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Abstract

We study the optimal design of status classi�cations in organizational structures under the assumption

that agents in a lottery (Tullock) contest care about their relative position. We assume that there are

two status categories and a designer who determines their sizes in order to maximize the agents�total

performance. We prove that the optimal partition contains more than one agent in each status category

if the number of agents is larger than three, and that the top status category contains more agents than

the bottom one. This result demonstrates that in order to maximize the agents� total output the top

status categories should not be exclusive to a small number of agents.
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1 Introduction

It is obvious that people care about status and status concerns directly enter into their utility functions and

in�uence their social interactions (see Frank 1985, and Frank and Cook 1995). Overwhelming experimental

evidence con�rms that status plays a key role in our lives.1 Indeed, we can �nd numerous real-life examples

of status categories since ancient times when kings and queens of feudal states awarded titles of nobility such

as duke, marquis, baron, baronet, etc., until the present time, where large corporations grant status rewards

such as president, vice president, senior manager, manager, etc., or academic ranks such as full professor,

associate professor, and assistant professor.

We study the optimal design of status categories in organizational structures under the assumption

that agents in a lottery contest care about their relative position. In our model, several homogeneous agents

engage in a lottery contest (Tullock 1980) where each agent exerts an e¤ort.2 Then, the agents are ranked by

the stochastic lottery success function according to which the agent with the highest e¤ort is not necessarily

ranked at the top, but has the highest probability to belong to the top ranking.3 According to their ranking,

the agents are partitioned into status categories. The top status category consists of those individuals with

the highest ranking, the second category of those individuals with the next highest ranking, and so on. We

borrow from Moldovanu et al. (2007) and Dubey and Geanakoplos (2010) the present speci�cation of utility

functions and assume that each agent cares about the number of agents in categories above and below him. In

particular, agents get a positive utility that is proportional to the number of agents in lower status categories

and a negative utility that is proportional to the number of agents in higher status categories. Then, the

agents exert e¤orts according to the number of status categories and their size which are determined by a

designer who wishes to maximize the total e¤ort (output). Since the contest equilibrium depends only on

the structure of the status categories and not directly on the designer�s goal, our type of analysis can, in

1See, among others, Charness et al. 2014; Dugar et al. 2012; Tran and Zeckhauser 2012; Bhattacharya and Dugar, S. 2014,

Kosfeld and Neckermann 2011; and Eckel et al. 2010.
2This kind of contest is under some conditions equivalentto a variety of rent-seeking contests and innovation tournaments

(see Baye and Hoppe 2003).
3Several studies have provided axiomatic justi�cation for this contest form (see Skaperdas 1966 and Fu and Lu 2012). For

the existence of equilibriun in Tullock contests, see Szidarovszky and Okuguchi (1997), and Einy et al. (2015).
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principle, be performed for a variety of other goals.

We �rst analyze the symmetric equilibrium e¤ort in our lottery contest with n homogenous agents and

k � n status categories. Then, we prove that for a designer who wishes to maximize the agents�total e¤ort

the optimal number of status categories is the same as the number of agents. This result seems to be in

contrast to the �ndings of Sela (2020) who showed that the optimal allocation of prizes and punishments in

lottery contests is one prize and one punishment. In that case, there are actually three status categories,

the one who won the prize, the other agents who did not win the prize and were not punished, and the one

who was punished. Furthermore, if the agents have to participate whether they have a positive or a negative

expected payo¤, then the optimal allocation of prizes and punishments would be only one punishment which

is equivalent to only two status categories: the one for the punished agent and the other for all the rest. It

is worth noting that a similar con�ict occurs in all-pay auctions under incomplete information between the

optimal number of prizes (Moldovanu and Sela 2001) and the optimal number of status categories (Moldovanu

et al. 2007).

In contrast to our result about the optimal number of status categories, in real-life situations, the number

of status categories is limited. For example, there are only three academic ranks (full professor, associate

professor, and assistant professor). Thus, for simplicity, we consider the case of only two categories of status

