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Abstract

We study k-dimensional contests wherein each of the k sub-contests the n agents compete against each

other in a Tullock contest. The designer who wishes to maximize the total e¤ort in the k sub-contests

chooses the prize allocation which indicates the prize of every agent for any outcome. We show that

in our simultaneous two-dimensional contest, if the number of agents is two, a prize for winning in one

of the sub-contests is ine¤ective, namely, it does not (positively) a¤ect the agents�e¤orts and therefore

these prizes do not have to be awarded. In our sequential two-dimensional contest, if each agent wins in

a di¤erent sub-contest, with a positive probability, the prizes should not be awarded. On the other hand,

in simultaneous as well as in sequential two-dimensional contests, if the number of agents is larger than

two, the prizes for winning in one sub-contest positively a¤ect the agents�e¤orts. Then, we generalize

the above results and �nd the ine¤ective prizes for any simultaneous k-dimensional contest with k > 2

symmetric sub-contests and with any number of agents that are either smaller than, equal to, or larger

than the number of sub-contests.
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1 Introduction

There are several environments in which contests are multi-dimensional such that each agent has to choose

an action in each sub-contest (dimension). Multi-dimensional contests could be either sequential or simulta-

neous. Examples of sequential multi-dimensional contests are dynamic models in which an agent allocates

a resource over the stages. Each agent has a resource budget for which he decides how to allocate it along

all the stages (see, among others, Ryvkin 2011, Sela and Erez 2013 and Klumpp et al. 2019 ). On the other

hand, a well-known simultaneous multi-dimensional contest is the Colonel Blotto game in which two agents

compete against each other in n di¤erent sub-contests. Each agent distributes a �xed amount of resource

over the n sub-contests without knowing his opponent�s distribution of the resource (see, among others,

Snyder 1989, Roberson 2006, Hart 2008 and Kovenock and Roberson 2021).

In a di¤erent form of multi-dimensional contest, there is only one competition but each agent needs

to choose several kinds of actions. The most well-known example of such contests is when each agent

exerts an e¤ort to increase his probability of winning but also exerts an e¤ort to decrease the probability

of his opponents to win, namely, to sabotage his opponents (see, among others, Konrad 2000, Chen 2003,

Amegashie and Runkel 2007, Amegashie 2012, Guertler et al. 2013 and Dato and Nieken 2014, and Bernhardt

and Ghosh 2020).

We study k-dimensional contests with n � 2 agents wherein each of the k sub-contests the winner is

determined by the Tullock contest success function (see, among others, Tullock 1980, Skaperdas1996, Clark

and Riis 1998, and Baye and Hoppe, H. 2003). We �rst consider the case when there are two asymmetric

sub-contests. We assume that the agents act either simultaneously or sequentially. If an agent wins in

both sub-contests he wins the prize which is normalized to be 1. If di¤erent agents win both sub-contests,

the designer can decide whether the prize is awarded or not, and alternatively, he can make the contest

asymmetric by choosing two di¤erent parameters of � and �, where the agent who wins in the �rst sub-

contest only wins the entire prize sum with a probability of 1 � � � 0, and the agent who wins the second

sub-contest wins the entire prize sum with a probability of 1 � � � 0, where �+� � 1. That is, if �+� < 1,
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it means that there is a positive probability that the entire prize will not be allocated at all, or alternatively,

only part of the entire prize will be allocated.

There is extensive literature on the optimal allocation of prizes in contests, most of which occur in

one-stage contests (see, among others, Barut and kovenock 1998, Mokdovanu and Sela 2001, 2006, 2012,

Schweinzer and Segev 2012, Akerlof and Holden, and Sela 2020) and others in multi-stage contests (see,

among others, Rosen 1986, Fu and Lu 2012, Sela and Tsahi 2020, and Alshech and Sela 2021). In the

present paper our goal is not to characterize the optimal design of prizes in multi-dimensional contests, but

to indicate the ine¤ective prizes in such contests, namely, the prizes that do not positively a¤ect the agents�

e¤orts. In that case, the ine¤ective prizes should not be allocated in multi-dimensional contests where the

rest of the prizes (the e¤ective prizes) will be allocated.

In our model, we assume that the values of � and �, namely, the prizes for winning each of the two

sub-contests, are endogenously determined by the contest designer. For example, suppose that two junior

members in the same department at a university compete for one position. The two junior researchers are

examined in two dimensions; the �rst is their research quality � and the second is their teaching quality �. If

one of the researchers dominates the other in both dimensions then he wins the position for sure. However,

if one of them is dominant in research and the other in teaching, then there might be some advantage to

the researcher who is dominant in research, but there is a positive probability that none of these junior

researchers will get the position since the department does not want to compromise on the quality. In that

case, the parameters � and � are endogenous and their sum in our model is smaller than one.

Setting the values of the parameters � and � by the contest designer is actually the policy for a case of a

draw when each of the winners has only one win. The literature o¤ers several �ndings on the meaningfulness

of the policy in the case of a tie or a draw. In the case of a tie in one-dimensional contests, a designer can

decide to allocate the prize for each of the agents with the highest e¤ort with the same probability, not to

allocate a prize at all, or to allocate the prize with a positive probability which is smaller than 1. Cohen

and Sela (2007), for example, show that in all-pay auctions with two agents under complete information,
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in the case of a tie it is optimal to allocate the prize with a probability of 1/3 or less.1 Imhof and Krakel

(2015) show that in the model of Lazear and Rosen (1981) introducing the possibility of a tie is bene�cial

for the principal because it makes the agent that bene�ts from the competitive advantage less likely to win.

