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Abstract

We study a model of two interdependent contests, each of which includes two heterogeneous

players with commonly known types. The winners of both contests have a common winning

value that depends on their types and, therefore, endogenous win probabilities in each match

depend on the other contests�outcomes through the identity of the winner. The designer seeds

players according to their ranks, and we assume that he wishes either to maximize or minimize

the total e¤ort. For such interdependent contests we consider two di¤erent types of a winning

value function in order to demonstrate how its type plays a crucial e¤ect on the structure of the

optimal seeding.

Keywords: Seedings, Tullock contest, interdependent contests.

JEL classi�cation: D44, J31, D72, D82

1 Introduction

Two contests are interdependent if the result of each contest depends and a¤ects the result of the

other. An example of such a contest is the elections to the United States House of Representatives
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whose members are elected for a two-year term in single-seat constituencies. There are 435 House

districts that cover the United States and in each district there is a �rst-past-the-post election,

namely, voters cast their vote for a candidate of their choice and the candidate who receives the

most votes wins (irrespective of the vote share). The elections in each district are not independent

since the value of winning for each candidate depends on the identity of the winners in the other

districts whether or not his party will have the majority of members in the House. Another example

is a software company that develops a product. The members of this company are divided into

several teams, and in each team they compete with each other for the position of team leader.

When the product �nally hits the market, the team leaders are usually rewarded commensurably.

The higher the leaders�abilities are, the better is the product, so that a more valuable product

gives the team leaders a more generous reward. As such, the competitions for the leader positions

are interdependent since the higher the ability of the team leaders, the higher is the reward. Last

example of interdependent contests is the elimination tournament where in each stage some of the

contestants are removed while the others advance to the next stage until the �nal stage in which

some of the contestants (usually one) win prizes. In this kind of a tournament the contests in each

stage are interdependent since the players�expected payo¤s in any stage depend on the winners of

the other contests at the same stage.

We study a model of two interdependent contests in which there are two sets of agents, each of

which has two heterogeneous players with commonly known types. In both sets the players compete

simultaneously such that in each set the two players compete against each other in a Tullock contest

(see Tullock 1980).1 The winners of both contests have winning value functions which are later

derived from the interaction of the winners, namely, after the end of the competition. It is assumed

that these winning value functions are monotonically increasing in both types of winners. Therefore,

1On the existence of the equilibrium in Tullock contests see Szidarovszky and Okuguchi (1997) and Einy et al.

(2015).
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endogenous win probabilities in each contest depend on the other contests�outcomes through the

identity of the winner. This mutual in�uence explains why the equilibrium analysis of such a model

might be very complex, and therefore we focus on the case of only two players in each set. We

explicitly calculate the players�equilibrium e¤orts with either multiplicative or additive winning

value functions of the winners� types. In both cases, these winning value functions include two

parameters, � and �, which indicate the relative impact of each set on the players�winning values.

In a model with multiple contests there are several ways to seed the heterogeneous players.

If the contests are interdependent, the seeding may have a crucial e¤ect on the results (see, for

example, Groh et al. 2012) since the type of each player has an e¤ect not only on his own value

of winning but also on all the players�values of winning in both sets. There are numerous real-life

interdependent contests for which the seeding of the players is important. To illustrate, consider

our previous example of a software-development company where the manager has to determine

how to seed the software developers among the teams. Is it optimal to divide the talented software

developers among the teams equally, or, alternatively, to seed all of them in the most dominant

team?

It is important to note that the nature of the interdependency of the contests may not be

identical among all kinds of contests and therefore the optimal seedings is not identical for all

interdependent contests. In this paper, we focus on multiplicative and additive winning value

functions where each function is suitable for a di¤erent application. We �rst study the issue of

players� seeding when the winning value functions are multiplicative. We show that when the

relative impact of each set on the players�winning values is the same, the optimal seeding for a

designer who wishes to maximize the players�total e¤ort in both contests is to place the players

with the highest and the lowest types in the same contest. On the other hand, the optimal seeding

for a designer who wishes to minimize the total e¤ort is to place the two players with the highest

types in the same contest. We also show that when the two sets have di¤erent impacts on the

players�winning values and this asymmetry is su¢ ciently large, the same optimal seedings hold.
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Then, we show that when the winning value functions are additive, if the relative impact of

both sets on the players�winning value is the same, the players�total e¤ort is independent of the

players�seeding. However, when the two sets have di¤erent impacts on the players�winning values,

the optimal seeding for a designer who wishes to maximize the total e¤ort is to place the players

with the highest types in the set with the higher impact, while to minimize the total e¤ort it is

optimal to place the two players with the lowest types in the set with the higher impact.

