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Abstract

We study all-pay auctions under incomplete information with n contestants who have non-linear

cost functions. The designer may award two kinds of subsidy (taxation): one that decreases (increases)

each contestant�s marginal cost of e¤ort and another that increases (decreases) each contestant�s value

of winning. The designer�s expected payo¤ is the contestants� expected total e¤ort minus the cost of

subsidy or, alternatively, plus the tax payment. We show that when the resource of subsidy (the marginal

taxation rate) is relatively small and the cost function is concave (convex), the designer�s expected payo¤

in all-pay auctions with both kinds of subsidy (taxation) is higher than in the same contest without

any subsidy (taxation). We then compare both kinds of subsidy and demonstrate that if the resource of

subsidy is relatively small and the cost functions are concave (convex), the cost subsidy is better than

prize subsidy for the designer who wishes to maximize his expected payo¤.
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1 Introduction

Subsidy and taxation are both well common economic policies (see, for example, Sav 2004, Zuniga Vicente

et al. 2014, and Bisceglia 2020). Here we focus on the potential of using these economic policies in contests.

Our purpose is to show that di¤erent forms of subsidy or taxation might be useful for a content designer

who wishes to maximize the contestants�e¤orts (outputs). In order to understand the e¢ ciency of either

subsidy or taxation in contests we compare them to the reserve price in auctions. There, when bidders are

symmetric and have linear cost function it is well known that the classical auctions (�rst-price and second-

price auctions) with the optimal reserve price are the optimal mechanism to maximize the seller�s expected

payo¤. However, in these auctions an additional bidder is worth more to the seller than the ability to set

the optimal reserve price (Bulow and Klemperer 1996 ). On the other hand, as we will show, an additional

contestant in our model might be worth less to the designer than the ability to set the optimal subsidy or

the optimal taxation.

We are not the �rst to deal with the combination of subsidy/taxation and contests, but in contrast to the

current literature (see, for example, Glazer and Konrad 1999, Konrad 2000, Person and Sandmo 2005, Fu et

al. 2012, Mealem and Nitzan 2014, Carpenter et al. 2016, and Thomas and Wang 2017) who study the role

of subsidy/taxation in environments under complete information, we study these policies in all-pay auctions

under incomplete information about the contestants� types. The di¤erence of using subsidy/taxation in

environments under complete and incomplete information is that while in an environment under complete

information the designer can apply a di¤erent subsidy/tax for each contestant according to his type (see, for

example, Nitzan and Mealem 2014), in an environment under incomplete information the contestants�types

are ex-ante identical where each contestant knows his type (which is private information), and therefore the

designer has to apply a uniform policy of subsidy/taxation for all the contestants without the ability to

discriminate among them.

We study the all-pay auction (contest) with n � 2 contestants under incomplete information and non-

linear cost functions. In other words, our contestants are not risk-neutral and, in particular, the revenue

equivalence theorem (see Myerson 1981, and Riley and Samuelson 1981) does not hold in our environment.

In such a case, the analysis of the optimal all-pay auction is complex and is generally unknown.
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We �rst consider a cost subsidy where the designer has a monetary resource that can be used to subsidize

all the contestants by decreasing their marginal costs of e¤ort (this form of cost subsidy is studied by Glazer

and Konrad 1999, and Thomas and Wang 2017 for a rent-seeking model under complete information).1

For example, Lichtenberg (1990) claimed that the U.S. Department of Defense frequently provides �implicit

subsidies�to �rms, which help them win its design competitions. He then empirically showed that �nancial

subsidies substantially improve the productivity of private military R&D. In the case of a cost subsidy, the

designer�s expected payo¤ is equal to the contestants�expected total e¤ort minus the cost of the subsidy. We

show that in the all-pay auction if the resource of subsidy is relatively small, then, if the contestants�cost

functions are concave (convex), the designer�s expected payo¤ is larger (smaller) than in the same contest

without any subsidy. We show that the optimal cost subsidy might be relatively large, in which case, an

additional contestant might be worth less to the designer than the ability to set the optimal subsidy. This

�nding indicates the e¤ect of the cost subsidy on the designer�s payo¤ might be more signi�cant than the

e¤ect of the reserve price on the designer�s payo¤ in the standard all-pay auction with linear cost functions.

Similarly, we consider cost taxation where the designer can tax all the contestants by increasing their

marginal costs of e¤ort. Then, the designer�s expected payo¤ is equal to the contestants�expected total e¤ort

plus the expected tax payment. We show that in the all-pay auction, if the taxation rate is relatively small

and if the contestants�cost functions are convex (concave), the designer�s expected payo¤ is larger (smaller)

than in the same contest without any cost taxation. We show that an additional contestant might be worth

less to the designer than the ability to set the optimal taxation. It is worth noting that if we combine the

above results for cost subsidy and cost taxation we obtain that if the contestants�cost functions are concave

the designer should apply a cost subsidy, while if their cost functions are convex, he should apply a cost

taxation.