A and B where r agents are allocated in the lower category B and n� r agents are allocated in the higher

category A. We show that if there are at least four agents, it is optimal to allocate more than one agent into

the low category B in order to maximize the agents�equilibrium total e¤ort. Similarly, if there are at least

three agents, it is optimal to allocate more than one agent into the high category A in order to maximize

the agents� equilibrium total e¤ort. Furthermore, we show that in the optimal allocation of agents that

maximizes the agents�equilibrium total e¤ort, the number of agents in category B is smaller than or equal

to the number of agents in category A. In other words, the number of agents in the high category should be

larger than or equal to their number in the low one. Our �nding that in order to maximize the agents�total

output, the top status categories should not be exclusive to a small number of agents is the main message of

the paper. We also prove that there is a unique optimal allocation of agents that maximizes the total e¤ort

with n� r� agents in category A and r� in category B where r� < n
2 can be explicitly calculated.
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Afterwards, we examine the e¤ect of additional agents on the total e¤ort. In the standard lottery (Tullock)

contest with homogenous agents the average agent�s e¤ort decreases, but the agents�total e¤ort increases

in the number of agents (see, for example, Clark and Riis 1996). In our model, on the other hand, agents

can in�uence the size of the prizes, which may decrease the total e¤ort (see Sela 2020). Thus, the e¤ect of

additional agents on the total e¤ort is not clear. Nevertheless, we show that an additional agent in the low

category B always increases the total e¤ort.

According to the literature on tournaments, prizes based on rank-orders of performance can be e¤ectively

used to provide incentives.4 Thus, we assume that in addition to the status prizes, agents are awarded

monetary prizes such that in each status category a di¤erent monetary prize is allocated. Accordingly,

that the higher the status category is, the higher is the monetary prize. These monetary prizes change the

distribution of the agents between the two status categories such that the optimal number of agents in the

high category A is always larger than or equal to the optimal number of agents in this category without

monetary prizes. In other words, the monetary prizes increase the relative number of agents in the high

status category.

1.1 Related literature

Probably the most well-known status categories can be found in schools or similar organizations in which

there are either coarse (A,B, C,..) or �ne (100,99,98,....) grading. An important reason for coarse grading is

that �ner grading usually costs more than coarse grading (see Farhi et al. 2013). However, Harbaugh and

Rasmussen (2018) assume that coarse and �ne grading are equally costly and �nd that a certi�er who is

trying to maximize information to the public should paradoxically coarsen his information before reporting

it. An explanation for the superiority of coarse grading is also given by Boleslavsky and Cotton (2015)

who analyze competition between schools and �nd that schools do not give out information on students

and therefore will exert more e¤ort to increase the quality of both good and bad students. Ostrovsky and

Schwarz (2010) similarly �nd that the average quality of students at top universities might be so high that

if grades will not be uninformed, they will all get jobs, while if the grades will be informed, weaker students

4See Edward Lazear and Sherwin Rosen, 1981, Jerry Green and Nancy Stokey, 1983, Barry Nalebu¤ and Joseph Stiglitz,

1983, and Akerlof and Holden 2012).
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might not get jobs. A di¤erent explanation for coarse grading is given by Lerner and Tirole (2006) who show

that if there are a large number of certi�ers with di¤erent objectives, grades can be coarse because each

certi�er optimally chooses a di¤erent pass-fail standard. In the present paper, we show that �ne grades can

induce more competition than coarse grades which results in higher total e¤ort.

Other works take a di¤erent perspective on status in organizations. For instance, Fershtman and Weiss

(1993) construct a general equilibrium model in which both status and wealth are determined endogenously.

Hopkins and Kornienko (2004) study the e¤ect of an exogenous change of income distribution in a model

where agents care about their rank in the distribution of consumption. Becker et al. (2005) study a model

where status is bought in a market by assuming that there are at least as many status classes as individuals,

and that status is a complement to other consumption goods.

A related paper is Dubey and Geanakoplos (2010) who focus on absolute grading and assume (like us)

complete information and that the relation between e¤ort and output is stochastic. However, they do not

assume a speci�c contest success function as we do. Rather they assume that the e¤ort choice is binary,

while in our model the number of e¤ort levels is not limited. Moreover, the designer�s goal in their model is

to have all students choose the higher e¤ort level, while in our model the designer�s goal is to maximize the

agents�total e¤ort.

The paper most related to the current one is Moldovanu et al. (2007) who study the optimal allocation

of status classes in a model under incomplete information and assume that the relation between e¤ort and

output is deterministic as in the all-pay auction.5 They also assume as we do that the designer wishes to

maximize the agents�total e¤ort, and show that for distributions of abilities that have an increasing failure

rate, a proliferation of status classes is optimal. We prove the same result but when the relation between

e¤ort and output is stochastic as in the lottery contest. However, when there are less status categories than

the number of agents our results do not coincide with theirs. For example, while they show that the top status

category always contains a unique agent, in our model with two status categories the top status category

includes the majority of the agents. Our work demonstrates that the main result of Moldovanu et al. (2007)

according to which a designer who wishes to maximize the agents�total e¤ort would prefer a large number

5For all-pay auctions under incomplete information see Aman and Leininger (1996), Krishna and Morgan (1997), Modovanu

and Sela (2001), (2006), Moldovanu et al. (2012), and Siegel (2014).
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of status categories holds in di¤erent contests with either stochastic or deterministic success functions. On

the other hand, for a limited number of status categories as in many real life cases, the optimal allocation of

agents among the status categories are quite di¤erent due to the di¤erent properties of the contest success

functions.