These results indicate that the type of the players�winning value function has a signi�cant

e¤ect on the optimal seeding for a designer whether he wishes to maximize or to minimize the

players�total e¤ort. When we assume a signi�cant asymmetry of the impact of the two sets on the

players�values of winning, we obtain that for a designer who wishes to maximize the total e¤ort,

if the winning value function is multiplicative the worst seeding is to place the players with the

highest types in the set with the higher impact. On the other hand, if the winning value function

is additive, placing the players with the highest types in the same set is best. The results are

completely di¤erent for multiplicative and additive value functions since these forms of functions

represent completely di¤erent families of winning value functions. For the multiplicative value

function, the mixed partial derivatives are positive which implies that there exists a strong mutual

e¤ect between the matched types. But for the additive value function, the mixed partial derivatives

are equal to zero which implies that there exists a weak mutual e¤ect between the matched types.

1.1 Related literature

A competition among a �nite group of contestants can be designed in several ways. The contestants

can compete in a grand contest or can be split into several sub contests (see Moldovanu and Sela

2006 and Fu and Lu 2009). Furthermore, if there are several contests they can be played sequentially

or simultaneously (see Fu and Lu 2012, Fu et al. 2015, Jian et al. 2017, Mago and Sheremeta 2019,

and Juang et al. 2020), and when they are played simultaneously the contests can be independent

or interdependent.
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The most common example of interdependent contests is the elimination tournament where

in each stage some of the contestants are removed while the others advance to the next stage

until the �nal stage in which some of the contestants (usually one) win prizes. In this kind of a

tournament the contests in each stage are interdependent since the players�expected payo¤s in any

stage depend on the winners of the other contests in the same stage. The elimination tournament

was �rst studied in the statistical literature. The pioneering paper of David (1959) considered

the winning probability of the top player in a four-player tournament with a random seeding (see

also Glenn (1960) and Searles (1963) for early contributions). Several papers (see for example,

Hwang 1982, Horen and Reizman 1985 and Schwenk (2000)) consider various optimality criteria

for choosing seedings. In particular, the optimal seeding for a given criterion may depend on the

particular matrix of win probabilities. These works from the statistical literature assume that for

each game among players i and j there is a �xed, exogenously given probability that i will beat j:

This probability does not depend on the stage of the tournament in which the particular game takes

place nor on the identity of the expected opponent at the next stage. As opposed to the statistical

literature, in the economic literature the winning probabilities in each game become endogenous in

that they result from equilibrium strategies and are dependent on continuation values of winning.

Moreover, the win probabilities depend on the stage of the tournament in which the game takes

place as well as on the identity of the future expected opponents.

One of the main issues regarding elimination tournaments is the optimal seeding of players.

Rosen (1986) studied an elimination tournament in which the probability of winning a match is

a stochastic function of the players�e¤orts. He found numerically that a random seeding yields a

higher total e¤ort than a seeding where strong players meet weak players in the semi�nals. Grad-

stein and Konrad (1999) studied elimination tournaments in which homogenous players compete

against each other in the Tullock contest, while Groh et al. (2012) studied a two-stage elimination

tournaments with four players who are ranked in decreasing order of strength (1,2,3,4) and compete

against each other in the all-pay auction. They showed that the seeding of 1� 4; 2� 3 in the �rst
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stage maximizes the win probability of the strongest player, but the seeding of 1 � 3; 2 � 4 in the

�rst stage maximizes both the total e¤ort across the tournament and the probability of a �nal

among the two top players.2

The issue of seeding has been studied also when the contests are not simultaneous but sequential.

Some examples include Linster (1993) who studied a sequential two-stage Tullock contest and

showed that if the stronger player is the �rst (second) mover, the players� total e¤ort is larger

(smaller) than in the simultaneous contest. More recently, Levi-Tsedek and Sela (2018) studied a

model in which a defender competes sequentially against n heterogeneous attackers in n di¤erent

contests. They showed that if the players compete in all-pay contests, the order of the attackers

does not a¤ect the defender�s expected payo¤, but if the players compete in Tullock contests, the

defender maximizes his expected payo¤ if he competes �rst against the strongest attacker (the

attacker with the highest value of winning), next against the second strongest attacker, and so on

until the last stage in which he competes against the weakest attacker.

Similarly to players� seedings in our model, in round-robin tournaments the designer has to

decide the scheduling of the pair-wise games. Krumer et al. (2017) showed that in round-robin

tournaments with three symmetric players, each player�s expected payo¤and probability of winning

is maximized when he competes in the �rst and the last rounds, and with four players, they showed

that a player who plays in the �rst game of each of the �rst two rounds has a �rst-mover advantage

as re�ected by a signi�cantly higher winning probability as well as by a signi�cantly higher expected

payo¤ than his opponents. Later, Krumer et al. (2020) analyzed the optimal allocations of players

for a designer who wishes to maximize the players�expected total e¤ort in tournaments with one

and two prizes.