In multi-stage contests, however, Deng and Weng (2018) show that introducing draws into a Tullock contest

can be optimal for the contest designer who aims to maximize the expected winner�s e¤ort when the agents

are su¢ ciently heterogeneous.

In our simultaneous two-dimensional contest we show that with two agents, the agents�total e¤ort does

not depend on the values of the parameters � and � which make these prizes ine¤ective. However, for more

than two agents, the agents�total e¤ort is maximized for all � and � that satisfy �+ � = 1. The intuition

behind these results is that when there are only two agents they can agree that each one exerts a low e¤ort

in a di¤erent sub-contest and in the other one he does not exert any e¤ort. Then, every agent wins in one

sub-contest by exerting low e¤orts. In order to avoid such a collusion, the prizes for one win should not

be awarded. On the other hand, when the number of agents is larger than two, there is no possibility of a

collusion, and then there are no ine¤ective prizes that do not positively a¤ect the agents�e¤orts.

For our sequential two-dimensional contest, we show that with two agents, the lowest total e¤ort is

obtained when � = 0 and � = 1, and the highest is obtained when � + � < 1. If � = � the highest total

e¤ort is obtained for � = 1
3 , that is, in the case that each agent wins one contest, the entire prize is not

awarded with a probability of 1=3. The intuition behind these results is that in the sequential contest, the

designer can award prizes for one win, since after that one agent wins in the �rst stage, he has no incentive

to satisfy any agreement with the other agent for the competition in the second stage. Thus, the prizes for

winning only one sub-contest are not completely ine¤ective. For more than two agents, the highest total

e¤ort in the sequential contest when � = � is obtained for either � = � = 0 or � = � = 0:5. The intuition

behind this result is as follows: 1) Since the number of agents is larger than the number of sub-contests,

there is no reason not to award all the prizes. 2) there is an asymmetry in the second stage between the

winner of the �rst stage and the other agents which vanishes when � = � = 0:5. Then, when there is no

1Gelder et al. (2019) analyzed the all-pay auction under complete information with contnuous strategy sets.
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asymmetry the total e¤ort is higher. 3) The one-stage contest yields a higher total e¤ort than any two-stage

contest and therefore � = � = 0. We can conclude that in our two-dimensional contest either simultaneous

or sequential, if the number of agents is two, the prizes should not be awarded certainty. On the other hand,

when there are more than two agents, awarding the entire prize for any outcome is optimal for a designer

who wishes to maximize the total e¤ort.

We also compare which kind of two-dimensional contest, sequential or simultaneous, is more bene�cial

for a designer who wishes to maximize the agents� total e¤ort. With two agents, the highest total e¤ort

in the simultaneous contest is smaller than that of the sequential contest. For more than two agents, we

show that the highest total e¤orts in the sequential and simultaneous contests are the same. Thus, in

sum, the sequential two-dimensional contest dominates the simultaneous one with respect to the total e¤ort.

Arbatskaya and Mialon (2012) study a sequential two-dimensional contest with two agents who compete

in a contest with a success function that is a combination of the Tullock contest success function and a

Cobb-Douglas type (for an axiomatization of this contest success function for multi-activity contests, see

Arbatskaya and Mialon 2010). They compare the total e¤ort in this model and �nd that the total e¤ort

in the sequential contest is always smaller than that of the simultaneous one if the agents have asymmetric

cost functions and both forms of contests yield the same total e¤ort when the agents are symmetric.

Last, we examine if our result for the simultaneous two-dimensional contests can be generalized for

simultaneous k-dimensional contests with n agents. We show that in that case, if the number of agents n is

larger than the number of sub-contests k, like in the two-dimensional contests, every prize positively a¤ects

the agents�e¤orts. Furthermore, in that case when n > k, we show that the prize for one win might have the

largest e¤ect on the agents�e¤orts than all the other prizes. When the number of agents and sub-contests is

the same, similar to the two-dimensional contest with two agents, the prize for one win does not a¤ect the

agents�e¤orts, while all the other prizes (for two or more wins) positively a¤ect the agents�e¤orts. When

the number of agents is smaller than the number of sub-contests, then the prizes for one win are ine¤ective

but other prizes for winning more than one sub-contest might also be ine¤ective. Then, we �nd su¢ cient

conditions that a prize negatively a¤ects the agents�e¤orts in our k-dimensional contest.
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A paper related to the present one is Clark and Konrad (2007) who study a similar simultaneous multi-

dimensional contest with two symmetric agents. They �nd the optimal (maximization of the total e¤ort)

number of wins in order to win the contest as a function of the number of symmetric sub-contests, and for

any number of wins, the minimum number of dimensions k such that each agent will have a positive expected

payo¤. They assume that there are two symmetric players and two symmetric sub-contests (dimensions).

We, on the other hand, assume more than two agents, and when there are two agents, the sub-contests are

not necessarily symmetric. The major di¤erence, however, between their work and our model is that they

assume that only one prize is awarded to the winner of the contest, while we assume that several prizes

are awarded. Then, we study what are the ine¤ective prizes, namely, those prizes that do not positively

a¤ect the agents�e¤orts. The paper most related to our work is Feng and Lu (2018) who characterize the

e¤ort-maximizing prize allocation in multi-stage Tullock contests when the prize sum is �xed, but the agents�

prizes are contingent on the number of wins. In other words, several prizes might be awarded. They study

a sequential three-dimensional contest with two agents, while we also focus on simultaneous contests with

any number of agents and dimensions. Moreover, they assume that the prize sum has to be awarded, while

we show that it might be optimal not to award the entire prize sum with a positive probability. In addition,

they assume that the prize monotonically increases in the number of wins, while we show that this is not

always the optimal case. Last, we focus on ine¤ective prizes that do not positively a¤ect the agents�e¤orts,

and show that there is a di¤erence in the consequences for sequential and simultaneous multi-dimensional

contests wherein the simultaneous ones the phenomenon of ine¤ective prizes is more prominent.