The rest of the paper is organized as follow: Section 2 presents our lottery contest for status. In Section

3, we analyze the agents�equilibrium strategies. In Section 4 we prove that the optimal number of status

categories is the same as the number of agents. In Section 5, we prove some results about the allocation

of agents between the two status categories. In Section 6, we show that adding new entrants to any status

category increases the agents�total e¤ort. In Section 7, we modify the model to allow monetary prizes in

addition to status prizes, and then show that the ratio of the number of agents in the top category increases.

Section 8 concludes. Several proofs are relegated to an Appendix.

2 The model

Consider a contest with n agents where each agent i makes an e¤ort xi: For simplicity, we postulate a

deterministic relation between e¤ort and output, and assume them to be equal. E¤orts are submitted

simultaneously and the cost of e¤ort is c(xi) = xi: The agents are ranked according to their e¤orts as

follows: agent i, i = 1; :::; n wins the �rst place with probability xiPn
s=1 xk

, where xs is agent s�s e¤ort,

s = 1; :::; n. Then, the second place is determined by the probability success function which is based on the

e¤orts of all the agents excluding the e¤ort of the �rst winner. Thus, agent i, i = 1; :::; n wins the second

place with probability
nX
s=1
s 6=i

xs
nX
j=1

xj

xi
nX
j=1
j 6=s

xj

, and so on until all the agents are ranked. Before the agents exert

their e¤orts, the designer chooses a partition f(0; r1]; (r1; r2]; :::(ri�1; ri]; :::; (rk�1; n] g of the interval (0; n]

by the integers ri; i = 0; :::; n where ri�1 < ri: For convenience, we de�ne r0 � 0 and rk � n. This partition

divides the agents into k � 1 status categories whereby an agent is included in category i if the place he won

is between the ri�1-th and the ri-th highest ones. Each agent cares about the number of agents in categories

both below and above him, and we assume that the status prize of being in category i is

vi = ri�1 � (n� ri):
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Thus, the prize of being in category i is the di¤erence between the number of agents in the lower categories

(category j; j = 1; :::; i� 1) and the number of agents in the higher categories (category j; j = i+ 1; :::; k).

Note that this formulation captures the zero-sum nature of status: for any partition of status categories, the

total value derived from status is

kX
i=1

(ri � ri�1)vi =
kX
i=1

(ri � ri�1)(ri + ri�1 � n) = 0:

We refer to the above contest as a lottery contest for status.

In the Tullock contest with n symmetric agents and k prizes, w1 � w2 � :::: � wk, the maximization

problem of an agent is

max
x
wi

kX
i=1

yi�1x
�
n�1)!
(n�i)!

�
�ij=1 ((n� j)y + x)

(1)

where x is the agent�s strategy and y is the symmetric strategy of all the other agents. In our model with

n symmetric agents and k categories of status with ri � ri�1 agents in category i; i = 1; :::; k , the prizes

are vi = ri�1 + ri � n where v1 � v2 �; ::: � vk: Then, using the solution of (1) we obtain the symmetric

equilibrium e¤ort as follows:

Proposition 1 The agents�symmetric equilibrium e¤ort in the lottery contest for status with k categories

of status and ri � ri�1 agents in category i; i = 1; :::; k is

x =

kX
i=1

ri�1X
j=ri�1

(ri + ri�1 � n)
1� (Hn �Hj)

n
; (2)

where Hn is de�ned by

Hn =
nX
i=1

1

i
; n = 1; 2; :::

H0 � 0:

Proof. See Appendix.

The following example illustrates the equilibrium e¤ort in a lottery contest with three status categories

and six agents.