The rest of the paper is organized as follows: In Section 2; we present our model of two

interdependent contests. In Section 3; we analyze the equilibrium of this model for multiplicative

2Other papers that deal with elimination tournaments include Krakel (2014) where players are matched in the

rank-order tournament, and Stracke et al. (2014) where players are matched in the Tullock contest.
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and additive winning value functions. In Sections 4 and 5, we study the optimal seeding in our

model with these two forms of winning value functions. Section 6 concludes. Some of the proofs

appear in the Appendix.

2 The model

We consider two sets each of which includes two players. The players� types in set M are mi,

i = h; l where mh � ml, and the players�types in set W are wj , j = h; l where wh � wl. The

types, mh and wh, are the high-type players, and the other types, ml and wl, are the low-type

players. These types are commonly known. Each player i in set M exerts an e¤ort xi; and each

player j in set W exerts an e¤ort yj , j = h; l: The players compete in a Tullock contest in each set,

namely, player i in setM wins with probability xi
xh+xl

, and player j in set W wins with probability

yj
yh+yl

. The contests in both sets are interdependent since if player i from set M and player j from

set W are the winners, the players�utilities are f(mi; wj) � xi and g(mi; wj) � yj , respectively,

where f : R2 ! R1 and g : R2 ! R1 are the winning value functions which are monotonically

increasing in the players�types.3 This model will be referred to as a model of two interdependent

contests, and we say that this model has an equilibrium if and only if each player maximizes his

payo¤ given the e¤orts of the other players in both contests.

3 Equilibrium analysis

We begin with the contest in set M: The maximization problem of the high-type player in set M is

max
xh

xh
xh + xl

�
f(mh; wh)

yh
yh + yl

+ f(mh; wl)
yl

yh + yl

�
� xh; (1)

and that of the low-type player is

max
xl

xl
xh + xl

�
f(ml; wh)

yh
yh + yl

+ f(ml; wl)
yl

yh + yl

�
� xl: (2)

3The players�winning value function is derived from the ex-post interaction of the winners in both contests.
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Similarly, in set W , the maximization problem of the high-type player is

max
yh

yh
yh + yl

�
g(mh; wh)

xh
xh + xl

+ g(ml; wh)
xl

xh + xl

�
� yh; (3)

and that of the low-type player is

max
yl

yl
yh + yl

�
g(mh; wl)

xh
xh + xl

+ g(ml; wl)
xl

xh + xl

�
� yl: (4)

The �rst-order conditions (FOC) of the maximization problems (1), (2), (3), and (4) are

xl

(xh + xl)
2

�
f(mh; wh)

yh
yh + yl

+ f(mh; wl)
yl

yh + yl

�
� 1 (5)

xh

(xh + xl)
2

�
f(ml; wh)

yh
yh + yl

+ f(ml; wl)
yl

yh + yl

�
� 1

yl

(yh + yl)
2

�
g(mh; wh)

xh
xh + xl

+ g(ml; wh)
xl

xh + xl

�
� 1

yh

(yh + yl)
2

�
g(mh; wl)

xh
xh + xl

+ g(ml; wl)
xl

xh + xl

�
� 1:

These FOC are similar to those of two independent Tullock contests where each player�s value of

winning depends on his own type. In our model, however, each player�s value of winning depends

on his own type and the type of the winner in the other set. It is well known that the Tullock

contest with two players has only an interior equilibrium, namely, there is no equilibrium in which

players do not exert positive e¤orts, and by the same argument, there is no such equilibrium in our

model. Thus, the only solution that is possible is when there is an equality between the LHS and

the RHS of (5) which yields

Proposition 1 In our model of two interdependent contests the equilibrium e¤orts are obtained by

the solution of the equations given by (5).

Proof. See Appendix.

In the following, we explicitly provide the players�equilibrium e¤orts for two families of winning

value functions.
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3.1 Equilibrium for multiplicative winning value functions

We assume that the players�winning value function belongs to the family of multiplicative functions

f(mi; wj) = g(mi; wj) = m�
i w

�
j where mi is the type of the winner in set M , wj is the type of

winner in set W , and �; � 2 R1 are the parameters denoting the relative impact of each set on the

players�winning value. If � > �, we say that the impact of set M on the players�winning value

is larger than that of set W and vice versa. Note that the multiplicative value function satis�es

d2f
dmidwj

= ��m��1
i w��1j > 0 which shows a strong mutual e¤ect between the matched types. By

