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ABSTRACT 

This study utilizes machine learning techniques, notably classification and regression trees (CART) 

and support vector regression (SVR), to predict corporate credit ratings. While SVR marginally 

outperforms in accuracy, CART offers interpretability. However, unconstrained models can produce 

non-monotonic relationships between credit ratings and core features, an undesired outcome. To 

circumvent this, we recommend restricted CART models that ensure interpretable, theory-consistent 

results. We underscore the importance of company size in credit rating prediction with an ideal 

model integrating size, interest coverage, and dividends. Although being a large-cap company is 

crucial, it doesn't guarantee high ratings, and small-cap companies rarely secure investment-grade 

ratings. 
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1.      Introduction 

Corporate credit ratings are essential in bond markets and other investment platforms 

(Hilscher and Wilson, 2017). Analysts use them to estimate a company's cost of debt and weighted 

cost of capital. When a company is not rated, analysts can estimate a synthetic/shadow rating as a 

proxy (Damodaran, 2012). Shadow ratings also help corporate executives with initial bond offerings 

and risk managers assessing credit risk exposure. 

Numerous rating prediction models exist, employing various features and complex models like 

Support Vector Machines and neural networks. However, these models lack interpretability, making 

it challenging to understand the impact of specific variables on ratings. A simpler approach, 

advocated by Damodaran (2012), suggests using a single variable (Interest Coverage) for synthetic 

rating estimation, as it provides more accessible explanations for rating changes. 

This paper employs machine learning techniques to produce rating prediction models that are nearly 

as accurate as sophisticated models while still being both simple and interpretable. Our study 

proceeds as follows. The dataset and the methodology are described in Section 2. Section 3 presents 

the results, and Section 4 concludes. 

2.   Data and Methodology 

2.1     Data 

The study's initial sample includes all firms in the COMPUSTAT database from 2005 to 2016, with an 

S&P issuer rating (non-default) on the financial year's last day.3 In compliance with previous 

literature, we transform all ratings to numerical values, designating the value 21 for the highest 

rating category (AAA) and then 20 to AA+ down to 5 for CCC+ or lower. In addition, for our descriptive 

statistics, we also use ratings in main categories (AAA, AA, A, BBB, BB, B, CCC or lower). We exclude 

financial firms (SIC 6000-6999) and other firms with unique characteristics, such as agriculture, 

utilities, and government firms (SIC code 0 to 100, 4900 to 4999, and 9000 to 9999). Our database 

comprises 13,937 annual observations of 1,988 firms with complete data on explanatory variables. 

We utilize accounting explanatory variables, defined according to S&P rating criteria, like Blume et 

al., (1998), Jorion et al. (2009), Alp (2013), and Baghai et al. (2014). Initially, we use twelve 

explanatory variables; however, our analysis reveals that six variables have the most explanatory 

 
3 We chose not to use data before 2004 because of the trend in rating criteria documented in prior research 
(e.g. Afik and Galil, 2012; Alp, 2013). Data after 2016 is not available because of discontinuity of rating data in 
Compustat in early 2017. 
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power and remain in our analysis: Size, Interest Coverage Ratio (ICR), Total Debt Leverage, Dividend 

Payer, Operating Margin, and Market to Book Value of Equity.4 The Appendix includes detailed 

definitions for all variables. Following the S&P methodology, Blume, et al. (1998), Baghai, et al. 

(2014), all financial ratios are averaged over three years, and all variables except for Size and Total 

Debt Leverage are winsorized at the 99th percentile level, while ICR is winsorized at 1 (at the bottom) 

and 100 (at the ceiling). 

Table 1 illustrates the distribution of annual observations across the main rating categories (AAA, 

AA, A, BBB, BB, B, CCC, and lower). We observe a decreasing number of AAA ratings over the years, 

from 9 in 2005 to just 3 in 2016. A milder pattern is observed in the AA and A rating categories. Other 

rating categories, however, do not display any trend over time. 

Table 2 presents summary statistics of the sample. Panel (a) displays statistics for the entire sample, 

which aligns with the behavior of samples observed in previous literature (e.g., Alp, 2013; Baghai et 

al., 2014). Panel (b) shows the means of variables across the main rating categories. The table 

demonstrates that the means of variables display a monotonic trend across ratings. Higher ratings 

are linked to greater Size, Interest Coverage, Operating Margin, and Market to Book ratio. 