Example 1 Consider a lottery contest for status with three status categories A;B, and C, each of which
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includes two agents. Then, r0 = 0; r1 = 2; r2 = 4; and r3 = 6. By (2), the symmetric equilibrium e¤ort is

x = (r1 + r0 � 6)(
1� (H6 �H1)

6
+
1� (H6 �H0)

6
)

+(r2 + r1 � 6)(
1� (H6 �H3)

6
+
1� (H6 �H2)

6
)

+(r3 + r2 � 6)(
1� (H6 �H5)

6
+
1� (H6 �H4)

6
)

= �4(
1� ( 12 +

1
3 +

1
4 +

1
5 +

1
6 )

6
+
1� (1 + 1

2 +
1
3 +

1
4 +

1
5 +

1
6 )

6
)

+0(
1� ( 14 +

1
5 +

1
6 )

6
+
1� ( 13 +

1
4 +

1
5 +

1
6 )

6
)

+4(
1� ( 16 )
6

+
1� ( 15 +

1
6 )

6
)

= 2: 244 4

3 The optimal number of status categories

So far we assumed that there are only two status categories. In this section we analyze the optimal number

of status categories for a designer who wishes to maximize the agents�total e¤ort and show that the optimal

number of status categories is equal to the number of agents, namely, k = n, such that in each status category

there is only one agent.

Proposition 2 In the lottery contest for status, if the designer wishes to maximize the agents�total e¤ort,

the optimal number of status categories is equal to the number of agents..

Proof. See Appendix.

The following example illustrates the result of Proposition 2.

Example 2 Consider a lottery contest for status with three agents. By Example 1, if there are two status

categories A and B where in the high category A there is one agent, and in the low category B there are two

agents, the symmetric equilibrium e¤ort is x = 2
3 . On the other hand, if there are two status categories A

and B where in the high category A there are two agents and in category B there is one agent, the symmetric

equilibrium e¤ort is x = 5
6 . If, however, there are three status categories A, B and C, each of which includes
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one agent, then r0 = 0; r1 = 1; r2 = 2; and r3 = 3. By (2), the symmetric equilibrium e¤ort is

x = (r1 � r0 � 3)(
1� (H3 �H0)

3
)

+(r2 � r3 � 1)(
1� (H3 �H1)

3
)

+(r3 + r2 � 3)(
1� (H3 �H2)

3
)

= (�2)(
1� ( 13 +

1
2 )

3
)

+(0)(
1� ( 13 +

1
2 + 1)

3
)

+(4)(
1� 1

3

3
) =

7

9

Then, we can see that the highest symmetric equilibrium e¤ort is obtained when there are three status cate-

gories, each category contains one agent only.

Moldovanu et al. (2007) show that if the agents compete in the all-pay auction under incomplete in-

formation, and the designer wishes to maximize the agents�expected total e¤ort, then the optimal number

of status categories might be equal to the number of agents. Proposition 2 demonstrate that even when

the contest success function is stochastic as in a lottery contest, the designer who wishes to maximize the

agents�total e¤ort wants to maximize the number of status categories subject to the constraint that each

status category contains at least one agent. However, the real-life examples show that the number of status

categories is limited and usually much smaller than the optimal one. Thus, for simplicity, in the following

we focus on the case of only two status categories.

4 The optimal allocation of agents in contests with two status

categories

We consider a lottery contest with n risk-neutral agents who are divided into two status categories A and

B, where r agents are allocated in the lower category B and n � r are allocated in the higher category A.

Then, the maximization problem of an agent is

max
x
r
n�rX
i=1

yi�1x
�
n�1)!
(n�i)!

�
�ij=1 ((n� j)y + x)

� (n� r)
rX
i=1

yn�ix( (n�1)!(i�1)! )

�n�1j=i (jy + x)
� x; (3)
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where x is this agent�s e¤ort, and y is the symmetric e¤ort of all his opponents. By Proposition 1 we have

Proposition 3 In the lottery contest for status with n symmetric agents in which category A includes n� r

agents and category B includes r agents, the symmetric equilibrium e¤ort is

x = r
n�rX
i=1

1� (Hn �Hn�i)
n

� (n� r)
nX

i=n�r+1

1� (Hn �Hn�i)
n

: (4)

The following example illustrates the e¤ect of the allocation of agents on their total e¤ort.

Example 3 Consider a lottery contest for status with three agents and two status categories A and B. Then

we have the following two options:

1) In category A there is one agent and in category B there are two agents. Then, by (4), the symmetric

equilibrium e¤ort is

x = 2
1� (H3 �H2)

3
�
�
1� (H3 �H1) + 1� (H3 �H0)

3

�
= 2

1� 1
3

3
� (

1� ( 12 +
1
3 )

3
+
1� (1 + 1

2 +
1
3 )

3
=
2

3
:

2) In category A there are two agents and in category B there is one agent. Then, by (4), the symmetric

equilibrium e¤ort is

x =
1� (H3 �H2)

3
+
1� (H3 �H1)

3
� 2

�
1� (H3 �H0)

3

�
=

1� 1
3

3
+
1� ( 13 +

1
2 )