(5), the players�equilibrium e¤orts satisfy

xl

(xh + xl)
2

�
(m�

hw
�
h)

yh
yh + yl

+ (m�
hw

�
l )

yl
yh + yl

�
= 1 (6)

xh

(xh + xl)
2

�
(m�

l w
�
h)

yh
yh + yl

+ (m�
l w

�
l )

yl
yh + yl

�
= 1

yl

(yh + yl)
2

�
(m�

hw
�
h)

xh
xh + xl

+ (m�
l w

�
h)

xl
xh + xl

�
= 1

yh

(yh + yl)
2

�
(m�

hw
�
l )

xh
xh + xl

+ (m�
l w

�
l )

xl
xh + xl

�
= 1:

Dividing the LHS and RHS of the �rst two FOC by each other yields the following relation between

the players�e¤orts in set M :

xh
xl
=
m�
h

m�
l

: (7)

And dividing the LHS and RHS of the last two FOC by each other yields the following relation

between the players�e¤orts in set W :

yh
yl
=
w�h

w�l
: (8)

Inserting (7) and (8) into (6) gives us

Proposition 2 In our model of two interdependent contests with a multiplicative winning value
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function, the players�equilibrium e¤orts are

xh =
m2�
h m

�
l

�
w2�h + w2�l

�
�
m�
h +m

�
l

�2 �
w�h + w

�
l

� (9)

xl =
m�
hm

2�
l

�
w2�h + w2�l

�
�
m�
h +m

�
l

�2 �
w�h + w

�
l

�
yh =

w2�h w
�
l

�
m2�
h +m2�

l

��
w�h + w

�
l

�2 �
m�
h +m

�
l

�
yl =

w�hw
2�
l

�
m2�
h +m2�

l

��
w�h + w

�
l

�2 �
m�
h +m

�
l

� :

The players�probabilities of winning in set M are

pM�h =
xh

xh + xl
=

m�
h

m�
h +m

�
l

pM�l =
xl

xh + xl
=

m�
l

m�
h +m

�
l

;

and that of the players in set W are

pW�h =
yh

yh + yl
=

w�h

w�h + w
�
l

pW�l =
yl

yh + yl
=

w�l

w�h + w
�
l

:

By (9), we have

Proposition 3 In our model of two interdependent contests with a multiplicative winning value

function, the players�total e¤ort is

TE = TEM + TEW = (xh + xl) + (yh + yl) (10)

=
(m�

hw
�
h +m

�
l w

�
l )(m

�
hw

�
l +m

�
l w

�
h)�

m�
h +m

�
l

� �
w�h + w

�
l

� :

Proof. See Appendix.
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3.2 Equilibrium for additive winning value functions

We assume now that the players�winning value function belongs to the family of additive functions

f(mi; wj) = g(mi; wj) = �mi + �wj where mi is the type of the winner in set M , wj is the type

of the winner in set W , and �; � 2 R1 are the parameters denoting the relative impact of each set

on the players�winning values. If � > �, we say that the impact of set M on the players�winning

values is larger than that of setW . Note that the additive value function satis�es d2f
dmidwj

= 0 which

shows a weak mutual e¤ect between the matched types. By (5), the players�equilibrium e¤orts

satisfy:

xl

(xh + xl)
2

�
(�mh + �wh)

yh
yh + yl

+ (�mh + �wl)
yl

yh + yl

�
= 1 (11)

xh

(xh + xl)
2

�
(�ml + �wh)

yh
yh + yl

+ (�ml + �wl)
yl

yh + yl

�
= 1

yl

(yh + yl)
2

�
(�mh + �wh)

xh
xh + xl

+ (�ml + �wh)
xl

xh + xl

�
= 1

yh

(yh + yl)
2

�
(�mh + �wl)

xh
xh + xl

+ (�ml + �wl)
xl

xh + xl

�
= 1:

Denote

~m = (
xh

xh + xl
mh +

xl
xh + xl

ml)

~w = (
yh

yh + yl
wh +

yl
yh + yl

wl):

Then, we can rewrite (11) as

xl

(xh + xl)
2 (�mh + � ~w) = 1 (12)

xh

(xh + xl)
2 (�ml + � ~w) = 1

yl

(yh + yl)
2 (� ~m+ �wh) = 1

yh

(yh + yl)
2 (� ~m+ �wl) = 1:

11



Dividing the LHS and RHS of the �rst two FOC by each other yields the following relation between

the players�e¤orts in contest M :

xh
xl
=
�mh + � ~w

�ml + � ~w
: (13)

Similarly, dividing the LHS and RHS of the last two FOC by each other yields the following relation

between the players�e¤orts in contest W :

yh
yl
=
� ~m+ �wh
� ~m+ �wl

: (14)

