomical connec-
tions between the dentate nucleus of the cerebellum and the ven-
trolateral thalamus, which in turn projects to the primary motor
cortex, supplementary motor area, and premotor cortex (Sakai et
al., 2002; Jeljeli et al., 2003; Stepniewska et al., 2003). We further
focused our analysis on the control network of the left, nondomi-
nant, leg that walked on the faster belt. This approach is based on
the estimation that the adaptation occurs primarily in the control
over the faster leg. This estimation is supported by a recent study
showing that locomotor adaptation enhancement after applying
tDCS over the cerebellum ipsilateral to the fast leg and not to the
slow leg (Jayaram et al., 2012).

Motivated by previous evidence showing changes in resting-
state connectivity after motor learning (Albert et al., 2009b; Vah-

Figure 2. Learning, recall, and relearning performance. A, Subjects’ mean performance across all sessions as estimated by their step asymmetry measure (i.e., motor error, which is unit-less).
Black points represent mean step asymmetry across subjects in each stride. Shaded area represents SD. Recall was estimated for each subject as the change in initial errors (i.e., bias) between day
2 (Aa) and day 3 (Ac) and the relearning effect was estimated as the signed difference between mid-errors from day 2 (Ab) and mid-errors from day 3 (Ad). B, Subjects showed significant recall (top)
and adapted faster to the perturbation on day 3, indicating relearning effect (middle). Recall and relearning effect measures were not correlated across subjects (bottom). The value of r represents
the Pearson correlation coefficient. Points and bars represent the means and error bars represent the SEM. Significance level is ***p 	 0.001.
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dat et al., 2011; Della-Maggiore et al., 2015b), we first
hypothesized that, because locomotor adaptation involves learning
via error correction and control processes, it would affect the
resting-state functional connectivity patterns in the cerebellar–
thalamic– cortical network. We therefore analyzed the changes in
the functional connectivity among the cerebellum, thalamus, and
the primary motor cortex (i.e., M1) after motor adaptation com-
pared with functional connectivity after baseline walking. ROIs
in the cerebellum and in the motor cortex were defined on a
subject-by-subject basis using a functional localizer (see Materi-
als and Methods). Because we could not find reliable activation
patterns in the thalamus during the localizer scan, this region was
defined based on anatomical landmarks only. We detected a sig-
nificant change in functional connectivity between cerebellum–
thalamus and cerebellum–M1 networks after motor adaptation
relative to baseline connectivity level (Fig. 3A,B shows the time

course of BOLD signals from representative subjects). Although
the connectivity between the cerebellum and the thalamus in-
creased (
FC � 0.157 � 0.03, mean � s.e.m, t(16) � 4.28, p �
0.0017), the connectivity between M1 and cerebellum decreased
(
FC � �0.106 � 0.03, t(16) � 3.38, p � 0.0114). The connec-
tivity between the thalamus and M1 did not change after adapta-
tion (t(16) � 0.524, p � 0.94; Fig. 3C). To ensure that these effects
were not caused by changes in the magnitude of signal fluctua-
tions in each one of the regions, but rather reflect a change in the
synchronization between regions, we compared the power spec-
trum for each BOLD signal between preadaptation and postad-
aptation (Fig. 3D). After binning the power spectrum of each
signal to 8 bins of 0.011 Hz, ANOVA revealed no significant day
effect in power (F(1,128) � 1.273, p � 0.2614) and no significant
day � frequency interaction (F(7,128) � 0.619, p � 0.7394) for the
power spectrum of the time course signal for the M1. Cerebellar