Additionally, firms with higher ratings exhibit a greater propensity to pay dividends and maintain 

lower leverage. 

2.2     Methodology 

We apply two machine-learning techniques to our data, namely classification and regression trees 

(CART) and support vector regression (SVR). We hereby describe both methods briefly. In the 

preceding sections, we describe the methods for building and evaluating our models.  

2.2.1 Classification and Regression Trees  

Classification and Regression Trees (CART) is a widely used decision tree-based algorithm for both 

classification and regression tasks (Breiman et al., 1984), known for its simplicity, interpretability, 

and robustness in various fields, such as finance (Yang et al., 2014) and medicine (Luna et al., 2019). 

CART predicts the value of a continuous target variable by recursively partitioning the input space, 

constructing a binary tree with internal nodes representing feature tests, branches corresponding to 

outcomes, and leaf nodes representing predicted values. The algorithm selects feature-split points to 

 
4 The other six financial ratios omitted from the final analysis are: R&D to Total Assets, Retained Earning to 
Total Assets, Capital Expenditures to Total Assets, Cash Balances to Total Assets, Tangible Assets (Property, 
plant, and equipment) to Total Assets, and Convertible Debt to Assets. 
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maximize the reduction in sum of squared errors (SSE) for each partition, optimizing the cost 

function: 

𝐽𝐽𝑚𝑚  =  
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
𝑚𝑚

∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  +
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 
𝑚𝑚

∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 

ensuring an accurate fit to the training data. CART provides easily interpretable and visualized if-

then-else rules, facilitating decision-making processes.  

2.2.2 Support Vector Machine for Regression (SVR) 

Support Vector Regression (SVR) is an extension of the Support Vector Machine (SVM) algorithm for 

regression tasks, which has been widely used in various fields, such as finance (Tas & Atli., 2022), 

and biology (Batta et al., 2022), due to its ability to handle high-dimensional data and its robustness 

to noise. SVR employs nonlinear projections to map the input data into a higher-dimensional feature 

space, where the regression function can be effectively estimated. By minimizing the norm of the 

weight vector while satisfying the constraints, SVR seeks to identify the optimal hyperplane that 

separates the projected data points, maximizing the margin between predicted and actual values in 

the higher-dimensional space. This allows SVR to capture complex relationships between variables 

and improve regression performance. 

2.2.3 Experiments  

We trained and tested our prediction models using the six explanatory variables described in section 

2.1. The overall data set for learning consisted of 12,559 rows, each containing values for all six 

variables, while the credit ratings were used as tags.  

We generated all non-empty subsets of the explanatory variables. For each subset size 𝑁𝑁 ∈ [1, … ,6], 

we conducted a group of experiments, iterating over all possible combinations of 𝑁𝑁 variables. For 

each combination, we trained two types of learning models: an SVR model, and a regression-tree 

model.  

The SVR model was trained with the default parameter set used in the scikit-learn Python library.5 

Regarding regression-tree models, for each variable combination, we tried all depths in the range 

[2, … ,6]. We repeated each experiment configuration around 1,000 times to address the random 

nature of model training. 

 
5 The default parameter set produced the best results. See scikitlearn.org for a comprehensive description of 
SVR parameters.  
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In regression tree construction, variables are selected at each step based on optimality constraints, 

without the requirement of selecting all variables in the current combination, resulting in cases 

where specific trees did not contain all available variables. 

Finally, all experiments were conducted two times: First, with applying monotonicity constraints, 

and second without such constraints. We consider a model monotonic if improving on a single or 

more variable cannot lead to a lower predicted rating. 

2.2.4 Evaluation 

For each experiment, we performed a random train-test split, where 0.8 of the data was used for 

training and 0.2 for testing. All models were evaluated using R-squared, RMSE and notch-distance 

accuracy (ACC) measures. Notch-distance was derived by notch-distance as described in Golbayani 

et al. (2020): let 𝑑𝑑 denote the absolute prediction error. If 𝑑𝑑 ≤ 0.5,  distance is calculated as 0. If 0.5 <

𝑑𝑑 ≤ 1.5, the distance is 1, and if 𝑑𝑑 > 1.5, the distance is considered 2 or above and counted as binary 

prediction error. For each experiment configuration we kept the best trees for reference, using R-

squared as the determining factor. 

