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Abstract

We study all-pay auctions under incomplete information with n contestants who have non-linear

cost functions. The designer may award two kinds of subsidy (taxation): one that decreases (increases)

each contestant�s marginal cost of e¤ort and another that increases (decreases) each contestant�s value

of winning. The designer�s expected payo¤ is the contestants� expected total e¤ort minus the cost of

subsidy or, alternatively, plus the tax payment. We show that when the resource of subsidy (the marginal

taxation rate) is relatively small and the cost function is concave (convex), the designer�s expected payo¤

in all-pay auctions with both kinds of a subsidy (taxation) is higher than in the same contest without

any subsidy (taxation). We then compare both kinds of subsidy and demonstrate that if the resource of

subsidy is relatively small and the cost functions are concave (convex), the cost subsidy is better than

the prize subsidy for the designer who wishes to maximize his expected payo¤.
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1 Introduction

Subsidy and taxation are well common economic policies (see, for example, Sav 2004, Zuniga Vicente et al.

2014, and Bisceglia 2020). Lichtenberg (1990), claims that the U.S. Department of Defense (DoD) encourages

private military R&D investment not only by establishing prizes, but also by subsidizing expenditures (the

costs of making e¤orts) dedicated toward winning the prize. In that case, he asks why does the government

provide a subsidy for private military R&D, in addition to establishing prizes for innovation? Here we try

to provide some answers to this question by focusing on the potential of using economic policies of subsidy

and taxation in contests. Our purpose is to show that di¤erent forms of subsidy or taxation might be useful

for a contest designer who wishes to maximize the contestants�e¤orts (outputs).

We are not the �rst to deal with the role of subsidy/taxation in contests, but in contrast to the current

literature (see, for example, Glazer and Konrad 1999, Konrad 2000, Person and Sandmo 2005, Fu et al.

2012, Mealem and Nitzan 2014, Carpenter et al. 2016, and Thomas and Wang 2017) who study the role of

subsidy/taxation in environments under complete information, we study these policies in all-pay auctions

under incomplete information about the contestants�types. One of the di¤erences of using subsidy/taxation

in environments under complete and incomplete information is that while in an environment under complete

information the designer can apply a di¤erent subsidy/tax for each contestant according to his type (see, for

example, Nitzan and Mealem 2014), in an environment under incomplete information the contestants�types

are ex-ante identical where each contestant knows his type (which is private information), and therefore the

designer who does not know the contestants�types, has to apply a uniform policy of subsidy/taxation

for all the contestants without the ability to discriminate among them.

We study the all-pay auction (contest) with n � 2 contestants under incomplete information and non-

linear cost functions.1 In other words, our contestants are not risk-neutral and, in particular, the revenue

equivalence theorem (see Myerson 1981, and Riley and Samuelson 1981) does not hold in our environment.

In such a case, the analysis of the optimal all-pay auction is complex and is generally unknown.

We �rst consider a cost subsidy where the designer has a monetary resource that can be used to subsidize

all the contestants by decreasing their marginal costs of e¤ort.2 We can �nd several examples in the literature

1We study the same model of Moldovanu and Sela (2001, 2006), but with one prize only.
2This form of cost subsidy is studied by Glazer and Konrad (1999), and Thomas and Wang (2017) in a rent-seeking model
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for such a kind of subsidy. For example, Thomas and Wang (2017) describe a class in which students exert

e¤orts to achieve higher degree classi�cations, and their teacher o¤ers marginal help to the weaker students

in order to improve their performance and as such to maximize the average (total) performance of all the

students. Lichtenberg (1990) claims that the U.S. Department of Defense frequently provides �implicit

subsidies� to �rms to help them win its design competitions. He then empirically shows that �nancial

subsidies substantially improve the productivity of private military R&D. Furthermore, Fu at al. (2012)

show that in R&D contests, prizes and subsidies are complement and not substitute each other.

Miller (2009) argues that subsidy of teams in the four major sports leagues in the United States (football,

baseball, hockey and basketball) generally comes from subsidizing the amenities in the teams� stadiums.

This subsidy lowers the marginal cost of providing them to fans, driving ticket prices lower, and as such

increases the teams�pro�ts.

In our case of a cost subsidy, we assume that the contest designer may face a budget constraint on the

amount that can be used as a subsidy. For instance, the �rm may have a �xed amount of money available

for providing subsidies, or the teacher may have a �xed amount of time for tutoring students. We also

assume that the designer�s expected payo¤ is equal to the contestants�expected total e¤ort minus the cost

of the subsidy. We show that in the all-pay auction if the resource of subsidy is relatively small, then, if the

contestants�cost functions are concave (convex), the designer�s expected payo¤ is larger (smaller) than in

the same contest without any subsidy.

Similarly, we consider a cost taxation where the designer can tax all the contestants by increasing their

marginal costs of e¤ort. The literature provides several examples of such a kind of taxation. For exam-

ple, Runkel (2006) addresses the prevalence of cost-raising policies (equivalent to taxation in our terms)

by suggesting that �competitive balance" may be part of a contest designer�s objective function together

with maximization of total e¤ort. He then claims that uniformly increasing e¤ort costs becomes optimal.

Ritz (2008) shows that in a contest model with participation fees, a policy which uniformly increases the

contestants�e¤ort costs can lead to an increase in total e¤ort since it encourages weaker players (who oth-

erwise would have stayed out) to participate in the contest. Paradoxically, a contest designer whose only

under complete information. Fu et al. (2012) call this form of subsidy an "e¢ ciency-enhancing subsidy."