Figure 3. Modulation of cerebellar–thalamic– cortical functional connectivity after locomotor adaptation. A, Single subjects’ examples of BOLD time courses from the cerebellum (magenta) and
M1 (green) during preadaptation scan (top) and postadaptation scans (bottom). Right panel shows the mean 
FC between these ROIs. B, Single subjects’ examples of BOLD time courses from the
cerebellum (magenta) and the thalamus (orange) during preadaptation scan (top) and postadaptation scan (bottom). Increased cerebellar–thalamic functional connectivity was detected (right).
C, BOLD time courses from the thalamus (orange) and M1 (green) during preadaptation scan (top) and postadaptation scan (bottom). D, Mean power spectrum of the BOLD signal as a function of
frequency (in Hertz) for each ROI during preadaptation (light-colored curves) and postadaptation (dark-colored curves) sessions. Left, Power spectrum for M1. Middle, Power spectrum for the
cerebellum. Right, Power spectrum for the thalamus. Curves represent mean across subjects. The value of r represents the Pearson correlation coefficient. E, Top shows, in a coronal plane, the hand
cerebellar regions (cyan for the left hand and green for the right hand). Bottom shows, in a sagittal plane, the hand cerebral regions (cyan and green for left and right hand, respectively). F, No
significant functional connectivity changes were found in the cerebellar–thalamic– cortical network of the left hand. G, Similar results were found for the right hand. Bars represent the means and
error bars represent the SEM. Significance levels are as follows: **p 	 0.0, ***p 	 0.001.
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power analysis showed similar statistical results; ANOVA re-
vealed no significant day effect in power (F(1,128) � 0.053, p �
0.8175) and no significant day � frequency interaction (F(7,128) �
0.813, p � 0.5778). Power analysis of the time course signal for
the thalamus showed marginal results; ANOVA revealed a mar-
ginal day effect in power (F(1,128) � 3.68, p � 0.06), but no signifi-
cant day � frequency interaction (F(7,128) � 0.579, p � 0.7713).

To ensure that the connectivity effects that we observed after
locomotor adaptation were related to formation of locomotor
memories and do not reflect general task-independent functional
changes, we performed identical functional connectivity analysis
to the hand areas. We predicted that cerebellar–thalamic– corti-
cal hand motor networks would not exhibit functional plasticity
related to consolidation of locomotor memories. Similar to the
main analysis, the coordinates of the cerebellar and cerebral hand
regions were identified using a localizer scan that was performed
after the resting-state scan and are shown in Figure 3E. The top
panel shows, in a coronal plane, the hand cerebellar regions (cyan
for the left hand and green for the right hand). The bottom shows,
in the sagittal plane, the hand cerebral regions (cyan and green for
left and right hand, respectively). Data showed that no significant
functional connectivity changes were found in the cerebellar–
thalamic– cortical network of the left hand (Fig. 3F) between the
left cerebellum and right M1 (t(16) � 0.61, p � 0.55), the left
cerebellum and right thalamus (t(16) � 1.37, p � 0.19), or the
right thalamus and right M1 (t(16) � 1.48, p � 0.16). Similar
results were found for the right hand (Fig. 3G). No significant
connectivity change was observed between the right cerebellum
and left M1 (t(16) � 0.30, p � 0.77), between the right cerebellum
and left thalamus (t(16) � 0.12, p � 0.91) or between the left
thalamus and left M1 (t(16) � 0.48, p � 0.64). This result suggests
that the changes in connectivity were specifically related to the
learning that subjects accomplished between the sessions and
were not a simple outcome of the order of the sessions. This
conclusion is further supported by the following analyses show-
ing a correlation between connectivity measures and perfor-
mance in the behavioral sessions.

Baseline functional connectivity in the motor networks
predicts long-term memory
We found a noticeable across-subject variability in initial learn-
ing rates. Furthermore, these differences were also noticeable in
the performance of subjects on day 3 (Spearman’s rank correla-
tion � � 0.64, p � 0.0069), suggesting that across-subject vari-
ability is not a result of measurement or performance noise, but
rather represents a consistent difference between the learning
ability of the individual subjects. We therefore hypothesized that
the baseline resting-state connectivity magnitude between the
nodes of the cerebellar–thalamic– cortical network will be indic-
ative of the activation of these networks during adaptation and
memory formation processes. For example, individuals who have
high network connectivity with the cerebellum may exhibit
greater relearning effects than subjects who show weaker network
connectivity with the cerebellum. To address this hypothesis, we
investigated the relationship between the across-subject connec-
tivity measures at baseline and across-subject adaptation, recall,
and relearning effect performances.