3.         Results 

In constructing our prediction models, we generated sets of 1 to 6 explanatory variables. Table 3 

presents the best models based on R-squared, RMSE, and ACC measures, focusing on interpretable 

CART models and including SVR models for comparison. SVR models outperform CART models in 

some combinations of three variables and in all combinations of four to six variables. Additional 

predictors generally improve performance measures, but not all additions enhance accuracy. The 

value of added predictors diminishes, with the highest R-squared increasing from 0.6968 for a single 

predictor model to 0.7889 for a six-predictor model, reflecting their high correlation. Zmijewski 

(1984) found that three predictors suffice for a robust bankruptcy prediction model.6 

Size emerges as the best single predictor for ratings, surpassing other predictors in both CART and 

SVR models. This finding is quite astonishing, given that Size is not directly associated with the ability 

of a firm to serve its debts. Previous studies favored ratios like ICR (Damodaran, 2012) or cash flow 

to debt ratios (Beaver, 1966) for bankruptcy prediction because this ratio combines both the firm's 

ability to generate profits/cash and the amount of debt it. Notably, Beaver (1966) also conducted 

univariate analysis and did not consider Size a bankruptcy predictor.  

 
6 Zmijewski (1984) used only three variables, each representing a different group of financial performance. 
Return on assets (net income to total assets) represented profitability, total debt to total financial leverage and 
current assets to current liability represented liquidity. 



6 
 

Comparing our models' performance measures with previous literature has limitations. Our panel 

database predicts ratings across different time periods, while previous studies mainly focused on 

single-year predictions. Rating agencies consider the business cycle and avoid rapid rating changes 

(Löffler, 2004; Löffler, 2005). Moreover, rating criteria change over time (e.g., Blume et al., 1998, Afik 

and Galil, 2022). Our panel dataset-based model is more robust and adaptable than single-year 

sample models. Previous studies often focused on specific industries, while our model is designed for 

a wide range of industries. Lastly, we prioritize simplicity and interpretability with a limited number 

of variables, whereas previous studies used numerous variables and uninterpretable models. 

In comparison to Wallis et al. (2019), who utilized 27 variables and a random-forest model to predict 

S&P 500 corporate ratings for 308 firms in 2016-2017 with an ACC of 0.646, our best CART model 

with three variables achieved an ACC of 0.676. Our model, based on a sample of 13,937 firm-year 

observations spanning various sectors and 12 years, demonstrates strong performance despite its 

simplicity and use of only three explanatory variables. 

Table 4 presents the CART model estimation using Size as the predictor, which achieves the highest 

accuracy measures among single-variable models. For convenience, Size is transformed into the 

market value of equity in 2022 prices. The model exhibits non-monotonic behavior, where slight 

increases in market value above a threshold lead to rating drops. This non-monotonic pattern 

persists throughout the table and is observed in other estimated models with one or more predictors. 

While this model demonstrates high accuracy, its results are difficult to comprehend, making it 

challenging for corporate executives to rely on its predictions for desired rating grades. It should be 

acknowledged that uninterpretable models like SVR or neural-network models may also exhibit non-

monotonic behavior. 

To ensure practicality for analysts and executives, we sought monotonic models in our estimation. 

Monotonic models are defined as those where improvements in variables do not result in lower 

predicted ratings. We carefully examined all estimated models and selected only the monotonic ones. 

Table 5 presents a comparison of performance measures for the best monotonic CART models. The 

accuracy measures of these models only show a slight decrease compared to the unrestricted models 

in Table 3. The top-performing model, incorporating ICR, Size, and DIVP as the three variables, 

outperforms the best models with four or five predictors. None of the models using all six predictors 

were found to be monotonic in our search. 