3



objective is to maximize total e¤ort may thus wish to make rent-seeking �more di¢ cult,� namely, impose

higher marginal cost functions.

We show that taxation by increasing the contestants�marginal costs can be useful for the contest designer

who wishes to maximize the contestants� total e¤ort even when contestants are ex-ante symmetric. In

particular, we show that in the all-pay auction, if the taxation rate is relatively small and if the contestants�

cost functions are convex (concave), the designer�s expected payo¤ is larger (smaller) than in the same

contest without any cost taxation. It is worth noting that if we combine the above results for cost subsidy

and cost taxation, we obtain that if the contestants�cost functions are concave, the designer should apply a

cost subsidy, while if they are convex, a cost taxation should be applied.

We then consider a di¤erent form of subsidy that will be referred to as a prize subsidy. One example of

such a subsidy would be medals bonuses which are given in many countries to Olympic athletes who won

medals. In the case of a prize subsidy, the designer can increase the winner�s value of winning by awarding an

extra prize. Then, the designer�s expected payo¤ is the contestants�expected total e¤ort (output) minus the

cost of the prize subsidy. Additionally, we can �nd this form of subsidy in procurement contracts in

which a buyer who wishes to procure an exogenously given project hires a contractor to perform the

work. The buyer may provide incentives to the contractor such as an additional compensation (subsidy)

which may increase the buyer�s payo¤ by reducing ex post transaction costs due to costly renegotiation (see

Bajary and Tadelis, 2001, and Tadelis, 2012). We show that in all-pay auctions, if the contestants�

cost functions are strictly concave, there exists a prize subsidy such that the designer�s expected payo¤ is

larger for the same contest without any prize subsidy. Similarly, we consider a prize taxation such that the

designer can decrease the winner�s value of winning by imposing a tax only on the winner. For example,

the U.S. tax system taxes prizes and awards, even Olympic athletes, if the recipient makes $ 1M a year or

more. Then, the $37,500 monetary prize that accompanies a gold medal will also be taxed. In our model

with a prize taxation, the designer�s expected payo¤ is the contestants�expected total e¤ort plus the tax of

the winner. We show that if the cost functions are strictly convex, then there exists a positive tax such that

the designer�s expected payo¤ is larger for the same contest without any prize taxation.

The intuition behind the above results is that the e¢ ciency of a subsidy or a taxation for the designer
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depends on whether the marginal increase (decrease) of the contestants�e¤orts is larger (smaller) than the

marginal costs of the subsidy (taxation). Since the contestants�expected e¤orts and the cost of subsidy and

taxation are forms of the inverse cost function, the results depend on its curvature. Furthermore, since the

amount of either a subsidy or a taxation is relatively smaller than the expected contestant�s e¤ort, the fact

that the curvature of the cost function is increasing or decreasing plays a key role and yields the same results

whether or not the subsidy or the taxation are e¢ cient for enhancing the designer�s expected payo¤.

Last, we compare which kind of subsidy is better for the designer. We demonstrate that if the resource of

subsidy is su¢ ciently small then in an all-pay auction with a concave (convex) cost function, the designer�s

expected payo¤ is larger (smaller) with a cost subsidy than with a prize subsidy. Given our previous results

according to which both forms of a subsidy are e¢ cient for enhancing the total e¤ort when the contestants�

cost functions are concave, we can conclude that for su¢ ciently low levels of a subsidy, the cost subsidy is

better than the prize subsidy. However, if the optimal value of the resource of subsidy is relatively large this

comparison will not yield meaningful results.

As mentioned above, the optimal all-pay auction under incomplete information in which contestants

have non-linear cost functions has not yet been conclusively analyzed. We do not claim that using a subsidy

and/or a taxation are optimal economic policies to maximize the contestants�e¤orts. Indeed, the literature

on contests mentions several other ways to enhance the contestants�e¤orts. Some examples include limiting

the number of contestants by setting a minimum e¤ort level (see Taylor 1995, Fullerton and McAfee 1999,

Casson et al. 2010, Fu et al. 2015, and Kirkegaard 2022), imposing a maximum e¤ort level (see Che

and Gale 1998, Gavious et al. 2003, Megidish and Sela 2014, and Olszewski and Siegel 2019), allocating

several prizes and punishments (see, Lazear and Rosen 1981, Green and Stokey 1983, Nalebu¤ and Stiglitz

1983, Moldovanu and Sela, 2001, 2006, Moldovanu et al. 2012, Olszewski and Siegel 2016, and Sela 2020),

allocating head-starts or handicaps (see Kirkegaard 2012, Franke et al. 2013, Segev and Sela 2014, Drugov

and Ryvkin 2017, and Fu and Wu 2020), or reimbursing some of the contestants�cost of e¤orts (see Cohen

and Sela 2005, Matros 2012, Minchuk 2018 and Minchuk and Sela 2020). We do claim, however, that a

subsidy or a taxation, with or without some of the above well-known methods could be a basic component

in the optimal all-pay auction under incomplete information and non-linear cost functions.

5



The rest of the paper is organized as follows. In Section 2 we analyze the all-pay auction with a cost

subsidy as well as with a cost taxation, and in Section 3 we analyze the all-pay auction with a prize subsidy

as well as with a prize taxation. In Section 4 we compare between a cost subsidy (taxation) and a prize

subsidy (taxation). Section 5 concludes. The proofs appear in the Appendix.