We found that baseline functional connectivity between the
leg area of the cerebellum and the right thalamus tended to cor-
relate with the learning rate during the adaptation in day 2 (r �
�0.49, p � 0.047; Fig. 4A, left). This relationship was not found
when examining the thalamic– cortical baseline connectivity
(r � 0.06, p � 0.82; Fig. 4A, right). Interestingly, we found that

baseline functional connectivity between the left leg area of the
cerebellum and the right thalamus strongly predicts the magni-
tude of relearning effects (r � 0.64, p � 0.0058; Fig. 4B, left).
Subjects who showed high connectivity between cerebellum and
thalamus at baseline also showed a greater relearning effect. Such
correlation was not found when looking at the functional connectiv-
ity between thalamus and motor cortex (r � �0.03, p � 0.88; Fig.
4B, right). Conversely, we found a significant correlation between
baseline functional connectivity of the right thalamus and left M1
with the strength of memory recall as quantified by the initial bias
(r � 0.58, p � 0.015; Fig. 4C, left). This result suggests that individ-
uals who have stronger baseline connectivity between thalamus and
motor cortex were better at recall of previous actions from the mem-

Figure 4. Baseline functional connectivity in the motor networks predicts long-term mem-
ory components. A, Learning rate during day 2 was predicted by baseline functional connectiv-
ity between cerebellum and thalamus (left), but not by the baseline connectivity between the
thalamus and M1 (right). B, The magnitude of relearning effect was predicted by baseline
functional connectivity between the cerebellum and the thalamus (left), but not by the baseline
connectivity between the thalamus and M1 (right). C, Magnitude of recall as estimated by the
initial bias was predicted by baseline functional connectivity between the thalamus and M1
(left), but not by the baseline connectivity between the cerebellum and the thalamus (right).
The value of r represents the Pearson correlation coefficient.
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ory than individuals who showed weaker baseline connectivity.
Functional connectivity between cerebellum and thalamus did not
predict recall (r � 0.23, p � 0.37; Fig. 4C, right).

These dissociable results suggest that across-subject variability
in the retention of long-term motor memories can be partially
explained by the ongoing interaction between nodes in the motor
network. Baseline functional connectivity between cerebellum
and M1, however, was not correlated with relearning effect nor
with recall (r 	 0.09, p � 0.71). We suggest that the negative and
positive correlations between the cerebellum–thalamus func-
tional connectivity and the learning and relearning effects stem
from a ceiling effect in the learning capacity in our subjects.
Namely, individuals who already showed high learning rate in the
first adaptation session are more likely to show smaller improve-
ment when they are reexposed to the same perturbation on the
second day. This interpretation suggests that learning and re-
learning rates are negatively correlated. Indeed, we find a negative
correlation between these measures (r � �0.628, p � 0.0069). To
verify that the correlation results that we found among baseline
functional connectivity, relearning effect, and recall were not a
result of the small sample that might be affected by outliers, we
used a bootstrap test to estimate the effect of possible outliers on
our results (see Materials and Methods). Bootstrap results refute
the null hypothesis of zero correlation between cerebellar–
thalamic baseline functional connectivity and learning rate (p �
0.0024), as well as correlation with relearning effect (p � 0.0009).

Furthermore, bootstrapped correlation between thalamic–
cortical baseline functional connectivity and recall showed a sig-
nificant result (p � 0.0014). To further verify that our correlation
results were not affected by outliers, we ran a robust regression
analysis (see Materials and Methods) and found consistent cor-
relations between the connectivity of all networks of interest and
the behavioral measures.