Inserting (13) and (14) into (12) gives us

Proposition 4 In our model of two interdependent contests with an additive winning value func-

tion, the players�equilibrium e¤orts are

xh =
(�mh + � ~w)

2 (�ml + � ~w)

(� (mh +ml) + 2� ~w)
2 (15)

xl =
(�mh + � ~w) (�ml + � ~w)

2

(� (mh +ml) + 2� ~w)
2

yh =
(� ~m+ �wh)

2 (� ~m+ �wl)

(2� ~m+ � (wh + wl))
2

yl =
(� ~m+ �wh) (� ~m+ �wl)

2

(2� ~m+ � (wh + wl))
2 ;

where ~m and ~w are given by

~m =

r�
(�mh + �wh)

2 + (�ml + �wl)
2
��
(�mh + �wl)

2 + (�ml + �wh)
2
�

2� (� (mh +ml) + � (wh + wl))
(16)

+
�2
�
m2
h +m

2
l

�
� �2

�
w2h + w

2
l

�
2� (� (mh +ml) + � (wh + wl))

;

and

~w =

r�
(�mh + �wh)

2 + (�ml + �wl)
2
��
(�mh + �wl)

2 + (�ml + �wh)
2
�

2� (� (mh +ml) + � (wh + wl))
(17)

+
�2
�
w2h + w

2
l

�
� �2

�
m2
h +m

2
l

�
2� (� (mh +ml) + � (wh + wl))

:
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The players�probabilities of winning in set M are

qM�h =
xh

xh + xl
=

(�mh + � ~w)

(�mh + � ~w) + (�ml + � ~w)

qM�l =
xl

xh + xl
=

(�ml + � ~w)

(�mh + � ~w) + (�ml + � ~w)
;

and that of the players in set W are

qW�h =
yh

yh + yl
=

(� ~m+ �wh)

(� ~m+ �wh) + (� ~m+ �wl)

qW�l =
yl

yh + yl
=

(� ~m+ �wl)

(� ~m+ �wh) + (� ~m+ �wl)
:

Proof. See Appendix.

By (9), we have

Proposition 5 In our model of two interdependent contests with an additive winning value func-

tion, the players�total e¤ort is

TE = TEM + TEW = (xh + xl) + (yh + yl) =
�mh + �ml

2
+
�wh + �wl

2
: (18)

Proof. See Appendix.

4 Optimal seedings

Consider four players 1; 2; 3; 4 where each player i has type vi; i = 1; 2; 3; 4 and vi � vi+1, i = 1; 2; 3.

According to the players�types, the designer can determine the seeding of these players in both

contests in order to either maximize or minimize their expected total e¤ort by the following six

13



ways:

1: M = f1; 2g;W = f3; 4g (19)

2: M = f1; 3g;W = f2; 4g

3: M = f1; 4g;W = f2; 3g

4: M = f3; 4g;W = f1; 2g

5: M = f2; 4g;W = f1; 3g

6: M = f2; 3g;W = f1; 4g:

4.1 Seedings for multiplicative winning value functions

We now assume that the players�winning value function belongs to the following family of multi-

plicative functions f(vi; vj) = v�i v
�
j ; i; j 2 f1; 2; 3; 4g. By (10), we obtain that the total e¤orts for

the seedings 1� 6 given by (19) are

TE1 =

�
v�1 v

�
4 + v

�
2 v

�
3

��
v�1 v

�
3 + v

�
2 v

�
4

�
(v�1 + v

�
2 )
�
v�3 + v

�
4

� (20)

TE2 =

�
v�1 v

�
4 + v

�
3 v

�
2

��
v�1 v

�
2 + v

�
3 v

�
4

�
(v�1 + v

�
3 )
�
v�2 + v

�
4

�
TE3 =

�
v�1 v

�
3 + v

�
4 v

�
2

��
v�1 v

�
2 + v

�
4 v

�
3

�
(v�1 + v

�
4 )
�
v�2 + w

�
3

�
TE4 =
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v�3 v

�
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�
4 v

�
2

��
v�4 v

�
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�
2
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�
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�
1 + v

�
3 v

�
4

��
v�3 v

�
1 + v

�
2 v

�
4

�
(v�2 + w

�
3 )
�
v�1 + v

�
4

� :

We next assume that the parameters denoting the relative impact of each set on the winners�

winning value are the same, namely, � = �. Then, we obtain that there are only three di¤erent
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seedings since TEi = TEi+3, i = 1; 2; 3. A comparison of the total e¤ort for these three seedings

yields:

1)

TE3 � TE1 =
(v�1 v

�
3 + v

�
4 v

�
2 ) (v

�
1 v

�
2 + v

�
4 v

�
3 )