2 A cost subsidy and a cost taxation

Consider n � 2 contestants who compete in an all-pay auction for a single prize. Contestant i�s value of

winning is vi; i = 1; ::; n; and is private information. The contestants�values are drawn independently of

each other from the interval [0; 1] according to the distribution function F which is common knowledge. We

assume that F is continuously di¤erentiable and that f(x) = F 0(x) > 0 for all 0 � x � 1. The contestant

with the highest e¤ort wins and all the contestants pay the cost of their e¤orts where an e¤ort of x has a cost

of (x); 0 > 0; (0) = 0 in monetary units. In other words,  transfers x units of e¤ort to (x) monetary

units. We denote g = �1.

The designer who has incomplete information about the contestants�types, has also a mone-

tary resource of � that can be used to subsidize the contestants by decreasing their marginal costs of e¤ort.

In such a case, contestant i�s cost of e¤ort will be �(xi) where 1 � �; 0 < � � 1, is referred to as the

marginal subsidy rate. Since the allocated subsidy is equal to the designer�s monetary resource � we have

� = n(1� �)E((x)); (1)

where the LHS of (1) is the designer�s monetary resource for subsidy, and the RHS of (1) is the expected

change of total e¤ort as a result of the cost subsidy. The designer�s expected payo¤ in e¤ort units is

Rcs = TE � E (g (n(1� �)(x))) ; (2)

where TE is the contestants� expected total e¤ort, and E (g (n(1� �)(x))) is the cost of the designer�s

subsidy in e¤ort units.

Alternatively, the designer can also tax the contestants by increasing their marginal costs of e¤ort. In

such a case, contestant i�s cost of e¤ort will be �(xi) where � � 1; � > 1 is referred to as the marginal
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taxation rate. Then, the designer imposes a tax rate of � � 1 on each e¤ort unit of a contestant in which

case, the designer�s expected payo¤ in e¤ort units is

Rct = TE + E (g(n(� � 1)(x))) ; (3)

where TE is the contestants�expected total e¤ort, and E (g(n(� � 1)(x))) is the designer�s expected pro�t

from taxation in e¤ort units.

2.1 A cost subsidy

We �rst study the all-pay auction with a cost subsidy. If there is a symmetric monotonically increasing

equilibrium e¤ort function x(vi), the utility function of contestant i; i = 1; ::; n; is

U(vi) = viG(vi)� �(x(vi)); (4)

where G(vi) = Fn�1(vi) is the probability that the value vi is the highest among all the n contestants, and

the marginal subsidy rate satis�es 0 < � � 1. The �rst order condition (FOC) of the maximization problem

of contestant i�s expected payo¤ given by (4) is

G0(vi)vi � � ((x(vi)))0 = 0:

Rearranging yields

�(x(vi)) =

viZ
0

sG0(s)ds+ k:

Since (x(0) = 0, we have

(x(vi)) =
1

�

viZ
0

sG0(s)sds:

Integrating by parts and rearranging yields the equilibrium e¤ort of contestant i; i = 1; 2; :::; n as follows:

xcs(vi) = g

0@ 1
�

0@viG(vi)� viZ
0

G(s)ds

1A1A : (5)

It can be easily veri�ed that the above equilibrium e¤ort is monotonically increasing.3 Then, contestant i

with value vi has the the following expected payo¤:

U(vi) = viG(vi)� �(x)

=

viZ
0

G(s)ds;

3Similarly as in Moldovanu et al. (2001, 2006), it is not di¢ cult to show that this is the unique symmetric equilibrium.
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which is exactly the contestant�s expected payo¤ in the standard all-pay auction with linear cost functions

(see Krishna 2010). Thus, we can conclude that the contestants are indi¤erent between having or not having

a cost subsidy. We show below that the designer might have an incentive to apply a cost subsidy in all-pay

auctions.

Since the allocated subsidy should be equal to the designer�s resource �; we have

� = n(1� �)E((x))

= n(1� �)
1Z
0

1

�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv = (1� �)
�

Rlin;

This yields that that the marginal taxation rate is

� =
Rlin

� +Rlin
; (6)

where Rlin = n

1Z
0

�
vG(v)�

R v
0
G(s)ds

�
f(v)dv is the designer�s expected payo¤ in the standard all-pay

auction with linear cost functions and without subsidy.

The designer�s expected payo¤ in an all-pay auction with a cost subsidy will be denoted by Rcs and is

equal to the contestants�expected total e¤ort minus the cost of a subsidy in e¤ort units.

Rcs = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � E (g (n(1� �)(x))) (7)

= n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � 1Z
0

g

0@n(1� �)
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv:
Note that the �rst part of (7) is the contestants�expected total e¤ort, while the second part is the subsidy

paid by the designer in e¤ort units. The following result demonstrates the conditions under which a cost

subsidy is either pro�table or not for the contest designer.

Proposition 1 In the all-pay auction with a monetary resource of � � Rlin

n�1 , if the cost function  is concave

(convex) then the designer�s expected payo¤ is larger (smaller) than in the same contest without any subsidy.

Proof. See Appendix.