Connectivity changes within the cerebellum and between the
cerebellum and the basal ganglia
In the two preceding sections, we based our hypotheses on local-
ized predictions and limited our analysis of connectivity to the
motor cerebellar–thalamic–cortical networks to obviate multiple-
comparisons concerns. Nevertheless, each one of our primary
nodes is also connected anatomically and functionally to other
brain areas. Which brain areas outside of the cerebellar–thalamic–
cortical network show changes in functional connectivity with
that network after adaptation? To answer this question, we cal-
culated seed-based functional connectivity maps. We examined
the networks that are connected to the seeds of interest in the
cerebellum (lobule IV of anterior lobe) and in the motor cortex.
In the cerebellum, we detected positive correlations between the
seed and lobules IV to VI of the anterior lobe and regions in the
posterolateral cerebellum (crus I) and a negative correlation with
areas in the cortex including premotor and primary motor areas
(Fig. 5A). To determine whether we could find changes in the

Figure 5. Modulation of cerebellar and M1 networks across the brain-seed based analysis. A, Left, Cerebellum seed region. Right, z-map of voxels that show significant correlation with the
cerebellum ROI during the two scans (conjunction analysis: day 1 � day 2). B, z-map of voxels showing a significant correlation increase with the cerebellum after adaptation (contrast analysis: day
2 � day 1). C, D, Same as A and B but for M1. Results are shown after cluster-level correction for multiple comparisons ( p 	 0.05). E, Changes in connectivity estimated by the GLM model (i.e.,
change in � values) within the cerebellum were correlated with the learning rate in the first adaptation session. F, Increased functional connectivity between the cerebellum and the putamen was
positively correlated with asymptotic performance in the first adaptation session. The value of r represents the Pearson correlation coefficient.
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connectivity patterns after adaptation across the entire brain, we
ran a contrast between the correlation patterns before and after
training on a voxel-by-voxel basis. We found that, after adapta-
tion, functional connectivity within the cerebellum increased
significantly (Fig. 5B, Table 1). Interestingly, we detected a signif-
icant increase in functional connectivity between the cerebellum
and the putamen (Fig. 5B, Table 1). Regression analysis revealed
that the changes in connectivity (i.e., change in � values) of these
two regions are correlated with the performance of the subjects in
the first adaptation session; the connectivity patterns within the
cerebellum were correlated with the learning rate (r � 0.61, p �
0.009; Fig. 5E, Table 1) and connectivity changes with the puta-
men were positively correlated with asymptotic performance
(r � 0.52, p � 0.035; Fig. 5F, Table 1). M1-seed-based analysis
revealed positive correlation with the primary and secondary sen-
sorimotor areas (SMA, pre-SMA, and PMd) and area 5 of the
posterior parietal cortex (Fig. 5C). The correlation patterns with
M1, however, did not change after adaptation (Fig. 5D). To verify
that the correlation results are not affected by outliers, we per-
formed a bootstrap analysis (see Materials and Methods) on the
correlation between the learning rate and the asymptotic perfor-
mance and the connectivity changes measures. We found that
bootstrapped correlation between changes in connectivity esti-
mated by the GLM (i.e., change in � values) within the cerebel-
lum and the learning rate in the first adaptation session showed a
pattern similar to our reported parametric result (p � 0.0104).
We also found a significant bootstrapped correlation (p �
0.0244) between changes in connectivity estimated by the GLM
(i.e., change in � values) between cerebellum–putamen and the
asymptotic performance of the first adaptation session (corre-
sponds to Fig. 5F).

ICA
We performed exploratory data-driven analysis by using ICA.
This method allows the identification of major networks on a
subject-by-subject basis during the resting-state scans and mea-
suring changes in the strength of these components after motor
adaptation. We focused our analysis on three previously reported
resting-state networks of interest (Albert et al., 2009b): the sen-
sorimotor, cerebellar, and frontoparietal networks (Fig. 6A).
First, we compared the averaged component-related activation
across the networks before and after learning. This analysis did
not reveal any global change in the components (t(16) � 0.86, p �
0.40 for all comparisons). We then examined the strength of these
components on the voxel level using contrasts. Running this
analysis on the sensorimotor component, we found increased
component-related activity in a cluster within the lateral section
of the central sulcus (primary motor cortex; see Fig. 6B, left).
In the cerebellar component, we found increased component-
related activation (Fig. 6B, middle) and, in the frontoparietal
network, we found decrease component-related activation in the
inferior parietal lobule of both hemispheres (Fig. 6B, right). The

new results extended our previous seed-based findings by show-
ing connectivity changes within the cortical and the cerebellar
networks. The increased connectivity of the cerebellar network is
consistent with our cerebellar-seed-based analysis and provides
additional evidence of the critical role of the cerebellum in short-
term and long-term motor memory. We suggest that the reduc-
tion in component activation in the prefrontal circuit may be
associated with a decrease in attentional and cognitive demands
during the second exposure to the treadmill. This region is com-
monly activated during tasks that place demands on goal plan-
ning, working memory, and attentional filtering (Dosenbach et
al., 2006; Power et al., 2011; Kelley et al., 2015).