Table 6 presents our best single-variable monotonic model estimate. The model utilizes Size to 

classify firms into 14 rating grades, excluding AAA, AA+, and AA- which are difficult to distinguish 
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from AA. Notably, Damodaran's (2012) model also predicts up to 13 classes using ICR. In our model, 

firms require a market value exceeding 12,971 million USD to be classified as investment-grade 

(BBB- or higher), and a market value exceeding 496,552 million USD for an AA rating or higher. Small-

cap companies with a market value up to 2 billion USD are limited to a maximum rating of BB-, while 

mid-caps with a market value up to 10 billion USD cannot attain an investment-grade rating. These 

predictions may contradict actual observations as the model disregards other vital features. 

Table 7 displays the best monotonic model found in our search, utilizing the market value of equity, 

ICR, and dividend payment as predictors. The model classifies ten grades. According to this model, a 

firm needs a market value greater than 481,877 to be classified as AA, regardless of other features. A 

mid-cap firm with a market value of 10 billion USD will receive an investment-grade rating of BBB- 

if its ICR is above 3.884 and it pays dividends. However, if the firm's ICR drops below 6.022 and it 

stops paying dividends, it will be downgraded to BB. A small-cap firm with a market value of 2 billion 

USD and dividend payments will receive a BB- rating if its ICR is below 3.884. Improving the ICR 

above 3.884 may result in an upgrade to BB. Size remains a dominant factor in improving a firm's 

rating over time. The model suggests that mid-cap firms can achieve an investment-grade rating of 

BBB+ with a high ICR and consistent dividend payments. However, to attain a rating of A or higher, a 

firm must be a large cap with a market value exceeding 72 billion USD. 

It is evident from our models and real data (not shown for brevity) that ratings of AA-AAA are mostly 

limited to high-cap companies, while small-cap companies struggle to obtain BBB ratings. It should 

be noted that based on this table, a larger Size is necessary but not sufficient for higher ratings. Large-

cap companies may still receive speculative-grade ratings, while small-cap companies cannot reach 

AA-AAA ratings. 

4.         Conclusions 

 In this paper, we use machine-learning techniques to predict corporate credit ratings. We 

compare classification and regression trees (CART) with support vector regression (SVR) models. 

SVR models show slightly higher accuracy, but have interpretability limitations. Unrestricted CART 

models yield counter-intuitive results, indicating a non-monotonic relationship between credit 

ratings and fundamental features. To address this, we employ multiple restricted CART models that 

impose monotonic behavior across variables, providing interpretability and consistency with 

financial theory. Size emerges as a dominant predictor in rating predictions. A simple three-variable 

model (Size, ICR, and dividend payment) achieves the highest accuracy, with no further variables 

improving the results. Being a large-cap company is necessary but not sufficient for higher ratings. 



8 
 

Small-cap firms rarely receive investment-grade ratings, while mid-cap firms can attain BBB ratings 

with size, dividends, and high ICR. 
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Tables 

Table 1 – Rating Distribution over Years 
This table shows the breakdown of the sample across main rating categories and over the years. 
 

Year AAA AA A BBB BB B CCC or 
lower 

Total 

2005 9 50 258 385 330 172 18 1,222 
2006 9 57 237 380 322 193 19 1,217 
2007 8 60 226 348 319 205 18 1,184 
2008 6 54 214 345 309 214 28 1,170 
2009 4 48 193 348 280 234 44 1,151 
2010 4 43 200 356 272 243 21 1,139 
2011 5 37 199 366 277 212 16 1,112 
2012 5 33 200 377 278 208 19 1,120 
2013 5 35 205 392 288 200 12 1,137 
2014 4 41 206 390 308 207 12 1,168 
2015 4 41 184 403 292 211 27 1,162 
2016 3 37 179 402 300 189 45 1,155 
Total 66 536 2,501 4,492 3,575 2,488 279 13,937 
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Table 2 – Summary statistics 
This table shows the summary statistics of the sample that covers 13,937 firm-year observations 
over the years 2005-2016. Panel (a) shows the descriptive statistics of the explanatory variables and 
Panel (b) shows the variable means across main rating categories. 
 