We point out that in the case of linear cost functions, by the revenue equivalence theorem (RET), the

designer�s expected payo¤ is the same with and without a subsidy of any �. However, when the cost functions
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are non-linear, the RET no longer holds. Then, by Proposition 1, if the cost function  is concave, a relatively

small subsidy increases the designer�s expected payo¤. The intuition behind this result is that for a subsidy

to be pro�table for the designer depends on whether the marginal increase in the contestant�expected total

e¤ort is larger than the marginal cost of a subsidy. The marginal increase of e¤orts and the marginal cost of

a subsidy are both depend on g0(x) which is the derivative of the inverse cost function g. Since g is convex

such that g0(x) is an increasing function, for low-type contestants whose expected e¤orts are smaller than the

cost of the subsidy, the marginal increase of the expected total e¤ort is smaller than the marginal increase

of the cost of a subsidy. On the other hand, for high-type contestants whose expected e¤orts are larger than

the cost of subsidy, the marginal increase of the expected total e¤ort is larger than the marginal increase

of the cost of a subsidy. Thus, we actually show that, independent of the distribution of the contestants�

types, the e¤ect of the high-type contestants is larger than that of the low-type contestants on the designer�s

expected payo¤. Therefore, we can conclude that it is pro�table for the designer to allocate a subsidy if the

cost function  is concave, and vice versa when it is convex.

By (7), the optimal subsidy is as follows:

Proposition 2 In the all-pay auction, if the cost function  is concave, the optimal marginal subsidy rate

is 1� �� = 1
n and the monetary resource is �

� = Rlin

n�1 : Then, the optimal amount of subsidy per-contestant

decreases.

Proof. See Appendix.

By Propositions (1) and (2) we can see that the optimal monetary resource �� is equal to its upper bound.

2.2 A cost taxation

Now we consider the all-pay auction with a cost taxation. As in the previous case, if there is a symmetric

monotonically increasing equilibrium e¤ort function x(vi), the utility function of contestant i; i = 1; ::; n, is

U(vi) = viG(vi)� �(x(vi)) (8)

where the cost taxation rate satis�es � > 1. We can see that the contestants�equilibrium e¤orts have the

same form as with a cost subsidy except that � has di¤erent values. However, the designer�s expected payo¤
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in the all-pay auction with a cost taxation (denoted by Rct) has a di¤erent form than in the all-pay auction

with a cost subsidy and is given by

Rct = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + E (g(n(� � 1)(x))) (9)

= n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + 1Z
0

g

0@n(� � 1)
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv
Note that the �rst part of (9) is the contestants� expected total e¤ort, while the second part is the tax

payment in e¤ort units. The following result demonstrates the conditions under which taxation is either

pro�table or not for the contest designer.

Proposition 3 In the all-pay auction with a cost taxation rate of 0 < � � 1 + 1
n , if the cost function 

is convex (concave), the designer�s expected payo¤ is larger (smaller) than in the same contest without any

cost taxation.

Proof. See Appendix.

According to Proposition 3, if the cost taxation rate is su¢ ciently low and if the contestants�cost functions

are convex, taxation will be pro�table for the contest designer. The intuition behind this result is that the

marginal decrease in the contestants�e¤orts is smaller than the marginal pro�t from taxation for high-type

contestants, and the opposite for low-type contestants. Since the tax payment and the expected level of

the equilibrium e¤ort are functions of g0 (which is a decreasing function) we obtain that by applying the

taxation, for high-type contestants the marginal decrease of the expected total e¤ort is smaller than the

marginal increase of the tax payment, and the opposite for low-type contestants. Our result shows that,

independent of the distribution of the contestants�types, the marginal decrease of the expected total e¤ort

is smaller than the marginal increase of the tax payment. Therefore, it is pro�table for the designer to set a

tax if the cost function  is convex, but it is not pro�table when the cost function is concave.

Proposition 3 indicates that a cost taxation might be pro�table for the designer who wishes to maximize

his expected payo¤, but the value of the optimal cost taxation rate �� could be relatively large. The optimal

cost taxation is as follows
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Proposition 4 In the all-pay auction, if the cost function  is convex, the optimal marginal taxation rate

is �� = 1 + 1
n . Then, the marginal taxation rate decreases in the number of contestants.

Proof. See Appendix.

By Propositions (3) and (4) we can see that the optimal cost taxation rate �� is equal to its upper bound.

3 A prize subsidy and a prize taxation

We consider the same model of the all-pay auction as in the previous section, but now the designer can

increase the winner�s value of winning by awarding a prize subsidy (bonus) of � > 0. Then, his expected

payo¤ is

Rps = TE � g (�) (10)

where TE is the contestants�expected total e¤ort, and g (�) is the cost of subsidy in e¤ort units.

Alternatively, the designer can decrease the winner�s value of winning by imposing a tax of � > 0. Then,

his expected payo¤ is

Rpt = TE + g (�) (11)

where TE is the contestants�expected total e¤ort, and g (�) is the tax payment in e¤ort units. Notice that

in contrast to the model with a cost subsidy (taxation) in which all the contestants are subsidized (taxed),

in this model with prize subsidy (taxation) only the winner is subsidized (taxed).