Discussion
Integration of behavioral and resting-state functional connectiv-
ity measures allowed us to examine the neural processes that are
involved in locomotor adaptation, recall, and relearning. First,
we found that locomotor learning is associated with connectivity
changes in the cerebellar–thalamic– cortical and cerebellar– basal
ganglia networks and predicted by baseline cerebellar–thalamic
resting connectivity. Locomotor adaption led to significant
changes in behavior when subjects came to the laboratory after
the adaptation session. These changes were seen through recall,
which was associated with changes in the thalamic– cortical net-
work, and the relearning effect, which was associated with
changes in cerebellar–thalamic network.

Connectivity modulation in the
cerebellar–thalamic– cortical network
In support of our hypotheses, we found modulation of the con-
nectivity in the cerebellar–thalamic– cortical network after the
locomotor adaptation. The cerebellar–thalamic tract of the supe-
rior cerebellar peduncle connect the cerebellar hemisphere to the
contralateral thalamus, which in turn projects to areas in the
motor cortex (Sakai et al., 2002; Jeljeli et al., 2003; Stepniewska et
al., 2003). Previous brain stimulation (Galea et al., 2011; Jayaram
et al., 2012), neuroimaging (Albert et al., 2009b; Vahdat et al.,
2011; Della-Maggiore et al., 2015a; Kim et al., 2015; Villalta et al.,
2015), and lesions studies (Chen et al., 2006; Reisman et al., 2007;
Tseng et al., 2007; Choi et al., 2009; Xu-Wilson et al., 2009) pro-
vide evidence for the critical involvement of the nodes of this
network in motor learning. Consistent with our observation,
Chen et al. (2006) found that disrupting the cerebellar–thalamic
pathway either by deep brain stimulation or by thalamotomy
largely impaired the ability to adapt to external perturbation.
Although connectivity in the cerebellar–thalamic network in-
creased, connectivity between the cerebellum and M1 decreased
after adaptation. This result could be explained by the inhibitory
circuit of the Purkinje cells that forms an inhibitory synapse with
the deep cerebellar nuclei that send excitatory output to the mo-
tor cortex (Shehzad et al., 2009; Yan et al., 2009; Ma et al., 2010;
Vahdat et al., 2011).

Although the thalamus went almost unnoticed in previous
studies, we speculate that this site plays a role in the formation of
long-term memories. The reported connectivity changes with the
thalamus is consistent with a recent study that found that the
activity of the thalamus and the cerebellum significantly in-
creased after a visuomotor adaptation task, an activity that
showed strong correlation with savings (i.e., increased relearning
rate; Debas et al., 2010). Given the excitatory connections be-
tween the three ROIs and based on the increase in correlations
between the thalamus and the cerebellum, one would expect to
see an increase in connectivity with the motor cortex as well. The

Table 1. Brain regions positively correlated with our cerebellar seed and
significantly changed after adaptation

Region Side

Talairachcoordinates
Volume
(mm 3)

Peak
z-valuex y z

Cerebellum (lobules VI–V) L 22.6 �41 �25.4 466 4.175
Cerebellum (crus I–II) L 21.5 �63.9 �32.5 722 4.829
Putamen L 22.1 2.1 11.9 229 3.675

Local cerebellar (i.e. lobules VI–V and crus I–II) and cerebellar-basal ganglia (i.e. putamen) networks showed
enhanced functional connectivity after adaptation (corresponds to Fig. 5B). Significance for all voxels was tested
with a group mixed-effects analysis.
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fact that this result was not found suggests the existence of qual-
itative differences between the interactions between the reported
ROI. One potential explanation is that the increased cerebellar–
thalamic connectivity is driven mainly by an intrinsic change in
the cerebellum signal rather than increased in the synchroniza-
tion between the two sites.