3
� 2(

1� (1 + 1
3 +

1
2

3
) =

5

6
:

Below, we examine whether the �ndings of the above example can be generalized for contests with n > 3

agents. For this purpose, let xr be the symmetric equilibrium e¤ort when there are r agents in category B

and (n� r) agents in category A. Then, we have

Lemma 1 In the lottery contest for status with two categories, the di¤erence between the agents�symmetric

equilibrium e¤orts when there are r agents and r + 1 agents in category B is

�xr = xr � xr+1 = Hr �
nX
i=1

Hn�i
n

(5)

Proof. See Appendix.
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It is obvious that in order to maximize the agents�equilibrium e¤orts, the designer should allocate agents

in both status categories since otherwise the agents do not have an incentive to exert positive e¤orts. Using

(5), we show that in contrast to Example 3, �x1 = x1�x2 < 0 for all n � 4; namely, if the number of agents

is larger than three then category B should include more than one agent.

Proposition 4 In the lottery contest for status with two status categories, if there are at least four agents,

it is optimal to allocate more than one agent in the lower category B in order to maximize the agents�total

e¤ort.

Proof. See Appendix.

Likewise, by (5), we show that �xn�2 = xn�2 � xn�1 > 0 for all n � 3; namely, if the number of agents

is larger than two, then the higher category B should include less than n � 1 agents, namely, category A

should include more than one agent.

Proposition 5 In the lottery contest with two status categories, if there are at least three agents, it is optimal

to allocate more than one agent in category A in order to maximize the agents�total e¤ort.

Proof. See Appendix.

Note that Moldovanu et al. (2007) show that when agents compete in an all-pay auction under incomplete

information, the highest status category should include one agent, while by Proposition 5, in our model, the

highest status category includes more than one agent. In addition, by Propositions 4 and 5, we know that

there is at least one local maximal allocation of agents since �xr changes its sign at least once. The following

result shows that �xr is monotonically increasing in r and therefore there is only one optimal allocation of

agents between the two status categories.

Proposition 6 In the lottery contest for status with two status categories, there is a unique optimal alloca-

tion of agents with n� r� agents in category A and r� agents in category B where

r� = minfr : �xr > 0g:

Proof. See Appendix.

The following example illustrates this proposition.
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Example 4 Consider a lottery contest for status with four agents and two categories A and B. By (5), we

have

�x1 = x1 � x2 =
(4� 1)
4

H1 �
1

4

4X
i=1
i 6=2

Hi�1

=
3

4
� 1
4
((1 +

1

2
) + (1 +

1

2
+
1

3
)) = �0:0833;

�x2 = x2 � x3 =
(4� 1)
4

H2 �
1

4

4X
i=1
i 6=3

Hi�1

=
3

4
(1 +

1

2
)� 1

4
(1 + (1 +

1

2
+
1

3
)) = 0:416 67;

and

�x3 =
(4� 1)
4

H3 �
1

4

4X
i=1
i 6=4

Hi�1

=
3

4
(1 +

1

2
+
1

3
)� 1

4
(1 + (1 +

1

2
)) = 0:75:

We can see that �xr increases in r. Since �x1 < 0 and �x2 > 0, we obtain that x2 > x1 and x2 > x3.

Therefore, the optimal allocation of agents is two in each of the two categories.

By Propositions 4 and 5, we know that if the number of agents is su¢ ciently large (more than three)

each of the categories should include more than one agent. Using (5), we show that �xn
2
> 0 for an even n.

Thus, since �xr is monotonically increasing in r, we obtain the following result.

Proposition 7 In the lottery contest for status with two status categories, if the designer maximizes the

agents�equilibrium e¤ort, the number of agents in the low category B is smaller than or equal to the number

of agents in the high category A.

Proof. See Appendix.

5 Additional agents

In the standard lottery contest with homogenous agents, the agents�average e¤ort decreases in the number

of agents while the agents�total e¤ort increases in the number of agents (see, Tullock 1980). In our model,
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agents a¤ect the size and the number of prizes, and since additional prizes may decrease the total e¤ort,

it is not clear whether an additional agent has the same e¤ect on the equilibrium e¤ort as in the standard

lottery contest. Below we investigate this question.

The total e¤ort in a contest with n agents where r of them are in the low category B is:

TE(n; r) = r

 
n�rX
i=1

1� (Hn �Hn�i)
!
� (n� r)

 
nX

i=n�r+1
1� (Hn �Hn�i)

!
: (6)

when we add one agent to the low category B, the total e¤ort is

TE(n+ 1; r + 1) = (r + 1)

 
n�rX
i=1

1� (Hn+1 �Hn+1�i)
!
� (n� r)

 
n+1X

i=n�r+1
1� (Hn+1 �Hn+1�i)

!
: (7)

A comparison of (6) and (7) yields

Proposition 8 In the lottery contest for status, an additional agent in category B always increases the

agents�total e¤ort.