3.1 A prize subsidy

We �rst study the all-pay auction with a prize subsidy in which the designer awards a positive subsidy of

� > 0 for the winner of the contest. If there is a symmetric monotonically increasing equilibrium e¤ort

function x(vi) : [0; 1]! [0; 1], the utility function of contestant i; i = 1; ::; n; is

Ui(vi) = (vi + �)G(vi)� (xi): (12)

By a similar analysis of the all-pay auction with a cost subsidy, we obtain that the equilibrium e¤ort function

is as follows
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Proposition 5 The equilibrium e¤ort function in the all-pay auction with a prize subsidy of � is

xps(v) = g

�
(v + �)G(v)�

Z v

0

G(s)ds

�
: (13)

The designer�s expected payo¤ (denoted by Rps) is the contestants�expected total e¤ort minus the cost

of the prize subsidy g (�) in e¤ort units as follows:

Rps = n

1Z
0

g

�
(v + �)G(v)�

Z v

0

G(s)ds

�
f(v)dv � g (�) : (14)

The following result demonstrates the conditions under which a prize subsidy increases the designer�s ex-

pected payo¤.

Proposition 6 In the all-pay auction, if the cost function  is strictly concave on (0; 1], then there exists a

su¢ ciently small subsidy of � > 0 such that the designer�s expected payo¤ is larger than in the same contest

without any prize subsidy.

Proof. See Appendix.

The intuition behind the result of Proposition 6 according to which prize subsidy is pro�table for the

contest designer when the cost function is concave is quite similar to the intuition for the result of Proposition

1 according to which the cost subsidy is pro�table to the contest designer for every concave cost function.

By the proof of Proposition 6, if the prize subsidy is relatively small then it is pro�table to the contest

designer. In the following example, we show that the optimal prize subsidy is not necessarily small and its

e¤ect on the designer�s expected payo¤ is signi�cant.

Example 1 Consider an all-pay auction with two contestants where each contestant�s value is distributed

according to F (v) = v. The cost function is concave and is given by (x) = x0:5. Then, by (14), the

designer�s expected payo¤ is

Rps = 2

1Z
0

�
(v + �)v �

Z v

0

sds

�2
dv � (�)2

= �1
3
�2 +

1

2
� +

1

10

Figure 1 describes the designer�s expected payo¤ as a function oft the prize subsidy �:
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Figure 1: the designer�s expected payo¤ as a function of the prize subsidy

In order to �nd the optimal prize subsidy, we obtain

dRps
d�

= �2
3
� +

1

2

This implies (as we can see in Figure 1) that the optimal prize subsidy is

�� =
3

4

We can see that the prize subsidy makes the following change in the designer�s expected payo¤

Rps(� =
3

4
)�R(� = 0) = 0:1875

Note that this di¤erence in the designer�s expected payo¤ is larger than his expected payo¤ when there is no

subsidy (� = 0).

3.2 A prize taxation

Now we consider the all-pay auction with a prize taxation in which the winner has to pay a tax of � > 0. In

that case, if the tax is larger than contestant i�s type, � > vi, he will stay out of the contest. Then, If there

is a symmetric monotonically increasing equilibrium e¤ort function x(vi) : [0; 1]! [0; 1], the utility function

of contestant i; i = 1; ::; n; is

Ui(vi) = (vi � �)G(vi)� (xi): (15)
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Similar to the previous sections, the symmetric equilibrium e¤ort function is

xpt(v) =

8>><>>:
0 0 � v < �;

g
�
(v � �)G(v)�

R v
�
G(s)ds

�
� � v � 1 :

(16)

Then, the designer�s expected payo¤ is

Rpt = n

Z 1

�

xpt(v)f(v)dv + g(�) Pr(there is a winner) = (17)

= n

Z 1

�

g

�
(v � �)G(v)�

Z v

�

G(s)ds

�
f(v)dv + g(�) (1� Fn(�)) :

The following result demonstrates the condition under which a prize taxation increases the designer�s ex-

pected payo¤.

Proposition 7 In the all-pay auction, if the cost function  is either linear or convex on (0; 1], then there

exists a su¢ ciently small � > 0 such that the designer�s expected payo¤ is larger than in the same contest

without any prize taxation.

Proof. See Appendix.

The intuition behind the result of Proposition 7 according to which a prize taxation is pro�table for the

designer when the cost function is convex is similar to the intuition for the result of Proposition 3 according

to which the cost taxation is pro�table for every convex cost function. Note that a prize taxation "serves"

also as a reserve price and it is well known that a reserve price is a pro�table tool to enhance the contestants�

expected total e¤ort.

In the following example, we show that even for a linear cost function the optimal prize subsidy is

non-negligible and its e¤ect on the designer�s expected payo¤ is signi�cant.

Example 2 Consider an all-pay auction with two contestants where each contestant�s value is distributed

according to F (v) = v. The cost function is linear and is given by (x) = x. Then, by (17), the designer�s

expected payo¤ is

Rst = 2

Z 1

�

�
(v � �) (v)�

Z v

�

sds

�
dv + (�)

�
1� (�)2

�
= �4

3
�3 + �2 +

1

3
;

Figure 2 describes the designer�s expected payo¤ as a function of the taxation � :
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Figure 2: the designer�s expected payo¤ as a function of the prize taxation

In order to �nd the optimal prize taxation, we obtain

dRts
d�

= �2� (2� � 1) :

Thus (as we can see in Figure 2), the optimal prize taxation is

�� = 0:5

We can see that the prize taxation makes the following change in the designer�s expected payo¤

Rts(� = 0:5)�R(� = 0) = 0:083

Note that R(� = 0) = 1
3 such that the increase in the designer�s expected payo¤ by the prize taxation is about

25%. For a convex cost function, such an increase will be even larger than for a linear cost function.