(v�1 + v
�
4 ) (v

�
2 + w

�
3 )

� (v
�
1 v

�
4 + v

�
2 v

�
3 ) (v

�
1 v

�
3 + v

�
2 v

�
4 )

(v�1 + v
�
2 ) (v

�
3 + v

�
4 )

=
(v�3 � v�1 ) (v�4 � v�2 ) (v�1 v�3 + v�2 v�4 )

(v�1 + v
�
2 ) (v

�
3 + v

�
4 ) (v

�
1 + v

�
4 ) (v

�
2 + w

�
3 )
:

Since (v�3 � v�1 ) � 0 and (v�4 � v�2 ) � 0 we obtain that TE3 � TE1 � 0:

2)

TE3 � TE2 =
(v�1 v

�
3 + v

�
4 v

�
2 ) (v

�
1 v

�
2 + v

�
4 v

�
3 )

(v�1 + v
�
4 ) (v

�
2 + w

�
3 )

� (v
�
1 v

�
4 + v

�
3 v

�
2 ) (v

�
1 v

�
2 +m

�
3w

�
4 )

(v�1 + v
�
3 ) (v

�
2 + v

�
4 )

=
(v�2 � v�1 ) (v�4 � v�3 ) (v�1 v�2 + v�3 v�4 )

(v�1 + v
�
3 ) (v

�
2 + v

�
4 ) (v

�
1 + v

�
4 ) (v

�
2 + w

�
3 )
:

Since (v�2 � v�1 ) � 0 and (v�4 � v�3 ) � 0 we obtain that TE3 � TE2 � 0:

3)

TE2 � TE1 =
(v�1 v

�
4 + v

�
3 v

�
2 ) (v

�
1 v

�
2 +m

�
3w

�
4 )

(v�1 + v
�
3 ) (v

�
2 + v

�
4 )

� (v
�
1 v

�
4 + v

�
2 v

�
3 ) (v

�
1 v

�
3 + v

�
2 v

�
4 )

(v�1 + v
�
2 ) (v

�
3 + v

�
4 )

=
(v�4 � v�1 ) (v�3 � v�2 ) (v�1 v�4 + v�2 v�3 )

(v�1 + v
�
2 ) (v

�
1 + v

�
3 ) (v

�
2 + v

�
4 ) (v

�
3 + w

�
4 )
:

Since (v�4 � v�1 ) � 0 and (v�3 � v�2 ) � 0, we obtain that TE2�TE1 � 0. The above analysis implies

that TE3 � TE2 � TE1: Thus, we can conclude the following:

Proposition 6 In our model of two interdependent contests with a multiplicative winning value

function, when the relative impact of each set on the players�winning value is the same (� = �),

the optimal seeding for a designer who wishes to maximize the players� total e¤ort is to place the

players with the highest and the lowest types in the same set (M : 1� 4;W : 2� 3). On the other

hand, the optimal seeding for a designer who wishes to minimize the total e¤ort is to place the two

players with the highest types in the same contest (M : 1� 2;W : 3� 4).

It is worth noting that Proposition 6 considers only the order of the players�types, since the

di¤erences among the players�types do not a¤ect the structure of the optimal seeding either for

15



maximizing or minimizing the players� total e¤ort. The intuitive explanation for Proposition 6

is that usually in contests the highest e¤orts are derived from the strongest players, namely, the

players with the highest types. In the seeding M : 1 � 2;W : 3 � 4 the two strongest players are

placed in one set (M), and therefore their winning values are their own types multiplied by some

average of the two lowest types in the other set W . Thus, in this case we slightly increase the

winning values of the strongest players, 1 and 2, and as such, the total e¤ort is relatively small.

On the other hand, in the seeding M : 1 � 4;W : 2 � 3 the winning values of the players with

the highest types, 1 and 2, signi�cantly increase since they both win against the lower type players,

and as such their winning values will be close to the product of their types. Therefore their winning

values will be signi�cantly increased and the total e¤ort is relatively large.

We now assume, without loss of generality, that set M has a larger impact on the players�

winning values than set W , namely, � > �. In that case, we show that

Proposition 7 In our model of two interdependent contests with a multiplicative winning value

function, when the relative impact of set M on the players�winning value is su¢ ciently larger than

that of set W (� >> �), the optimal seeding for a designer who wishes to maximize the total e¤ort

is to place the players with the highest and lowest types in the same contest (M : 1� 4;W : 2� 3).

On the other hand, the optimal seeding for a designer who wishes to minimize the total e¤ort is to

place the two players with the highest types in the same contest (M : 3� 4;W : 1� 2).

Proof. See Appendix.