Panel (a) – Descriptive statistics 

 Mean Median Standard 
Deviation Minimum Maximum 

Size 8.348 8.325 1.790 -4.851 13.229 
Interest Coverage 17.157 6.674 26.985 1.000 100.000 
Dividend payer 0.662 1.000 0.473 0.000 1.000 
Total Debt Leverage 0.318 0.283 0.204 0.012 1.129 
Operating Margin 0.207 0.167 0.156 -0.159 0.783 
Market to Book 1.560 1.316 0.829 0.386 12.554 

  
Panel (b) – Variable means across main rating categories 

 Size Interest 
Coverage 

Dividend 
payer 

Total Debt 
Leverage 

Operating 
Margin 

Market 
to Book 

AAA 11.556 41.247 0.985 0.181 0.296 1.887 
AA 10.975 49.232 0.978 0.190 0.290 1.783 
A 9.939 31.005 0.943 0.212 0.254 1.772 
BBB 8.808 19.238 0.852 0.252 0.212 1.601 
BB 7.745 8.972 0.514 0.357 0.197 1.490 
B 6.500 5.296 0.236 0.485 0.161 1.333 
CCC or lower 5.062 2.876 0.097 0.612 0.075 1.415 
Total 8.348 17.157 0.662 0.318 0.207 1.560 

 
Table 3 – Accuracy measures for unrestricted models 
This table shows the accuracy measures for various rating unrestricted prediction models. The 
accuracy measures are R-squared (R2), RMSE, and ACC as defined in the text. SIZE is the log of market 
value of equity in 1985 prices, ICR is interest coverage, DIVP is a dummy variable that gets the value 
1 if the firm pays dividends, and zero otherwise, OM is operating margin. TDL is total debt leverage, 
and MB is market to book ratio. Variables definitions appear in the appendix. 
 

SVR Regression Tree 
Variables used 

No. of 
Variables 

used ACC RMSE R2 ACC RMSE R2 Depth 

0.5727 2.0001 0.6668 0.5653 1.9793 0.6968 4 SIZE 1 
0.4697 2.5237 0.4898 0.4772 2.4402 0.5371 4 ICR 1 
0.4165 2.7663 0.3475 0.4426 2.8029 0.3542 3 DIVP 1 
0.6470 1.7774 0.7452 0.6548 1.7029 0.7469 6 ICR, SIZE 2 
0.5180 2.4246 0.4929 0.4655 2.4275 0.5408 3 ICR, OM 2 
0.5276 2.2307 0.5837 0.5456 2.1922 0.6026 6 ICR, DIVP 2 
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0.5861 1.9428 0.6711 0.6057 1.8885 0.6962 6 TDL, SIZE 2 
0.5776 1.9936 0.6393 0.6057 1.8559 0.7081 5 SIZE, DIVP 2 
0.5782 1.9866 0.6550 0.6011 1.9056 0.6762 6 SIZE, OM 2 
0.6994 1.5751 0.7810 0.6732 1.7282 0.7422 6 ICR, OM, SIZE   3 
0.6823 1.6331 0.7593 0.6758 1.7120 0.7351 6 ICR, TDL, SIZE 3 
0.6826 1.6386 0.7890 0.6746 1.6319 0.7804 6 ICR, SIZE, DIVP 3 
0.6513 1.7881 0.7453 0.6736 1.7101 0.7610 6 ICR, SIZE, MB   3 
0.6332 1.7693 0.7471 0.6274 1.8262 0.7342 6 TDL, SIZE, DIVP 3 
0.7190 1.4584 0.8210 0.6745 1.6562 0.7640 6 ICR, OM, SIZE, DIVP 4 
0.6810 1.6338 0.7903 0.6757 1.6445 0.7815 6 ICR, SIZE, DIVP, MB 4 
0.6714 1.7249 0.7680 0.6231 1.8258 0.7383 6 OM, TDL, SIZE, DIVP 4 
0.7504 1.4472 0.8193 0.6928 1.5804 0.7723 6 ICR, OM, TDL, DIVP, SIZE 5 
0.7472 1.3818 0.8339 0.7066 1.5967 0.7889 7 ICR, OM, TDL, SIZE, 

DIVP, MB 
6 

 
Table 4 – An unrestricted rating model using Size 
This table shows the estimated unrestricted tree regression model with the highest R-squared. SIZE 
is the log of the market value of equity in 1985 prices. For convenience, we transform Size to the 
market value of equity in December 2022 prices. The model has an R-squared of 0.698, RMSE of 
1.9793, and ACC measure of 0.5653. 
 