The rest of the paper is organized as follows: In Section 2 we introduce our model. In Section 3 we analyze

simultaneous two-dimensional contests, and in Section 4 we analyze sequential two-dimensional contests. In

Section 5 we deal with simultaneous k-dimensional contests. Section 6 concludes. All the proofs appear in

the Appendix.
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2 The model

Consider n agents who compete in k sub-contests. Each agent i; i = 1; :::; n exerts an e¤ort of xji in sub-

contest j; j = 1; :::; k, and the cost of his e¤orts is
Pk

j=1 x
j
i . The probability that agent i wins in sub-contest

j is xjiPn
s=1 x

j
s
where xjs; is agent s�s e¤ort in contest j. This contest will be referred to as a k-dimensional

contest. The designer has a prize sum that is normalized to be 1, and he chooses the prize allocation function,

namely, for any possible outcome, there is a given allocation of prizes such that the sum of the winners�

prizes is smaller than or equal to 1. Formally, let the vector si = (si1; si2; ::::; sik) denotes the outcomes of

agent i such that si;j 2 f0; 1g where si;j = 1 denotes that agent i won sub-contest j and si;j = 0 denotes

that agent i did not win sub-contest j, j = 1; :::; k: Then, w(si) is the prize sum awarded to agent i wherePn
i=1 w(si) � 1. Note that

Pn
i=1 w(si) < 1 means that not all the entire prize sum is allocated. Our goal

is to indicate for which outcomes the prizes are ine¤ective, namely, they do not positively a¤ect the agents�

e¤orts. In other words, when prizes are given, our analysis indicates which prizes should be excluded from

the list of prizes.

3 Simultaneous two-dimensional contests

We begin with the analysis of two-dimensional contests (k = 2) in which w(1; 1) = 1; w(1; 0) = �, w(0; 1) = �

and w(0; 0) = 0 where � + � � 1. In other words, if an agent wins in both sub-contests he wins a prize of

1, if he wins only in the �rst sub-contest he wins a prize of �, and if he wins only in the second sub-contest

he wins a prize of �. If he does not win any sub-contest, then he does not win anything. Thus, when � 6= �

it means that the sub-contests are not symmetric, and when �+ � < 1 it means that if in each sub-contest

there is a di¤erent winner, the entire prize sum is awarded with a probability that is smaller than 1. We

assume now that the agents simultaneously compete in both sub-contests which will be denoted by A and

B. Then, the maximization problem of agent 1 is

max
xA1 ;x

B
1

xA1Pn
i=1 x

A
i

xB1Pn
i=1 x

B
i

+ �
xA1Pn
i=1 x

A
i

(1� xB1Pn
i=1 x

B
i

) + �(1� xA1Pn
i=1 x

A
i

)
xB1Pn
i=1 x

B
i

� xA1 � xB1 : (1)
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where xAi and x
B
i are agent i�s e¤orts in sub-contests A and B, respectively. The solution of (1) yields

Proposition 1 In the simultaneous two-dimensional contest with two asymmetric sub-contests and n sym-

metric agents, the symmetric equilibrium e¤orts in both sub-contests are

xA =
(n� 1)
n3

((1� �) + (n� 1)�) (2)

xB =
(n� 1)
n3

((1� �) + (n� 1)�):

For n = 2, the agents�equilibrium e¤orts are

xA =
1 + �� �

8

xB =
1 + � � �

8
:

Inserting (2) into (1) gives the agents�symmetric expected payo¤

Usim =
1

n3
(�n+ 2(n� 1)�+ 2(n� 1)� + 2) ; (3)

and by (2), the agents�total e¤ort is

TEsim = n(x+ y) =
n� 1
n2

(2 + (n� 2)�+ (n� 2)�): (4)

For n = 2 we obtain

TEsim(n = 2) =
1

2
: (5)

Thus, by (4) and (5) we have

Proposition 2 In the simultaneous two-dimensional contest with two symmetric agents, the agents� total

e¤ort does not depend on the values of the parameters � and �. If the number of agents is larger than two,

then the agents�total e¤ort is maximized for all � and � that satisfy �+ � = 1:

One of the implications of Proposition 2 is that a designer who wishes to maximize the agents�total e¤ort

when there are two agents should not award a prize to an agent who does not win in both sub-contests.

However, for all n > 2, the designer should award a prize for winning one contest where the distribution of
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the entire prize between the two winners of the two sub-contests does not a¤ect the agents�total e¤ort. The

intuitive explanation for these results is that when there are only two agents, they can make an agreement

that each one will win in a di¤erent sub-contest, and then the agents can exert relatively low e¤orts and

win both prizes. On the other hand, when the number of agents is larger than two an agreement among

the n > 2 agents is not possible, and therefore the designer does not have an incentive not to award prizes

for winning in one sub-contest only. In other words, when n > 2 all the prizes positively a¤ect the agents�

e¤orts.

4 Sequential two-dimensional contests

Now, we assume that the n agents sequentially compete, �rst in sub-contest A and later in sub-contest B.

In order to analyze the subgame-perfect equilibrium, we begin with the analysis of the second stage and go

backward to the �rst one.