4 A cost subsidy/taxation vs. a prize subsidy/taxation

So far we have shown that the designer who wishes to maximize his expected payo¤ can apply either cost

(taxation) subsidy or prize subsidy (taxation). In the following example, we compare between a cost subsidy

and a prize subsidy.
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Example 3 Consider an all-pay auction with two contestants where each contestant�s value is distributed

according to F (v) = v. The cost function is concave and is given by (x) = x0:5, and � = Rlin

Rlin+�
= 1

3�+1 :

Then, by (14) and (17) we have

Rps �Rcs = �
1

3
�2 +

1

2
� +

1

10
� (3� + 1)

2

10
+
9�2

5
: (18)

When the cost function is (x) = x
1
3 , by (14) and (17) we have

Rps �Rcs =
3

5
�2 +

1

4
� +

1

28
� (3� + 1)

2

28
+
47�3

14
: (19)

Figure 3 describes for both concave cost functions, the di¤erence Rps � Rcs as a function of the monetary

resource �:

0.1 0.2 0.3 0.4 0.5

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

monetary resource

RpsRcs

Figure 3: the di¤erence of the designer�s payo¤ with prize and cost subsidies as a function of the monetary

resource

We can see for small (large) values of the monetary resource of �, the designer�s expected payo¤ with a

cost (prize) subsidy is larger than in the same contest with a prize (cost) subsidy. When the cost function

is (x) = x0:5 (the solid curve) this results looks clear in Figure 3. When the cost function is (x) = x
1
3

(the DotDash curve) it is hard to see in Figure 3 that for small values of the monetary resource of �, the

designer�s expected payo¤ with a cost subsidy is larger than in the same contest with a prize subsidy/. But,

equation (19) con�rms this result.
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The next result establishes the �ndings in the last example.

Proposition 8 In the all-pay auction, if the monetary resource of � is su¢ ciently small, then if the cost

function  is concave (convex) the designer�s expected payo¤ with a cost (prize) subsidy is larger than in the

same contest with a prize (cost) subsidy.

Proof. See Appendix

Since by Propositions 1 and 6, a subsidy increases the designer�s expected payo¤ when the contestants�

cost function is concave, Proposition 8 implies that a cost subsidy is better than a prize subsidy if the

monetary resource is su¢ ciently small. The comparison between a cost taxation and a prize taxation is

not clear since in an all-pay auction with a cost taxation there is no tax resource as with a prize subsidy.

However, when the cost function is linear this comparison becomes clear since by Proposition 7, for linear

cost functions, the designer�s expected payo¤with a prize taxation is higher than in the same contest without

any taxation. On the other hand, for a cost taxation, the revenue equivalence theorem holds, such that the

designer�s expected payo¤ is the same as in that contest without any taxation. Thus we have

Corollary 4 In the all-pay auction with a linear cost function, the designer�s expected payo¤ is larger with

a prize taxation than in the same contest with a cost taxation.

The intuition behind this result is that in contrast to a cost taxation, a prize taxation acts also as an

entry fee, and this implies a larger expected total e¤ort in the case of a prize taxation as long as the tax is

su¢ ciently small.

5 Conclusion

Lichtenberg (1988) and other researchers raised the question "why does the government provide a subsidy for

private military R&D, in addition to establishing prizes for innovation.�In order to answer this question we

focused on all-pay auctions (contests) with n contestants who have private information about their values of

winning and have non-linear cost functions. The optimal structure of such a contest is unknown to a designer

who wishes to maximize the contestants�expected total e¤ort. We suggest two forms of a subsidy and a
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taxation and show that they both make the contest more pro�table. The �rst is a cost subsidy (taxation)

that increases (decreases) all the contestants�marginal costs, and the second is a prize subsidy (taxation)

that increases (decreases) the winner�s value of winning. We showed that in the case of convex cost functions,

a su¢ ciently small taxation of both forms is pro�table to the designer, while in the case of concave cost

functions, a subsidy of both forms will be pro�table. The majority of the considered cost functions in the

economics literature are convex, so according to our �ndings the designer should apply a taxation. On the

other hand, for concave cost functions, the designer should apply a subsidy. In addition, we showed that

even in the case of a linear cost function, taxation could be a good substitute to other well-known methods

for enhancing the designer�s expected payo¤, and, in particular, the contestants�expected total e¤ort. We

also compared both forms of a subsidy and showed that if the monetary resource is su¢ ciently small and the

contestants�cost functions are concave, then a cost subsidy is superior to a prize subsidy from the designer�s

point of view. However, since we have shown that the subsidy is optimal when the level of the resource of

subsidy is relatively large, this comparison has limited signi�cance.

It is worth noting that we showed that in a case of cost subsidy for low-type contestants,

the marginal increase of the expected total e¤ort is smaller than the marginal increase of the

cost of a subsidy, but for high-type contestants, the marginal increase of the expected total

e¤ort is larger than the marginal increase of the cost of a subsidy. In other words, the cost

subsidy signi�cantly increases the high-type contestants, and therefore if the designer�s goal

is to maximize the contestants�highest e¤ort instead of their total e¤ort, a cost subidy is an

e¢ cient tool for him. For similar reasons, if the designer wishes to maximize the contestants�

highest e¤ort a prize subsidy is e¢ cient as well.

As we mentioned, we show that depending on the form of the contestants�cost function,

either a subsidy or taxation are e¢ cient tools for increasing the contestants� total e¤orts.