Proposition 7 demonstrates that when both sets have signi�cantly di¤erent impacts on the

players�winning values, the optimal seedings for designers who wish to maximize (or minimize) the

total e¤ort are the same. The intuitive explanation for this is that when the impact parameter �

is signi�cantly larger than the impact parameter �, given that v1 is the highest type, the dominant

variable in terms of the players�total e¤ort is v�1 . Thus, in order to maximize the players�total e¤ort,

the player with type v1 has to be placed in set M which has the higher impact �. Furthermore, in
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order to increase the probability that v�1 will be part of the players� total e¤ort, player 1 with type

v1 should compete against the player with the lowest types v4. Thus, the seedingM : 1�4;W : 2�3

maximizes the players�total e¤ort. By a similar argument, the seedingM : 3�4;W : 1�2minimizes

the players�total e¤ort.

The relevant question now for a designer who maximizes the players�total e¤ort is whether or

not the optimal seeding M : 1 � 4;W : 2 � 3 holds for asymmetric impacts of both sets on the

players�winning values when this asymmetry is relatively small. Figure 1 shows the total e¤ort for

each of the possible seedings of the players with di¤erent types as functions of the impact of set

M on the players�winning value � where the impact of the other set � is constant. According to

this �gure, we can see that any asymmetry between the impacts of the sets on the players�winning

values does not change the type of the optimal seeding.

Figure 2, however, also shows the total e¤ort for each of the possible seedings of four possible

types of players as a function of the impact � where the other impact � is constant. We can see

that the asymmetry of the impacts of both sets on the players�winning values does change the

type of the optimal seeding, and there are possible values of � for which TE1 > TE3, namely, the

seeding M : 1 � 4;W : 2 � 3 is not necessarily the optimal seeding for a designer who maximizes

the players�total e¤ort.

4.2 Seedings for additive winning value functions

Assume now that the players�winning value function belongs to the family of additive functions

f(mi; wj) = �mi + �wj ; i; j 2 f1; 2; 3; 4g. Then, by (18) we immediately obtain that

Proposition 8 In our model of two interdependent contests with an additive winning value func-

tion, when the relative impact of both sets on the players�winning value is the same (� = �), their

total e¤ort is independent of their seeding. However, when the relative impact of set M on the

players�winning value is larger than that of set W (� > �), a designer who wishes to maximize the
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players�total e¤ort has to place the players with the highest types in set M (M : 1� 2;W : 3� 4),

while a designer who wishes to minimize the total e¤ort has to place the two players with the highest

types in set W (M : 3� 4;W : 1� 2).

By Proposition 8, when both sets have the same impact on the players�winning value, then the

seeding has no e¤ect on the players�total e¤ort. The reason for this non-intuitive result is that

the players�total e¤ort is based on the di¤erence between the players�types in each set. However,

when the winning value function is additive, the di¤erences between the players�winning values in

one set do not depend at all on the types of the players in the other set such that the players�total

e¤ort in each set depends only on the own types of the players in that set. As such, unless if one set

has a larger impact on the players�winning values, the seeding of the players is less relevant. Then,

obviously, it is optimal for a designer who wishes to maximize the players�total e¤ort to place the

players with the highest types in the set with the higher impact parameter on the players�winning

value. The opposite is true if a designer wishes to minimize the total e¤ort, in which case he has

to place the players with the lowest types in the set with the higher impact.

5 Concluding remarks

We studied the optimal seeding of players in a model of two interdependent contests as re�ected

through the endogenous win probabilities in each contest. These probabilities depend on the other

contests� outcomes through the identity of the winner there. We showed that in such a model

the optimal seeding depends on the form of the winning value function. When the mixed partial

derivatives of the winning value function are positive as in the multiplicative winning value function,

a strong mutual e¤ect exists between the matched types. In that case, if the goal is to maximize

the players�expected total e¤ort, it is optimal to place the two strongest types in di¤erent sets. On

the other hand, when the mixed partial derivatives of the winning value function are equal to zero

as in the additive winning value function, a very weak mutual e¤ect exists between the matched

18



types. In that case, it is optimal to place the two strongest types in the same set, since otherwise

they almost do not a¤ect each other.