Rating Size Market Value of 
Equity (December 

2022 prices) 
AA+ 11.761- 359,850 - ∞ 
BBB- 11.744-11.761 353,785 - 359,850 
AA- 11.377-11.744 245,105 - 353,785 
A+ 10.333-11.377 86,288 - 245,105 
A- 10.206-10.333 75,997 - 86,288 
A 10.072-10.206 66,466 - 75,997 
A- 9.709-10.072 46,233 - 66,466 
AAA 9.405-9.709 34,113 - 46,233 
BBB+ 9.051-9.405 23,943 - 34,113 
BBB 8.665-9.051 16,276 - 23,943 
A- 8.129-8.665 9,523 - 16,276 
BB 8.126-8.129 9,494 - 9,523 
BBB- 8.11-8.126 9,344 - 9,494 
AA+ 8.109-8.11 9,334 - 9,344 
BBB- 7.571-8.109 5,450 - 9,334 
B 7.569-7.571 5,440 - 5,450 
BB+ 7.268-7.569 4,026 - 5,440 
BBB 6.996-7.268 3,067 - 4,026 
BB 6.673-6.996 2,220 - 3,067 
BB- 6.626-6.673 2,118 - 2,220 
BB 6.538-6.626 1,940 - 2,118 
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BB- 6.237-6.538 1,436 - 1,940 
B+ 4.98-6.237 408 - 1,436 
B 3.67-4.98 110 - 408 
B- 1.495-3.67 13 - 110 
CCC 0-1.495 0 - 13 

 
Table 5 – Accuracy measures for monotonic models 
This table shows the accuracy measures for monotonic rating prediction models with the highest R-
squared measure among all estimated unrestricted models. The accuracy measures R-squared (R2), 
RMSE, and ACC as defined in the text. SIZE is the log of market value of equity in 1985 prices, ICR is 
interest coverage, DIVP is a dummy variable that gets the value 1 if the firm pays dividends, and zero 
otherwise, OM is operating margin. TDL is total debt leverage, and MB is market to book ratio. 
Variables definitions appear in the appendix. 
 

Regression Tree 
Variables used 

No. of 
Variables 

used ACC RMSE R2 Depth 

0.5666 2.0423 0.6830 5 SIZE 1 
0.4660 2.4911 0.5030 4 ICR 1 
0.4050 2.9882 0.3277 5 DIVP 1 
0.6370 1.7753 0.7560 4 ICR, SIZE 2 
0.4952 2.4335 0.5494 3 ICR, OM 2 
0.4936 2.3688 0.5355 3 ICR, DIVP 2 
0.5191 2.1903 0.6138 3 TDL, SIZE 2 
0.5488 2.0273 0.6841 3 SIZE, DIVP 2 
0.5435 2.0825 0.6744 3 SIZE, OM 2 
0.6024 1.8941 0.7107 3 ICR, OM, SIZE   3 
0.6067 1.9413 0.7064 3 ICR, TDL, SIZE 3 
0.6410 1.7504 0.7630 4 ICR, SIZE, DIVP 3 
0.5860 1.9087 0.7119 3 ICR, SIZE, MB   3 
0.5812 2.0231 0.6760 3 TDL, SIZE, DIVP 3 
0.5870 1.9573 0.7133 3 ICR, OM, SIZE, DIVP 4 
0.5886 1.9041 0.7190 3 ICR, SIZE, DIVP, MB 4 
0.5796 2.0128 0.6839 3 OM, TDL, SIZE, DIVP 4 
0.5966 1.9159 0.7128 3 ICR, OM, TDL, DIVP, SIZE 5 

- - - Not found ICR, OM, TDL, SIZE, DIVP, MB 6 
 
Table 6 – A monotonic rating model using Size  
This table shows the estimated monotonic tree regression model with the highest R-squared. SIZE is 
the log of the market value of equity in 1985 prices. For convenience, we transform Size to the market 
value of equity in December 2022 prices. The model has an R-squared of 0.683, RMSE of 2.0423 and 
ACC measure of 0.5666. 
 