Baseline connectivity reflects an idiosyncratic combination of
adaptation processes
Our intersubject correlation results suggest that functional con-
nectivity at rest might reflect a fundamental trait that is indicative
of the function of the network during adaptation and long-term
memory formation. A growing body of research demonstrates
the fundamental role of baseline network architecture in explain-
ing individual differences in a variety of behaviors, such as motor
sequence learning (Bonzano et al., 2015), intelligence quotient
(Santarnecchi et al., 2015), performance in working memory
tasks (Sala-Llonch et al., 2012; Zou et al., 2013), detection exter-
nal sensory stimulus (Sadaghiani et al., 2015), and learning ability
for foreign sounds (Ventura-Campos et al., 2013). There are two
key factors that have been discussed previously and might explain
partially some of the differences across individuals at baseline:
prior experience (Albert et al., 2009b; Barnes et al., 2009; Gerraty
et al., 2014) and brain structural connectivity (Hermundstad et
al., 2013; Hermundstad et al., 2014; Shen et al., 2015). We suggest
that anatomical connectivity analyses and estimation of multiple
learning abilities in individual subjects may shed more light on
this topic.

Recall and relearning effect are two distinct behavioral phe-
nomena that are related to the retention of long-term motor
memories. These two phenomena are likely to be the outcome of
different learning mechanisms that operate during adaptation
(Huang et al., 2011; Shmuelof et al., 2012; Taylor et al., 2014;
Orban de Xivry and Lefèvre, 2015). We suggest that the variability
in relearning effect and in recall across subjects reflects an idio-
syncratic combination of learning processes that operates during
the adaptation phase (Huang et al., 2011; Shmuelof et al., 2012).

Although both of these processes drive the adaptation, each one
of them leads to a different memory component that can be
probed by generalization, retention, and reexposure to the
perturbation.

We argue that functional connectivity reflects the modularity
of the network. Modules (ROIs in our case) that are heavily in-
terconnected will tend to be more synchronized with one another
and may therefore show decreased or limited ability to adapt
separately to changes in the environment. Conversely, modules
that are sparsely interconnected may have increased potential for
adaptability (Mattar et al., 2016). From this perspective, the neg-
ative correlation between the learning rate and the functional
connectivity between the cerebellum and the thalamus could be
explained by the fact that individuals who showed reduced syn-
chronization (i.e., reduced functional connectivity) between the
two modules have increased ability to adapt to the changes in the
environment compared with subjects that have increased syn-
chronization (i.e., increased functional connectivity), which by
itself decreases the ability to adapt. Support for this hypothesis
comes from a recent study showing that that increased modular-
ity (decreased functional connectivity) is positively correlated
with improvement in attention and executive function after cog-
nitive training (Arnemann et al., 2015). Although performing a
new task might be affected by the modularity of the dynamic
system, forming the memory may be affected by the integration
and the strength of the network. This interpretation is consistent
with the report by Wang et al. (2010) demonstrating that that
connectivity within the DMN measured just before the execution
of an associative memory task can predict interindividual differ-
ences in memory performance.

Involvement of cerebellar– cerebellar and cerebellar– basal
ganglia networks during the adaptation process
Plasticity related to locomotor learning is not restricted to the
cerebellar–thalamic– cortical network, but can also be seen
within the cerebellum and between the cerebellum and the basal
ganglia. Importantly, the modulation in these two networks was