6 Appendix

6.1 Proof of Proposition 1

By (5), the second-order conditions (SOC) of the maximization problems (1), (2), (3) and (4) are

socmh
=

�2xl
(xh + xl)

3

�
f(mh; wh)

yh
yh + yl

+ f(mh; wl)
yl

yh + yl

�
socml

=
�2xh

(xh + xl)
3

�
f(ml; wh)

yh
yh + yl

+ f(ml; wl)
yl

yh + yl

�
socwh =

�2yl
(yh + yl)

3

�
g(mh; wh)

xh
xh + xl

+ g(ml; wh)
xl

xh + xl

�
socwl =

�2yh
(yh + yl)

3

�
g(mh; wl)

xh
xh + xl

+ g(ml; wl)
xl

xh + xl

�
:

This can be rewritten as:

socmh
=

�2
xh + xl

� focmh
=

�2
xh + xl

�
xl

(xh + xl)
2

�
f(mh; wh)

yh
yh + yl

+ f(mh; wl)
yl

yh + yl

��
socml

=
�2

xh + xl
� focml

=
�2

xh + xl

�
xh

(xh + xl)
2

�
f(ml; wh)

yh
yh + yl

+ f(ml; wl)
yl

yh + yl

��
socwh =

�2
yh + yl

� focwh =
�2

yh + yl

�
yl

(yh + yl)
2

�
g(mh; wh)

xh
xh + xl

+ g(ml; wh)
xl

xh + xl

��
socwl =

�2
yh + yl

� focwl =
�2

yh + yl

�
yh

(yh + yl)
2

�
g(mh; wl)

xh
xh + xl

+ g(ml; wl)
xl

xh + xl

��
:

By (5), the existence of an interior equilibrium implies that focmh
; focml

focwh ; focwl are all

positive, and therefore the SOC are negative. Q:E:D:
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6.2 Proof of Proposition 3

By (9), the total e¤ort in set M is

TEM = xh + xl =
m2�
h m

�
l

�
w2�h + w2�l

�
�
m�
h +m

�
l

�2 �
w�h + w

�
l
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hm

2�
l
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�
�
m�
h +m

�
l

�2 �
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�
l

�
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m2�
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�
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�
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�
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and in set W
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�
w2�h w

�
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Thus, the total e¤ort in both sets is

TE = TEM + TEW = xh + xl + yh + yl
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Q:E:D:

6.3 Proof of Proposition 4
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Below, we calculate the terms ~w and ~m that appear in the equilibrium e¤orts given by (15). By

de�nition,

~m =
xh

xh + xl
mh +

xl
xh + xl

ml

~w =
yh

yh + yl
wh +

yl
yh + yl

wl:

Inserting (13) and (14) yields

~w =
yh

yh + yl
wh +
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yh + yl

wl =
� ~m+ �wh
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wh +

�
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�
wl (21)
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2
l

�
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2
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2
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By (15), we have
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Inserting (22) and (23) into (21) yields
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Rearranging the last equation yields the following quardratic equation of the parameter ~w,
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Since ~w is positive, we have only one feasible solution which is
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Q:E:D:

6.4 Proof of Proposition 5

By (15), we obtain the total e¤ort in set M;
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(� ~m+ �wh) (� ~m+ �wl)

(2� ~m+ � (wh + wl))

=
�2
�
m2
h +m

2
l

�
+ ��(wh + wl)mh + ��(wh + wl)ml + 2�

2whwl

2 (� (mh +ml) + � (wh + wl))
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Thus, the total e¤ort in both sets is

TE = xh + xl + yh + yl

=
�2
�
w2h + w

2
l

�
+ ��(mh +ml)wh + ��(mh +ml)wl + 2�

2mhml

2 (� (mh +ml) + � (wh + wl))

+
�2
�
m2
h +m

2
l

�
+ ��(wh + wl)mh + ��(wh + wl)ml + 2�

2whwl

2 (� (mh +ml) + � (wh + wl))

=
�mh + �ml + �wh + �wl

2
:

Q:E:D:

6.5 Proof of Proposition 7

Assume that � is any constant and that � approaches in�nity. Then, by (20), given that v1 > v2 >

v3 > v4, we obtain that

1)

lim
�!1

TE3
TE1

= lim
�!1

�
v�1 v

�
3+v

�
4 v

�
2

��
v�1 v
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4 v

�
3
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�
3

�
�
v�1 v
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4+v

�
2 v

�
3

��
v�1 v
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3+v

�
2 v

�
4
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4
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�
4

�
v�2�
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�
3
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v�4

> 1:
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3)
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5)

lim
�!1
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Thus, when � converges to in�nity, the optimal seeding for a designer who wishes to maximize the

players�total e¤ort is M : 1� 4 , W : 2� 3:

Likewise, by (20), given that v1 > v2 > v3 > v4, we obtain that

6)

lim
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7)

lim
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Since we already found that lim�!1 TE4
TE3

= 0, and similarly it can be veri�ed that

lim
�!1

TE4
TE2

= lim
�!1

TE4
TE1

= 0;

we obtain that when � converges to in�nity, the optimal seeding for a designer who wishes to

minimize the players�total e¤ort is M : 3� 4 , W : 1� 2:

Q:E:D:
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