13 
 

Rating Size Market Value of Equity 
(December 2022 prices) 

AA 12.083- 496,552 - ∞ 
A+ 11.586-12.083 302,079 - 496,552 
A 10.704-11.586 125,047 - 302,079 
A- 10.135-10.704 70,788 - 125,047 
BBB+ 9.774-10.135 49,338 - 70,788 
BBB 8.986-9.774 22,436 - 49,338 
BBB- 8.438-8.986 12,971 - 22,436 
BB+ 7.705-8.438 6,232 - 12,971 
BB 7.209-7.705 3,795 - 6,232 
BB- 6.344-7.209 1,598 - 3,795 
B+ 5.775-6.344 905 - 1,598 
B 5.155-5.775 487 - 905 
B- 3.752-5.155 120 - 487 
CCC -3.752 0 - 120 

 
Table 7 – A monotonic rating model using Size, Interest Coverage (ICR) and Dividend-Payer 
(DIVP) 
This table shows the estimated monotonic tree regression model with the highest R-squared among 
those using only three explanatory variables. The explanatory variables are Market value of equity 
(in 2002 prices), ICR (interest coverage) and an indicator DIVP on whether the firm pays dividends 
or not. The model has R-squared of 0.7630, RMSE of 1.7504 and ACC measure of 0.6410. 
 

Rating Market Value of Equity  
(December 2022 prices) Interest Coverage Dividend 

AA 481,877 - ∞ 
 

- 
  

A+ 320,118 - 481,877 
 

- 
  

A 72,146 - 320,118 12.020 - 
  

BBB+ 72,146 - 320,118 −∞ - 12.020 
 

BBB+ 12,790 - 72,146 6.022 - ∞ pay 
BBB- 12,790 - 72,146 6.022 - ∞ no pay 
BBB- 12,790 - 72,146 −∞ - 6.022 pay 
BBB- 4,066 - 12,790 3.884 - ∞ pay 
BB 4,066 - 12,790 3.884 - ∞ no pay 
BB 1,528 - 4,066 3.884 - ∞ 

 

BB 12,790 - 72,146 −∞ - 6.022 no pay 
BB- 865 - 12,790 −∞ - 3.884 pay 
B+ 0 - 865 3.884 - ∞ 

 

B+ 865 - 12,790 −∞ - 3.884 no pay 
B 0 - 865 2.198 - 3.884 

 

CCC+ 0 - 865 −∞ - 2.198 
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Appendix – Variables Definition 

Size (SIZE) follows the definition by Blume et al. (1998). It is the equity market value of the firm 

(PRCC_f * CSHO), in million dollars, adjusted by the U.S. consumer price index (CPI) of January 1985 

and then converted to its natural logarithm value. 

Interest Coverage Ratio (ICR) follows the definitions by Blume et al. (1998) and Alp (2013). It is 

the ratio of operating income after depreciation (OIADP) plus interest expense (XINT) to interest 

expenses (XINT). 

Total Debt Leverage (TDL) follows the definition by Alp (2013). It is the ratio of debt (DLTT+DLC) 

to total assets (AT). 

Dividend payer (DIVP) follows the definition by Alp (2013). It is a dummy variable that equals 1 if 

the dividend per share (DVPSX_F) is positive, and equals zero otherwise. 

Market to Book (MB) follows the definition by Alp (2013). It is the sum of total assets (AT) and 

market value of equity minus the book value of equity, all divided by total assets (AT). Market value 

of equity is the fiscal-year closing price (PRCC_F) times the shares outstanding (CSHO). The book 

value of equity is stockholder’s equity (SEQ) minus preferred stock plus balance-sheet deferred taxes 

and investment tax credit (TXDITC). If data item TXDITC is missing, it is set to zero. If data item SEQ 

is unavailable, it is replaced by either common equity (CEQ) plus preferred stock par value (PSTK), 

or total assets (AT) minus total liabilities (LT). Preferred stock is preferred stock liquidating value 

(PSTKL), if missing then, preferred stock redemption value (PSTKRV), or preferred stock par value 

(PSTK). 

Operating Margin (OM) follows the definition by Blume et al. (1998) and Alp (2013). It is operating 

income before depreciation (OIBDP) divided by sales (SALE). 