However, in order to maximize the contestants�total e¤ort, the designer should use in addition

other well-known tools in contest theory such as minimal e¤ort constraints or entry fees that

limit the number of contestants that participate in the contest.
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6 Appendix

6.1 Proof of Proposition 1

If  is concave and strictly increasing, its inverse function g = �1 is convex. If 0 < � � 1, there exists

g

�
vG(v)�

Z v

0

G(s)ds

�
= g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�
�

1A � g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�

1A�: (20)

Hence, by (2),

Rcs = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � E (g (n(1� �)(x)))
= n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � 1Z
0

g

0@n(1� �)
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv:

Since � � Rlin

n�1 where Rlin =

1Z
0

n

�
vG(v)�

vR
0

G(s)ds

�
f(v)dv is the expected payo¤ in the all-pay auction

with linear cost functions, by (6) we get n (1� �) � 1. Thus, by (20) we have

Rcs � n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � n (1� �) 1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv
= n

1Z
0

�g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv;
which implies that

Rcs � n
1Z
0

�g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � n 1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv = R;
where R is the contestants �expected total e¤ort without a subsidy.

Similarly, if  is convex and strictly increasing, its inverse function g = �1 is concave, and then

g

�
vG(v)�

Z v

0

G(s)ds

�
= g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�
�

1A � g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�

1A�:
Likewise, by the same analysis for concave cost functions we obtain the opposite inequality

Rcs � n
1Z
0

g

�
vG(v)�

Z v

0

G(s)ds

�
f(v)dv = R:

�
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6.2 Proof of Proposition 2

The optimal resource of subsidy is determined by

@Rcs
@�

= �n 1
�2
@�

@�

1Z
0

g0

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv (21)

+n
1

�2
@�

@�

1Z
0

g0

0@n(1� �)
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
=

n

Rlin

1Z
0

24g0
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A� g0
0@n(1� �)

�

0@vG(v)� vZ
0

G(s)ds

1A1A35
�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
= 0

and

@2Rcs

@�2
=

n

R2lin

1Z
0

24g00
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A� ng00
0@n(1� �)

�

0@vG(v)� vZ
0

G(s)ds

1A1A35 (22)

�

0@vG(v)� vZ
0

G(s)ds

1A2

f(v)dv:

By (2) we can see that @Rcs

@� = 0 only when n(1 � �) = 1: When n(1 � �) = 1, by (22), if g
00
> 0

( that is,  is a concave function), we obtain that @R2
cs

@�2
jn(1��)=1 < 0, and then the optimal values are

�� = n�1
n and �� = Rlin

n�1 : Since
@(1���)
@n < 0, when the number of contestants increases, the amount of

subsidy per-contestant decreases. �

6.3 Proof of Proposition 3

If  is concave and strictly increasing, its inverse function g = �1 is convex. If � > 1, then 1
� < 1 and there

exists

g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�

1A � g

0@vG(v)� vZ
0

G(s)ds

1A 1

�
: (23)

Hence, by (3), and Jensen�s inequality, since g is convex we have

Rct = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + 1Z
0

g

0@n� � 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv:
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Since n (� � 1) � 1; by (23) we get

Rct � n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + n (� � 1) 1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv
= n

1Z
0

�g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � n 1Z
0

�
1

�
g

0@0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv
= n

1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv = R:
where R is the contestants�expected total e¤ort in the all-pay auction without any taxation.

Similarly, if  is convex and strictly increasing, its inverse function g = �1 is concave, and then

g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�

1A � g

0@vG(v)� vZ
0

G(s)ds

1A 1

�
:

By the same analysis for concave cost functions we have the opposite inequality

Rct � n
1Z
0

g

�
vG(v)�

Z v

0

G(s)ds

�
f(v)dv = R:

�

6.4 Proof of Proposition 4

The optimal value of � is determined by

@Rct
@�

= �n 1
�2

1Z
0

g0

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv (24)

+n
1

�2

1Z
0

g0

0@n(� � 1)
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv = 0
and

@R2ct
@�2

=
n

�4

1Z
0

24g00
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A+ ng00
0@n(� � 1)

�

0@vG(v)� vZ
0

G(s)ds

1A1A350@vG(v)� vZ
0

G(s)ds

1A2

f(v)dv:

(25)

Thus, when g
00
< 0 (that is,  is convex), we obtain that @R2

ct

@�2
< 0, and by (24) the optimal � satis�es

n(�� � 1) = 1 or �� = n+1
n : Since @(���1)

@n < 0; the marginal taxation rate decreases when the number of

contestants increases. �
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6.5 Proof of Proposition 6

Di¤erentiating the designer�s expected payo¤ (10) with respect to the prize subsidy � yields

@Rps
@�

= n

1Z
0

g0
�
(v + �)G(v)�

Z v

0

G(s)ds

�
G(v)f(v)dv � g0 (�) :

When � approaches zero we get

lim
�!0

@Rps
@�

= n

1Z
0

g0
�
vG(v)�

Z v

0

G(s)ds

�
G(v)f(v)dv � g0 (0) :

Note that since G(v) = Fn�1(v) we have

n

1Z
0

g0
�
vG(v)�

Z v

0

G(s)ds

�
G(v)f(v)dv =

1Z
0

g0
�
vG(v)�

Z v

0

G(s)ds

�
nFn�1(v)f(v)dv =

1Z
0

g0
�
vG(v)�

Z v

0

G(s)ds

�
dFn(v) = Emax

�
g0
�
vG(v)�

Z v

0

G(s)ds

��
:

Since the inverse cost function function g = �1 is convex (which implies that g0 is increasing), and since

for all v > 0; vG(v)�
R v
0
G(s)ds > 0, we obtain that for all v > 0, g0

�
vG(v)�

R v
0
G(s)ds

�
> g0(0): Thus, we

have

g0 (0) � Emax
�
g0
�
vG(v)�

Z v

0

G(s)ds

��
;

which yields that lim�!0
@Rps

@� > 0. Thus, a relatively small total prize taxation will increase the designer�s

expected payo¤. When the cost function  is convex we have the opposite result. �

6.6 Proof of Proposition 7

Di¤erentiating (11) with respect to the prize taxation � we get

@Rpt
@�

= n

Z 1

�

g0
�
(v � �)G(v)�

Z v

�

G(s)ds

�
(G(�)�G(v)) f(v)dv + g0(�) (1� Fn(�))� g(�)nG(�)f(�):

When � approaches zero we have

lim
�!0

@Rpt
@�

= g0(0)� n
Z 1

0

g0
�
vG(v)�

Z v

0

G(s)ds

�
G(v)f(v)dv:

Note that n

1Z
0

g0
�
vG(v)�

R v
0
G(s)ds

�
G(v)f(v)dv is actually the derivative of the e¤ort function of the con-

testant with the highest value of winning. Since the highest equilibrium e¤ort is larger than zero, and
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the inverse cost function function g = �1 is convex and in particular g0 is increasing, we obtain that

lim�!0
@Rps

@� < 0. Thus, a relatively small total prize taxation will decrease the designer�s expected payo¤

when the cost function  is concave. When the cost function  is convex, we have the opposite result.

Now suppose that  is linear. Di¤erentiating (11) with respect to � we get

@Rpt
@�

= nG(�) (1� F (�)� �f(�)) :

Note that for a su¢ ciently small � we get @Rpt

@� > 0: Thus, we obtain that even when the cost functions

are linear a relatively small total prize taxation will increase the designer�s expected payo¤. �

6.7 Proof of Proposition 8

By (2) and (10), the di¤erence between the designer�s expected payo¤ in the all-pay auction with a cost

subsidy and a prize subsidy is

Rcs �Rps = n

1Z
0

24g
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A� g�(v + �)G(v)� Z v

0

G(s)ds

�35 f(v)dv
�

1Z
0

g

0@n(1� �)
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + g(�):
Since � = Rlin

�+Rlin
, di¤erentiating the designer�s expected payo¤ in the case of a cost subsidy is

@Rcs
@�

=
@Rcs
@�

@�

@�
= n

1Z
0

24g0
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A 1

�2

0@vG(v)� vZ
0

G(s)ds

1A �

� +Rlin

35 f(v)dv
�n

1Z
0

24g0
0@n1� �

�

0@vG(v)� vZ
0

G(s)ds

1A1A 1

�2

0@vG(v)� vZ
0

G(s)ds

1A �

� +Rlin

35 f(v)dv

=

1Z
0

2664ng0
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A vG(v)�
vR
0

G(s)ds

Rlin

3775 f(v)dv

�n
1Z
0

2664g0
0@n1� �

�

0@vG(v)� vZ
0

G(s)ds

1A1A vG(v)�
vR
0

G(s)ds

Rlin

3775 f(v)dv
Similarly, di¤erentiating the designer�s expected payo¤ in the case of a prize subsidy is

@Rps
@�

= n

1Z
0

�
g0
�
(v + �)G(v)�

Z v

0

G(s)ds

�
G(v)

�
f(v)dv � g0(�):
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Thus, when � approaches zero we get

lim
�!0

@ (Rcs �Rps)
@�

=
n

Rlin

1Z
0

24g0
0@vG(v)� vZ

0

G(s)ds

1A0@vG(v)� vZ
0

G(s)ds�G(v)Rlin

1A35 f(v)dv: (26)

It can be easily veri�ed that there is 0 < v� < 1 such that h(v) = vG(v)�
vR
0

G(s)ds�G(v)Rlin is decreasing

for 0 < v < v� and is increasing for v� � v � 1. In particular, there is 0 < v�� < 1 such that h(v) < 0

for 0 < v < v��, and h(v) � 0 for v�� � v � 1: Thus, if g is concave such that g0
�
vG(v)�

vR
0

G(s)ds

�
is a

decreasing function, we obtain that

1Z
0

24g0
0@vG(v)� vZ

0

G(s)ds

1A0@vG(v)� vZ
0

G(s)ds�G(v)Rlin

1A35 f(v)dv
�

1Z
0

24g0
0@v��G(v��)� v��Z

0

G(s)ds

1A0@vG(v)� vZ
0

G(s)ds�G(v)Rlin

1A35 f(v)dv:
Thus, by (26), we have

@ (Rcs �Rps)
@�

j�=0 � g0

0@v��G(v��)� v��Z
0

G(s)ds

1A n

Rlin

1Z
0

240@0@vG(v)� vZ
0

G(s)ds

1A�G(v)Rlin
1A35 f(v)dv

= g0

0@v��G(v��)� v��Z
0

G(s)ds

1A n

Rlin
[Rlin �Rlin] = 0;

That is, since Rcs(0) = Rps(0) we obtain that if g is concave then for su¢ ciently small �, Rcs(�)�Rps(�) � 0.

On the other hand, if g is convex then for su¢ ciently small �, Rcs(�)�Rps(�) � 0. �
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