4.0.1 The second stage

Assume that agent 1 won in the �rst stage. Then, his maximization problem in the second stage is

max
xB1

xB1Pn
i=1 x

B
i

+ �(1� xB1P
xBi
)� xB1 : (6)

The maximization problem of agent j; j = 2; :::; n is

max
y2
�

xBjPn
i=1 x

B
i

� xBj : (7)

The solution of (6) and (7) yields

Proposition 3 In the sequential two-dimensional contest with n symmetric agents, the agents�equilibrium

e¤orts in the second stage (sub-contest B) are

xB1 = �(1� �) n� 1
(n+ �+ � � n�� 1)2

(n+ �+ 2� � n�� n� � 1)

xB = xBj = �
2 (1� �) n� 1

(n+ �+ � � n�� 1)2
, j = 2; :::; n:
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where xB1 is the equilibrium e¤ort of the winner in the �rst stage (sub-contest A), and xB is the symmetric

equilibrium e¤ort of all the other n� 1 agents. For n = 2 we have

xB1 = �(1� �)2 1

(1 + � � �)2
(8)

xB2 = �2 (1� �) 1

(1 + � � �)2
:

We can see from (8) that in the sequential two-dimensional contest there exists

xB1
xB2

=
1� �
�

:

Thus, in the second stage, the equilibrium e¤ort of the winner of sub-contest A is higher than the equilibrium

e¤ort of all the other agents i¤ �+ � < 1. The utility of the winner of sub-contest A in the second stage is

U1 seq = (1� �) (n� 1)(1� �)�((n� 1)(1� �)� (n� 2)�)
(1� �)�2(n� 1)2 + (n� 1)(1� �)�((n� 1)(1� �)� (n� 2)�)

(9)

+�� (n� 1)(1� �)�((n� 1)(1� �)� (n� 2)�)
(� + (n� 1)(1� �))2

=
1

(n+ �+ � � n�� 1)2

0BBBBBB@
�2n2�2� + n2�2 � n2��2 + 4n2�� � 2n2�+ n2�2 � 2n2� + n2

+4n�2� � 2n�2 + 4n��2 � 10n�� + 4n�� 4n�2

+6n� � 2n� 2�2� + �2 � 3��2 + 6�� � 2�+ 4�2 � 4� + 1

1CCCCCCA ;

and the symmetric utility of all the other agents in the second stage is:

Useq = Uj seq =
�(1� �)�2(n� 1)

(1� �)�2(n� 1)2 + (n� 1)(1� �)�((n� 1)(1� �)� (n� 2)�)
� (1� �)�2(n� 1)
(� + (n� 1)(1� �))2(10)

=
�3

(n+ �+ � � n�� 1)2
, j = 2; 3; :::; n:

For n = 2, we have

U1 seq =
1

(� � �+ 1)2
�
�2�2� + �2 + ��2 + 2�� � 2�+ 1

�
(11)

U2 seq =
�3

(� � �+ 1)2
;

where agent 1 is the winner in the �rst stage.
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4.0.2 The �rst stage

In the �rst stage, the maximization problem of agent 1 is

max
xA1

U1 seq
xA1
nX
i=1

xAi

+ Useq(1�
xA1
nX
i=1

xAi

)� xA1 ; (12)

where U1 seq and Useq are the expected utilities in the second stage and are given by (9) and (10). The

solution of (12) yields

Proposition 4 In the sequential two-dimensional contest with n symmetric agents, their symmetric equi-

librium e¤ort in the �rst stage (sub-contest A) is:

xA = (n� 1)U1 seq � Useq
n2

=
1

n2
n� 1

(n+ �+ � � n�� 1)2
� (13)0BBBBBB@

�2n2�2� + n2�2 � n2��2 + 4n2�� � 2n2�+ n2�2 � 2n2�+

n2 + 4n�2� � 2n�2 + 4n��2 � 10n�� + 4n�� 4n�2

+6n� � 2n� 2�2� + �2 � 3��2 + 6�� � 2�+ 4�2 � 4� + 1� �3

1CCCCCCA
For n = 2 we have

xA = xA1 = x
A
2 =

1

4 (� � �+ 1)2
(�2�2� + �2 + ��2 + 2�� � 2�+ 1� �3): (14)

The expected total e¤ort in both stages together is

TEseq = nxA + xB1 + (n� 1)xB = (15)

1

n

n� 1
(n+ �+ � � n�� 1)2

0BBBBBB@
�n2�2� + n2�2 � n2��2 + 2n2�� � 2n2�+ n2�2 � n2� + n2

+3n�2� � 2n�2 + 3n��2 � 8n�� + 4n�� 3n�2 + 5n� � 2n� 2�2�

+�2 � 3��2 + 6�� � 2�� �3 + 4�2 � 4� + 1

1CCCCCCA ;

and for n = 2 we have

TEseq�2 = 2x
A + xB1 + x

B
1 =

1

2 (� � �+ 1)2
�
�2 � ��2 � 2�� � 2�� �3 + 2�2 + 2� + 1

�
: (16)

For n = 2; the di¤erence between the total e¤ort in the simultaneous and sequential contests is

�TE = TEsim�2�TEseq�2 =
1

2
� 1

2 (� � �+ 1)2
�
�2 � ��2 � 2�� � 2�� �3 + 2�2 + 2� + 1

�
=
1

2
�2

�+ � � 1
(� � �+ 1)2

:
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It can be easily veri�ed that �TE < 0 i¤ �+ � < 1. Thus we can conclude as follows:

Proposition 5 In the simultaneous two-dimensional contest with two agents the total e¤ort is smaller than

that of the sequential two-dimensional contest with two agents if � + � < 1: The lowest total e¤ort of the

sequential two-dimensional contest with two agents is obtained when � = 0 and � = 1 and then the total

e¤orts in the simultaneous and sequential contests are the same. In particular, the highest total e¤ort in the

sequential two-dimensional contest with two agents is obtained when � + � < 1: If � = � the highest total

e¤ort is obtained for � = � = 1
3 :

By Proposition 5, in the sequential two-dimensional contest with two agents when � = �, it is optimal for

the contest designer who wishes to maximize the agents�total e¤ort not to award any prize with a probability

of 1=3 if each agent won only once. The intuition behind this result is that the robustness of an agreement

between both agents is weaker than in the simultaneous contest since after that one agent has one win in the

�rst stage, he does not have an incentive to satisfy such an agreement. Thus, since the prizes for winning in

sub-contest A or B positively a¤ect the agents�e¤orts, it is optimal to allocate the prizes for one win only,

but, to avoid any agreement between the agents such that it will not be pro�table, the values of these prizes

are reduced.

Consider now that n > 2 and � = �. Then, by (15), we have

TEseq(�) =
1

n
(1� �) n� 1

(n+ 2�� n�� 1)2
�
2n2�2 � 2n2�+ n2 � 6n�2 + 7n�� 2n+ 6�2 � 5�+ 1

�
: (17)

The following example illustrates the case of a sequential two-dimensional contest with three symmetric

agents.

Example 1 By (17), the total e¤ort in the sequential two-dimensional contest with three symmetric agents

is

TEseq = �
2

3 (�� 2)2
�
6�3 � 8�2 + 6�� 4

�
:

In the following �gure we can see the total e¤ort as a function of � � 0:5:
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Note that the total e¤ort obtains its maximum values at the end points � = 0 and � = 0:5. Then,

TE(� = 0) = � 2

3 (�2)2
(�4) = 2

3
;

and

TE(� = 0:5) = � 2

3 (0:5� 2)2
�
6(0:5)3 � 8(0:5)2 + 6(0:5)� 4

�
=
2

3
:

Furthermore, by (4), the total e¤ort is

TEsim =
4

9
(�+ 1):

We can see that the highest total e¤ort in the simultaneous two-dimensional contest with three symmetric

agents is obtained for � = 0:5 and is equal to 2
3 . Therefore, the highest total e¤orts in the simultaneous and

sequential contests with three symmetric agents are the same.

The next result generalizes the �ndings of the above example for two-dimensional contests with any

number (n > 2) of agents.

Proposition 6 The highest total e¤ort in the sequential two-dimensional contests with n > 2 symmetric

agents where � = � is obtained for either � = � = 0 or � = � = 0:5: Furthermore, the highest total e¤orts

in the sequential and simultaneous two-dimensional contests are the same and are equal to n�1
n :

13



The intuition behind this result is that when there are no prizes for winning in one sub-contest, the

agents do not compete in the second stage since they do not have a chance to win. Then we actually have

a one-stage contest. When the prizes for winning one sub-contest are relatively large, the agents compete

also in the second stage since there is a signi�cant prize there such that the larger the value of this prize is

the larger the agents�e¤orts in the second stage. By Propositions 5 and 6, we can see that in the sequential

two-dimensional contest, for any number of agents, the designer who wishes to maximize the agents�total

e¤ort, does not have to award a prize when two di¤erent agents win in both stages. In other words, it is not

necessary to choose a winner in the sequential two-dimensional contest.

5 Simultaneous k-dimensional contests

We now consider simultaneous k-dimensional contests with n symmetric agents. In this section we also

assume that the k sub-contests are symmetric such that w(j) is the prize for an agent who wins in j sub-

contests, j = 1; :::; k. The maximization problem of agent 1 is

max
x11;:::;x

k
1

kX
j=1

w(j)

0BB@ k

j

1CCA jY
l=1

xl1Pn
i=1 x

i
1

kY
m=j+1

(1� xm1Pn
i=1 x

m
i

)�
kX
j=1

xj1; (18)

where w(k) = 1, and if j +m � k then w(j) + w(m) � 1. The solution of (18) yields

Proposition 7 In the simultaneous k-dimensional contest with n symmetric agents, the symmetric equilib-

rium e¤ort is

x =
n� 1
nk+1

(w(k) +
k�1X
i=1

w(k � i)(n� 1)i�1

0BB@(n� 1)
0BB@ k � 1

i

1CCA�
0BB@ k � 1

i� 1

1CCA
1CCA : (19)

Then, by the symmetric equilibrium e¤ort we can calculate the ine¤ective prizes, namely, the prizes that

do not positively a¤ect the agents�total e¤ort.

Proposition 8 In the simultaneous k-dimensional contest with n agents,

1) If n > k, every prize positively a¤ects the agents�symmetric e¤ort.

14



2) If n = k, the prize for one win does not a¤ect the agents�symmetric e¤ort, while all the other prizes

(for two or more wins) positively a¤ect the agents�symmetric e¤ort.

3) If n < k, let ei satis�es ei � (n�1)k
n and ei � 1 < (n�1)k

n . Then all the prizes for k � i wins, k > i � ei,
do not positively a¤ect the agents�symmetric e¤ort.