Figure 6. Three resting-state networks of interest identified by ICA. A, Left, ICA component corresponding to the sensorimotor network. Middle, ICA component corresponding to the cerebellar
network. Right, ICA component corresponding to the frontoparietal network. Data show activation maps of networks of interest detected by the ICA algorithm. B, Contrasts of the three networks
between day 1 (before learning) and day 2 (after learning). Left, Sensorimotor network. Middle, Cerebellar network. Right, Frontoparietal network. Color maps represent significant voxels of higher
or lower component-related activity in day 2 compared with day 1.
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correlated with different components of the initial adaptation;
local cerebellar networks were correlated with the learning rate,
whereas cerebellar– basal ganglia circuit changes were correlated
with the asymptotic phase of the adaptation. This result may
support the idea that these two cerebellar-related networks are
involved in two different adaptation processes. The connectivity
change within the cerebellum after adaptation is consistent with a
recent study showing a similar pattern of connectivity between
crus I and lobule VIII of the ipsilateral cerebellum during visuo-
motor adaptation (Della-Maggiore et al., 2015b). The correlation
between the connectivity change within the cerebellum and the
early phase of the adaptation points to the dominant contribu-
tion of the cerebellum early in the learning process (Doyon et al.,
2003; Penhune and Doyon, 2005; Bastian, 2006). These observa-
tions suggest that the cerebellum appears to play an important
role, not only for online prediction-error correction (Martin et
al., 1996; Smith and Shadmehr, 2005; Tseng et al., 2007), but also
for consolidation of the memory associated with the adaptation
(Vahdat et al., 2011; Sami et al., 2014; Della-Maggiore et al.,
2015b).

Our results showing that the correlation between the cere-
bellum and the putamen of the basal ganglia increased after
adaptation and that this change was related to the asymptotic
performance provide novel evidence for the functional intercon-
nection between the cerebellum and the basal ganglia. This link is
important because it provides evidence for the involvement of the
basal ganglia in adaptation learning, supporting the involvement
of multiple learning processes in adaptation (Doya, 2000; Doyon
et al., 2003; Penhune and Doyon, 2005; Doyon et al., 2009; Bostan
et al., 2013). These findings can be interpreted as reflecting a
reinforcement learning process through the process of repetition
of successful actions on asymptote when the successful action
converged upon by adaptation is repeated (Huang et al., 2011;
Shmuelof et al., 2012). Therefore, we suggest that, during asymp-
totic performance, the optimal solution found by adaptation
leads to an increase in rewarding signals that engage reinforce-
ment mechanism (Shmuelof et al., 2012; Haith and Krakauer,
2013). Developing estimates of error-based and reinforcement-
based learning during locomotor adaptation may allow addressing
the proposed linkage among recall, relearning, and adaptation pro-
cesses.

The fact that a short exposure to a task leads to large-scale
connectivity changes that are observable by fMRI is thought pro-
voking. It could be a reflection of a short-term increase in synap-
tic formation that may subsequently support the formation of
new connections between neurons (Xu et al., 2009). In that case,
the increase in connectivity is expected to be transient (Xu et al.,
2009) and may be harnessed for other learning behaviors in the
same network (Kilgard, 2012). Alternatively, these changes may
reflect long-term changes in connectivity. In that case, the inconsis-
tency between the large-scale connectivity changes (Della-Maggiore
and McIntosh, 2005; Debas et al., 2010; Della-Maggiore et al., 2015b)
and the narrow generalization that is typically reported in adap-
tation learning (Krakauer et al., 2000) may suggest that the con-
nectivity changes are driven by a selective ensemble of neurons in
each region.

The extent to which the change in connectivity relates to
memory components of other tasks performed by other effectors
remains to be determined. Although the recall and relearning
effects were typically combined in previous resting-state connec-
tivity studies, we speculate that comparable connectivity changes
will be found in the hand network after reaching adaptation. This
assertion is based on a similarity among the long-term memory

components, recall and relearning effects, that are described in
the two behaviors (Smith et al., 2006; Malone et al., 2011; Mawase
et al., 2014; Huberdeau et al., 2015; Roemmich and Bastian, 2015;
Mawase et al., 2016) and on recent reports showing that sensori-
motor adaptation in reaching lead to modulation of functional
connectivity in a local network within the cerebellum and in a
network that includes the motor and premotor cortices, cerebel-
lum, and putamen (Albert et al., 2009b; Debas et al., 2010; Vahdat
et al., 2011; Vahdat et al., 2014). In addition, the fact that the
strengthening of this network correlated positively with long-
term retention in hand reaching under visuomotor adaptation
(Della-Maggiore et al., 2015b) provides further support for this
conjecture.
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