Proof. See Appendix.

The intuitive explanation for the result given by Proposition 8 is as follows: When one agent is added to

category B, the value of each of the n� r agents in category A increases from r to r + 1, while the value of

each of the r agents in category B is not changed and remains �(n� r). By this argument, it is clear that

their total e¤ort increases as well.

6 Monetary prizes

We now assume that in addition to the status prizes according to which agents get positive utility proportional

to the number of agents in lower status categories and negative utility proportional to the number of agents

in higher status categories, agents are awarded monetary prizes such that the higher the status category is,

the higher is the monetary prize. Formally, consider a set of k monetary prizes wk � wk�1 � ::: � w1 where
kX
j=1

wj = m and a family of division points frigki=0 where r0 = 0 and rk = n determines a partition with

k categories. A contestant ranked in the top category k (i.e., a contestant whose e¤ort is among the top

rk � rk�1) receives a monetary prize of wk, a contestant in the second highest category receives a prize of

13



wk�1, and so on. Thus, an agent who is in the status category i; 1 � i � k receives a total prize (monetary

+ status) of

vi = wi + ri�1 � (n� ri):

In a case of two status categories, the maximization problem of an agent who exerts an e¤ort of x is given

by

max
x
(r + wA)

n�rX
i=1

yi�1x
�
n�1)!
(n�i)!

�
�ij=1 ((n� j)y + x)

� (n� r + wB)
rX
i=1

yn�ix( (n�1)!(i�1)! )

�n�1j=i (jy + x)
� x;

where y is the symmetric e¤ort of all the other agents. By symmetry, x = y and the equilibrium e¤ort is

x = (wA + r)

 
n�rX
i=1

1� (Hn �Hn�i)
n

!
+ (n� r + wB)

0@ rX
j=1

(Hn �Hj�1 � 1)
n

1A : (8)

As in the previous sections, let xr be the equilibrium e¤ort when there are r agents in category B and (n�r)

agents in category A. Then, we have

Lemma 2 In the lottery contest for status with two categories A and B and monetary prizes wA and wb,

the di¤erence between the agents�symmetric equilibrium e¤orts where there are r agents and r+1 agents in

category B is

�xr = xr � xr+1 = (wA + wB)
1�Hn
n

+
(wA + wB + n)

n
Hr �

nX
i=1

Hn�i
n

: (9)

Proof. See Appendix.

By analyzing the e¤ect of the monetary rewards on �xr given by (9), we obtain that

Proposition 9 In the lottery contest for status, the optimal number of agents in category A when there

are monetary prizes is always larger than or equal to the optimal number of agents in category A without

monetary prizes. Furthermore, if the number of agents is larger than three, the optimal number of agents in

each category is larger than one.

Proof. See Appendix.

7 Conclusion

We studied homogeneous agents who are partitioned into status categories according to the stochastic lottery

success function of their outputs. We described the structure of the optimal partition into two status

14



categories from the point of view of a designer who wishes to maximize the total output. We also studied

the interplay between pure status and monetary prizes.

A comparison with the work of Moldovanu et al. (2007), who studied a similar model but with a

deterministic success function (all-pay auction) revealed both di¤erent and similar results. We both prove

that the optimal number of status categories is the maximal one, namely, for each agent there is a di¤erent

status category. On the other hand, we prove that the top status category includes the majority of the

agents while they prove that it includes only one agent. Last, they show that if monetary prizes are added

to the status prizes then the optimal number of status categories completely changes and becomes two and

the top status category contains one agent , while we show that monetary prizes may change the distribution

of the agents between the two status categories such that the relative number of agents in the top status

category increases. Consequently, the main message of this paper is that the top status categories should

not be exclusive, and if the goal is to maximize the agents�output, there is no reason to limit the number of

agents in the top status category to only a few agents.