By Proposition 8, if the number of agents n is smaller than the number of sub-contests k, there might

be several ine¤ective prizes. For example,when n = 2 and k = 4; let ei = 2. Then, we have 2 � (2�1)4
2 and

2� 1 < (2�1)4
2 . Thus, by Proposition 8, the prizes for one win and for two wins are both ine¤ective, namely,

they do not positively a¤ect the agents�symmetric e¤ort. However, when n > k, all the prizes positively

a¤ect the agents�e¤orts. The intuition behind these results is that for n < k the designer should avoid any

combination of prizes that may yield an outcome of n di¤erent winners, each of which wins a positive prize,

since then the group of agents may sign an agreement such that each agent is the only one to exert a positive

e¤ort in a di¤erent sub-contest. As we can see in the following example, when n > k, the prize for one win

may have the highest marginal e¤ect on the agents�symmetric e¤ort.

Example 2 Assume a simultaneous three-dimensional contest with �ve symmetric agents. By (18), the

maximization problem of agent 1 is

max
x11;x

2
1;x

3
1;w1

w(3)
x11P5
i=1 x

1
i

x21P5
i=1 x

2
i

x31P5
i=1 x

3
i

+w(2)
x11P5
i=1 x

1
i

x21P5
i=1 x

2
i

(1� x31P5
i=1 x

3
i

) + w(2)
x11P5
i=1 x

1
i

x31P5
i=1 x

2
i

(1� x21P5
i=1 x

2
i

)

+w(2)
x21P5
i=1 x

2
i

x31P5
i=1 x

3
i

(1� x11P5
i=1 x

1
i

)

+w(1)
x11P5
i=1 x

1
i

(1� x21P5
i=1 x

2
i

)(1� x31P5
i=1 x

3
i

)

+w(1)
x21P5
i=1 x

2
i

(1� x11P5
i=1 x

1
i

)(1� x31P5
i=1 x

3
i

)

+w(1)
x31P5
i=1 x

3
i

(1� x11P5
i=1 x

1
i

)(1� x21P5
i=1 x

2
i

)

�x11 � x21 � x31
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The FOC (the derivative according to x11) is

w(3)

P5
i=2 x

1
i

(
P5

i=1 x
1
i )
2

x21P5
i=1 x

2
i

x31P5
i=1 x

3
i

+p(2)

P5
i=2 x

1
i

(
P5

i=1 x
1
i )
2

x21P5
i=1 x

2
i

(1� x31P5
i=1 x

3
i

) + p(2)

P5
i=2 x

1
i

(
P5

i=1 x
1
i )
2

x31P5
i=1 x

2
i

(1� x21P5
i=1 x

2
i

)

�p(2) x21P5
i=1 x

2
i

x31P5
i=1 x

3
i

P5
i=2 x

1
i

(
P5

i=1 x
1
i )

+p(1)

P5
i=2 x

1
i

(
P5

i=1 x
1
i )
2
(1� x21P5

i=1 x
2
i

)(1� x31P5
i=1 x

3
i

)� p(1) x21P5
i=1 x

2
i

P5
i=2 x

1
i

(
P5

i=1 x
1
i )
2
(1� x21P5

i=1 x
2
i

)

�p(1) x31P5
i=1 x

3
i

P5
i=2 x

1
i

(
P5

i=1 x
1
i )
2
(1� x21P5

i=1 x
2
i

)

= 1

By symmetry of the sub-contests xji = xi; j = 1; 2; 3: Likewise, by symmetry of the agents x = xi; i = 1; :::; 5.

Thus, we obtain that

w(3)
4x

25x2
1

25
+ w(2)(

4x

25x2
(2
4

25
� 1

25
)

+w(1)(
4x

25x2
(
16

25
� 2 4

25
)

= 1

This implies that the symmetric equilibrium e¤ort is

x = x1 = x2 = x3 = w(3)
4

(25)2
+ w(2)

28

(25)2
+ w(1)

32

(25)2

This example shows that the marginal e¤ect of the prize for winning a single sub-contest on the agents�

symmetric equilibrium e¤ort might be larger than the marginal e¤ect of the other prizes, while the marginal

e¤ect of the prize for winning all the sub-contests on the symmetric equilibrium e¤ort is the smallest one.

6 Conclusion

We demonstrated that in multi-dimensional contests, for a designer who wishes to increase the agents�e¤orts,

the prize sum is not necessarily awarded for any outcome. In other words, we show that for some outcomes,

only part of the entire prize should be awarded. We also show that in simultaneous multi-dimensional

16



contests if the number of agents is smaller than or equal to the number of sub-contests, prizes for winning a

small number of wins might be ine¤ective, namely, these prizes will not positively a¤ect the agents�e¤orts.

On the other hand, when the number of agents is larger than the number of sub-contests, there are no

ine¤ective prizes, that is, prizes that do not positively a¤ect the agents� e¤orts. We also show that in

sequential multi-dimensional contests, even if the number of agents is larger than the number of sub-contests

there are outcomes for which not all the entire prize sum has to be allocated. The reason is that with one

prize for winning, the agents compete in the �rst stage only, while by awarding prizes for winning in other

stages, the competition becomes intensive also in these stages. However, if competition in one stage yields

a higher total e¤ort than in multi-stage contests, the designer should allocate only one prize for the winner

of all the sub-contests. In sum, we can conclude that not every prize, even if it is costless for the designer,

should be awarded in multi-dimensional contests, since there are prizes that do not positively a¤ect the

agents�e¤orts.

7 Appendix

7.1 Proof of Proposition 1

The �rst-order conditions (FOC) of agent 1�s maximization problem (1) are

Pn
i=1 x

A
i � xA1

(
Pn

i=1 x
A
i )
2

xB1Pn
i=1 x

B
i

+ �

Pn
i=1 x

A
i � xA1

(
Pn

i=1 x
A
i )
2
(1� xB1Pn

i=1 x
B
i

)� �
Pn

i=1 x
A
i � xA1

(
Pn

i=1 x
A
i )
2

xB1Pn
i=1 x

B
i

(20)

=

Pn
i=1 x

A
i � xA1

(
Pn

i=1 x
A
i )
2
Pn

i=1 x
B
i

(xB1 (1� �) + �(
nX
i=1

xBi � xB1 ) = 1;

and

xA1Pn
i=1 x

A
i

Pn
i=1 x

B
i � xB1

(
Pn

i=1 x
B
i )

2
� � xA1Pn

i=1 x
A
i

Pn
i=1 x

B
i � xB1

(
Pn

i=1 x
B
i )

2
+ �(1� xA1Pn

i=1 x
A
i

)

Pn
i=1 x

B
i � xB1

(
Pn

i=1 x
B
i )

2
(21)

=

Pn
i=1 x

B
i � xB1Pn

i=1 x
A
i (
Pn

i=1 x
B
i )

2
(xA1 (1� �) + �(

nX
i=1

xAi � xA1 )) = 1:
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By symmetry of the agents xA = xAi ; i = 1; :::; n and xB = xBi ; i = 1; :::; n. Then, by (20) and (21), the

agents�symmetric equilibrium e¤orts are

xA =
(n� 1)
n3

((1� �) + (n� 1)�)

xB =
(n� 1)
n3

((1� �) + (n� 1)�):

Q:E:D:

7.2 Proof of Proposition 3

The FOC of the agents�maximization problems in sub-contest B (6) and (7) are

(
Pn

i=1 x
B
i � xB1 )(1� �)

(
Pn

i=1 x
B
i )

2
= 1

�(
Pn

i=1 x
B
i � xBj )

(
Pn

i=1 xi)
2

= 1 .

By symmetry, xB = xBi ; i = 2; :::; n. Then,

(
Pn

i=1 x
B
i � xB1 )(1� �)

(
Pn

i=1 x
B
i )

2
=

(n� 1)xB(1� �)
((n� 1)xB + xB1 )2

= 1 (22)

�(
Pn

i=1 x
B
i � xBj )

(
Pn

i=1 xi)
2

=
�((n� 2)xB + xB1 )
((n� 1)xB + xB1 )2

= 1 .

If we divide both FOC by each other we obtain

(n� 1)xB(1� �) = �((n� 2)xB + xB1 );

or, alternatively,

xB1 = x
B (n� 1)(1� �)� (n� 2)�

�
: (23)

Then, insert (23) into (22) and obtain the equilibrium e¤orts of the agents in the second stage (sub-contest

B),

xB1 = �(1� �) n� 1
(n+ �+ � � n�� 1)2

(n+ �+ 2� � n�� n� � 1)

xB = xBj = �
2 (1� �) n� 1

(n+ �+ � � n�� 1)2
, j = 2; :::; n:
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For n = 2, we have

xB1 = �(1� �)2 1

(1 + � � �)2

xB = �2 (1� �) 1

(1 + � � �)2
:

Q:E:D:

7.3 Proof of Proposition 4

The FOC of the agents�maximization problem (12) in the �rst stage (sub-contest A) is

(U1 seq � Useq)

nX
i=1

xAi � xA1

(
nX
i=1

xAi )
2

= 1:

By symmetry, xA = xA1 = x
A
2 =; :::; x

A
n , and then the symmetric equilibrium e¤ort in the �rst stage is

xA = (n� 1)U1 seq � Useq
n2

=

1

n2
n� 1

(n+ �+ � � n�� 1)2

0BBBBBB@
�2n2�2� + n2�2 � n2��2 + 4n2�� � 2n2�+ n2�2 � 2n2�+

n2 + 4n�2� � 2n�2 + 4n��2 � 10n�� + 4n�� 4n�2

+6n� � 2n� 2�2� + �2 � 3��2 + 6�� � 2�+ 4�2 � 4� + 1� �3

1CCCCCCA :

For n = 2, we have

xA = xA1 = x
A
2 =

1

4 (� � �+ 1)2
(�2�2� + �2 + ��2 + 2�� � 2�+ 1� �3):

Q:E:D:

7.4 Proof of Proposition 5

By (16), the extreme points of TEseq are obtained by

dTEseq
d�

=
1

2

�2

(� � �+ 1)3
(1� �� 3�) = 0

dTEseq
d�

=
1

2

�

(� � �+ 1)3
�
2 + 2�2 + 3�� � 4�� �2 � 3�

�
= 0:
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A solution of these equations is

�� = 1; �� = 0

Then, the total e¤ort TEseq(�� = 1; �
� = 0) is not de�ned. By L�hopital rule we obtain that

lim
�!1
�=0

TEseq =
2a� 2

�4(�a+ 1) = 0:5:

Note that when � = 1 and � = 0 there exists

d2TEseq
d�2

= � �2

(� � �+ 1)4
(�+ 5� � 1) > 0

d2TEseq

d�2
= (

1

2

�

(� � �+ 1)3
�
2 + 2�2 + 3�� � 4�� �2 � 3�

�
) = � (�� 1)2

(� � �+ 1)4
(�+ 5� � 1) > 0

and

d2TEseq
d�d�

= 0:

Now, suppose that � = �. Then, by (16), we have

TEseq = ��3 +
1

2
�2 +

1

2
:

The optimal � is obtained by

dTEseq
d�

= �3�2 + � = 0:

Thus, � = 1
3 yields the highest total e¤ort which is

TEseq = �(
1

3
)3 +

1

2
(
1

3
)2 +

1

2
= 0:518:

In other words, if each agent has one win only, then prizes are not awarded with a probability of 13 . Q:E:D:

7.5 Proof of Proposition 6

By (4) and (15) we obtain that

TEseq(� = � = 0) = TEseq(� = � = 0:5) = TEsim(� = � = 0:5) =
n� 1
n

:
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By (4), we have

dTEsim
d�

(� = �) =
2(n� 1)(n� 2)

n2
> 0:

Thus,

max
�
TEsim(�) = TEsim(0:5) =

n� 1
n

:

To end this proof we need to show that

max
�
TEseq(�) = TEseq(0) = TEseq(0:5) =

n� 1
n

:

By (15), we have

dTEseq
d�

= � 1
n

n� 1
(n+ 2�� n�� 1)3

0BB@ �2n3�3 + 6n3�2 � 5n3�+ n3 + 10n2�3 � 24n2�2 + 19n2�� 4n2

�18n�3 + 36n�2 � 24n�+ 5n+ 12�3 � 18�2 + 10�� 2

1CCA :
In order to show that TEseq obtains its maximum in one of the end points, either 0 or 0:5, it is su¢ cient to

show that dTEseqd� monotonically increases. Note that

d2TEseq
d�2

=
2

n

(n� 1)2

(n+ 2�� n�� 1)4
(n3(1� �)� 2n2 + 1� 2�):

Then, it can be veri�ed that d
2TEseq
d�2 > 0 for all 0 � � � 0:5 and n � 3: Q:E:D:

7.6 Proof of Proposition 7

By symmetry of the sub-contests x = xji for all j = 1; 2; :::; k, the FOC of the maximization problem (18) is

w(k)
(n� 1)x
n2x2

(
1

n
)k�1

+w(k � 1)(n� 1)x
n2x2

(k � 1)(( 1
n
)k�2(1� 1

n
)� ( 1

n
)k�1))

+w(k � 2)(n� 1)x
n2x2

(
(k � 1)!
(k � 3)!2! )((

1

n
)k�3(1� 1

n
)2 � (k � 1)!

(k � 2)!1! (
1

n
)k�2(1� 1

n
))

+w(k � 3)(n� 1)x
n2x2

(
(k � 1)!
(k � 4)!3! )(

1

n
)k�4(1� 1

n
)3 � (k � 1)!

(k � 3)!2! (
1

n
)k�3(1� 1

n
)2)

+:::::::

+w(2)
(n� 1)x
n2x2

(
(k � 1)!
1!(k � 2)! (

1

n
)(
n� 1
n

)k�2 � (k � 1)!
2!(k � 3)! (

1

n
)2(1� 1

n
)k�3)

+w(1)(
(n� 1)x
n2x2

)((
n� 1
n

)k�1 � (k � 1) 1
n
(1� 1

n
)k�2)

= 1:
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This is equivalent to

(n� 1)x
n2x2

(w(k)(
1

n
)k�1 +

k�1X
i=1

w(k � i)(

0BB@ k � 1

i

1CCA)( 1n )k�i�1(1� 1

n
)i � (

0BB@ k � 1

i� 1

1CCA ( 1n )k�i(1� 1

n
)i�1) = 1:

Thus, the symmetric equilibrium e¤ort is

x =
n� 1
nk+1

(w(k) +
k�1X
i=1

w(k � i)(n� 1)i�1

0BB@(n� 1)
0BB@ k � 1

i

1CCA�
0BB@ k � 1

i� 1

1CCA
1CCA :

Q:E:D:

7.7 Proof of Proposition 8

By (19), we can write the symmetric equilibrium e¤ort as follows:

x =
n� 1
nk+1

(w(k) +
k�1X
i=1

w(k � i)(n� 1)i�1�i(k; n);

where

�i(k; n) = (n� 1)

0BB@ k � 1

i

1CCA�
0BB@ k � 1

i� 1

1CCA
Thus, dx

dp(k) > 0: And,
dx

dp(k�i) > 0 , i = 1; :::; k � 1 i¤�i(k; n) > 0: This is equivalent to

�i(k; n) =
(n� 1)(k � 1)!
(k � 1� i)!i! �

(k � 1)!
(k � i)!(i� 1)!

=
(k � 1)!

(k � 1� i)!(i� 1)! (
n� 1
i

� 1

(k � i) ) > 0

Suppose that n = k, then we have �i(k; k) > 0 i¤ (k � 1)(k � i) � i > 0. The last inequality satis�es i¤

i < k � 1:Thus, �i(k; k) > 0 for all i < k � 1 and is equal to zero for i = k � 1: In other words, a prize for

winning in a single sub-contest does not a¤ect the agents�equilibrium e¤ort.

Note that for n 6= k we have �i(k; n) > 0 i¤ (n�1)(k�i)�i > 0 . The last inequality holds i¤ i < (n�1)k
n :

Since for n > k we have i < (n�1)k
n for all i � k � 1. Thus, we obtain that all the prizes, even for winning a

single sub-contest, positively a¤ect the agents �equilibrium e¤ort.
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On the other hand, for n < k; since k � 1 > (n�1)k
k , we have �k�1(k; n) < 0 which implies that the

prize for winning a single sub-contest negatively a¤ects the agents� equilibrium strategy. In that case, if

ei > (n�1)k
n , then �ei(k; n) < 0 which implies that all the prizes for k �ei wins or less, negatively a¤ect the

agents�equilibrium e¤orts, and therefore should not be awarded if the goal is to increase the agents�e¤orts.

Q:E:D:
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