8 Appendix

8.1 Proof of Proposition 1

According to Sela (2020), in the Tullock contest with n symmetric players and k prizes wi > wi+1; i = 1; :::; k,

the symmetric equilibrium e¤ort is

x =
kX
i=1

wi
1� (Hn �Hn�i)

n
; (10)

where Hn, n � 1 is given by

Hn =
nX
i=1

1

i
;

and

H0 � 0:

Since the status prize of being in category i is

vi = ri�1 � (n� ri);
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where vi+1 > vi; i = 1; :::; k, and there are ri� ri�1 agents in category i who receive the same prize of vi, we

obtain that the symmetric equilibrium e¤ort is

x =
kX
i=1

ri�1X
j=ri�1

(ri + ri�1 � n)
1� (Hn �Hj)

n
:

Q:E:D:

9 Proof of Proposition 2

Consider two adjacent categories that will be denoted by m and m+1, 1 � m < k. By (2), the contribution

of the agents in these status categories to the total e¤ort is

y =
m+1X
i=m

ri�1X
j=ri�1

(ri + ri�1 � n)
1� (Hn �Hj)

n

=

rm+1�1X
j=rm

(rm+1 + rm � n)
1� (Hn �Hj)

n

+

rm�1X
j=rm�1

(rm + rm�1 � n)
1� (Hn �Hj)

n
:

If we add the agents from category m to category m + 1, there is no e¤ect on the agents�e¤orts in other

categories, and the contribution of the agents in this new status category on the total e¤ort is then

ey = rm+1�1X
j=rm�1

(rm+1 + rm�1 � n)
1� (Hn �Hj)

n
:

The di¤erence between these cases is

ey � y = �(rm � rm�1)
rm+1�1X
j=rm

1� (Hn �Hj)
n

+(rm+1 � rm)
rm�1X
j=rm�1

1� (Hn �Hj)
n

;
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With some calculations we obtain

ey � y = �(rm � rm�1)
rm+1�1X
j=rm

Hj
n
+ (rm+1 � rm)

rm�1X
j=rm�1

Hj
n

< �(rm � rm�1)(rm+1 � rm)min
j
fHj
n
grm+1�1
j=rm

+ (rm+1 � rm)(rm � rm�1)max
j
fHj
n
grm�1j=rm�1

= �(rm � rm�1)(rm+1 � rm)
Hrm
n

+ (rm+1 � rm)(rm � rm�1)
Hrm�1

n

= (rm+1 � rm)(rm � rm�1)
�1
nrm

< 0:

Thus, if the goal is to maximize the agents�total e¤ort, it is optimal to divide any category into two

adjacent categories. Q:E:D:

9.1 Proof of Lemma 1

By (4), we have

�xr = xr � xr+1 = r
n�rX
i=1

1� (Hn �Hn�i)
n

� (n� r)
nX

i=n�r+1

�
1� (Hn �Hn�i)

n

�

�(r + 1)
n�r�1X
i=1

1� (Hn �Hn�i)
n

+ (n� r � 1)
nX

i=n�r

�
1� (Hn �Hn�i)

n

�

= �
nX

i=n�r+1

�
1� (Hn �Hn�i)

n

�
+ (n� r � 1)1� (Hn �Hr)

n

�
n�r�1X
i=1

1� (Hn �Hn�i)
n

+ r
1� (Hn �Hr)

n

= (n� 1)1� (Hn �Hr)
n

�
nX
i=1

i 6=n�r

�
1� (Hn �Hn�i)

n

�

= Hr �
nX
i=1

Hn�i
n

:

Q:E:D:

9.2 Proof of Proposition 4

By (5) we have

�x1 = x1 � x2 = H1 �
nX
i=1

Hn�i
n

< 1� (n� 1)
n

� (n� 2)
n

1

2
� (n� 3)

n

1

3

=
�5n+ 18
6n
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Thus, we obtain that �x1 = x1�x2 < 0 for all n � 4; namely, the symmetric equilibrium e¤ort is higher

if there are two agents in category B than if there is only one agent. Q:E:D:

9.3 Proof of Proposition 5

By (5), we have

�xn�2 = Hn�2 �
nX
i=1

Hn�i
n

> 1� n� 1
n

�
1

(n�1)

n

=
n� 2
n(n� 1)

Thus, we obtain that �xn�2 = xn�2 � xn�1 > 0 for all n � 3, namely, the symmetric equilibrium e¤ort

is higher if there are two agents in category A than if there is only one agent. Q:E:D:

9.4 Proof of Proposition 6

By (5), we have

�xr = xr � xr+1 = Hr �
nX
i=1

Hn�i
n

Since �xr is monotonically increasing, the optimal number of agents in category B is given by

r� = minfr : �xr > 0g:

Since by Proposition 4 �x1 < 0, and by Proposition 5 �xn�2 > 0, the monotonicity of �xr implies that

there is a unique optimal allocation according to which there are n� r� agents in category A and r� agents

in category B. Q:E:D:
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9.5 Proof of Proposition 7

Without loss of generality, we assume that n is even. Then, by (5), we have

�xn
2

= Hn
2
�

nX
i=1

Hn�i
n

=
1

n
(

n
2�1X
j=0

(
n

2
� j) 1

n
2 � j

�
n
2�1X
j=1

(
n

2
� j) 1

n
2 + j

)

� 1

n

n
2�1X
j=1

(
n

2
� j)( 1

n
2 � j

� 1
n
2 + j

)) > 0:

Thus, if n is even allocating n
2 agents in category B yields a higher equilibrium e¤ort than allocating

n
2 + 1 agents.

6 Hence, since by Proposition 6, �xr is monotonically increasing in r, we obtain that the

optimal number of agents in category B is smaller than or equal to n
2 : Q:E:D:

9.6 Proof of Proposition 8

The di¤erence between the total e¤ort in a contest with n + 1 agents when r + 1 of them are allocated

in category B (which is given by (7)) and the total e¤ort in a contest with n agents when r of them are

allocated in category B (which is given by (6) ) is

TE(n+ 1; r + 1)� TE(n; r)

= (r + 1)

 
n�rX
i=1

1� (Hn+1 �Hn+1�i)
!
� (n� r)

 
n+1X

i=n�r+1
1� (Hn+1 �Hn+1�i)

!

�r
 
n�rX
i=1

1� (Hn �Hn�i)
!
+ (n� r)

 
nX

i=n�r+1
1� (Hn �Hn�i)

!

=
n�rX
i=1

1� (Hn+1 �Hn+1�i) + r
n�rX
i=1

(�Hn+1 +Hn +Hn+1�i �Hn�i)

�(n� r)
nX

i=n�r+1
(Hn �Hn+1 +Hn+1�i �Hn�i)� (n� r)(1�Hn+1)

=
n�rX
i=1

Hn+1�i + r
n�rX
i=1

1

n+ 1� i � (n� r)
nX

i=n�r+1

1

n+ 1� i

�
n�rX
i=1

Hn+1�i � (n� r)
nX

i=n�r+1

1

n+ 1� i

=
n�rX
i=1

Hn+1�i � (n� r)Hr+1 > 0

6 If n is odd then the same argument holds for
�
n
2

�
.
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Therefore, TE(n + 1; r + 1) � TE(n; r) > 0, which means that an additional agent in category B always

increases the agents�total e¤ort. Q:E:D:

Q:E:D:

9.7 Proof of Lemma 2

By (8), we have

�xr = xr � xr+1 = (wA + r)
n�rX
i=1

1� (Hn �Hn�i)
n

� (wB + n� r)
nX

i=n�r+1

�
1� (Hn �Hn�i)

n

�

�(wA + r + 1)
n�r�1X
i=1

1� (Hn �Hn�i)
n

+ (wB + n� r � 1)
nX

i=n�r

�
1� (Hn �Hn�i)

n

�

= �
nX

i=n�r+1

�
1� (Hn �Hn�i)

n

�
+ (wB + n� r � 1)

1� (Hn �Hr)
n

�
n�r�1X
i=1

1� (Hn �Hn�i)
n

+ (wA + r)
1� (Hn �Hr)

n

= (wA + wB + n� 1)
1� (Hn �Hr)

n
�

nX
i=1

i 6=n�r

�
1� (Hn �Hn�i)

n

�

= (wA + wB)
1�Hn
n

+
(wA + wB + n)

n
Hr �

nX
i=1

Hn�i
n

:

Q:E:D:

9.8 Proof of Proposition 9

By (9), we have

d�xr
dwA

=
d�xr
dwB

=
1�Hn +Hr

n
:

Thus, if r is su¢ ciently large, �xr increases in the monetary prizes, and if r is su¢ ciently small, �xr

decreases in the monetary prizes. Therefore we obtain that �x1 < 0 and �xn�2 > 0 as well as in the lottery

contest for status without monetary prizes. This implies that if n � 4,the optimal number of agents in

category A and in category B is larger than one. In particular, we have

d�xr
dwA

=
d�xr
dwB

>
1� n�r

r+1

n
=
2r + 1� n

n
:

Since for r � n
2 ,

dxr
dwA

= dxr
dwB

> 0; we obtain that �xn
2
> 0 with monetary prizes as well without them. This

implies that the optimal number of agents in category A when there are monetary prizes is always larger
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than or equal to the optimal number of agents in category B: Since d�xr
dwA

= d�xr
dwB

> 0 for all r > n
2 we obtain

that the optimal number of agents in category A when there are monetary prizes is always larger than or

equal to the optimal number of agents in category A without monetary prizes. Q:E:D:
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