We also consider a di¤erent form of subsidy that will be referred to as a prize subsidy. An example for a

prize subsidies are �medal bonuses�(subsidy) which are given in many countries to their Olympic athletes who

won medals in the Olympic Games. In the case of prize subsidy, the designer can increase the winner�s value

of winning by awarding an extra prize. Then, the designer�s expected payo¤ is the contestants�expected

1Fu et al. (2012) call this form of subsidy "e¢ ciency-enhancing subsidy."
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total e¤ort minus the cost of the prize subsidy. We show that in all-pay auctions, if the contestants�cost

functions are strictly concave, there exists a prize subsidy such that the designer�s expected payo¤ is larger

than in the same contest without any prize subsidy. Similarly, we consider a prize taxation such that the

designer can decrease the winner�s value of winning by imposing a tax only on the winner. For example, the

U.S. tax system taxes prizes and awards, even Olympic athletes, if the recipient makes $ 1M a year or more.

In such a case the $37,500 monetary prize that comes with a gold medal is also going to be taxed. In that

case of a prize taxation, the designer�s expected payo¤ is the contestants�expected total e¤ort plus the tax

of the winner. We show that if the cost functions are strictly convex, then there exists a positive tax such

that the designer�s expected payo¤ is larger than in the same contest without any prize taxation.

The intuition behind the above results is that the e¢ ciency of a subsidy or taxation for the designer

depends on whether the marginal increase (decrease) of the contestants�e¤orts is larger (smaller) than the

marginal costs of subsidy (taxation). Since the contestants�expected e¤orts and the cost of subsidy and

taxation are forms of the inverse cost function, the results depend on its curvature. Furthermore, since the

amount of either a subsidy or taxation is relatively smaller than the expected contestant�s e¤ort, the fact

the curvature of the cost function is increasing or decreasing plays a key role and yield the results whether

or not subsidy or taxation are e¢ cient for enhancing the designer�s expected payo¤ in our model.

Last, we compare which kind of subsidy is better for the designer. We demonstrate that if the resource of

subsidy is su¢ ciently small then in an all-pay auction with a concave (convex) cost function, the designer�s

expected payo¤ is larger (smaller) with a cost subsidy than in the same contest with a prize subsidy. Given

our previous results according to which both forms of the subsidy are e¢ cient when the contestants�cost

functions are concave, we can conclude that for su¢ ciently low levels of the resource subsidy, the cost subsidy

is better than the prize subsidy for the contest designer. However, as we will show, the optimal value of the

subsidy resource could be relatively large, and then the impact of this comparison is quite limited.

As mentioned above, the optimal all-pay auction under incomplete information in which contestants have

non-linear cost functions is not known yet. It is not our intention to claim that using a subsidy or taxation

are optimal economic policies to maximize the contestants�e¤orts. Indeed, in the literature on contests we

can �nd several other ways to enhance the contestants�e¤orts such as limiting the number of contestants by
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setting a minimum e¤ort level (see Taylor 1995, Fullerton and McAfee 1999, Casson et al. 2010, and Fu et

al. 2015), imposing a maximum e¤ort level (see Che and Gale 1998, Gavious et al. 2003, Megidish and Sela

2014, and Olszewski and Siegel 2019), allocating several prizes and punishments (see, Lazear and Rosen 1981,

Green and Stokey 1983, Nalebu¤ and Stiglitz 1983, , Moldovanu and Sela, 2001, 2006, Moldovanu et al. 2012,

Olszewski and Siegel 2016, and Sela 2020), allocating head-starts or handicaps (see Kirkegaard 2012, Franke

et al. 2013, Segev and Sela 2014, Drugov and Ryvkin 2017, and Fu and Wu 2020), or reimbursing some

of the contestants�cost of e¤orts (see, Cohen and Sela 2005, Matros 2012, Minchuk 2018 and Minchuk and

Sela 2020). We do claim, however, that subsidy or taxation, with or without some of the above well-known

methods could be a basic component in the (indirect) optimal all-pay auction under incomplete information

and non-linear cost functions.

The rest of the paper is organized as follows. In Section 2 we analyze the all-pay auction with a cost

subsidy and a cost taxation, and in Section 3 we analyze the all-pay auction with a prize subsidy and a prize

taxation. In Section 4 we compare between cost subsidy (taxation) and prize subsidy (taxation). Section 5

concludes. The proofs appear in the Appendix.

2 Cost subsidy and cost taxation

Consider n � 2 contestants who compete in an all-pay auction for a single prize. Contestant i�s value of

winning is vi; i = 1; ::; n; and is private information. The contestants�values are drawn independently of

each other from the interval [0; 1] according to the distribution function F which is common knowledge. We

assume that F is continuously di¤erentiable and that f(x) = F 0(x) > 0 for all 0 � x � 1. The contestant

with the highest e¤ort wins and and all the contestants pay the cost of their e¤orts where an e¤ort of x has

a cost of 
(x) in monetary units. In other words, 
 transfers x units of e¤ort to 
(x) monetary units. We

assume that 
(x) satis�es 
0 > 0; 
(0) = 0; and g = 
�1.

The designer has a monetary resource of � that can be used to subsidize the contestants by decreasing

their marginal costs of e¤ort. In such a case, contestant i�s cost of e¤ort will be �
(xi) where 0 < � � 1

is referred to as the marginal subsidy rate. Since the allocated subsidy is equal to the designer�s monetary
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resource � we have

� = n(1� �)E(
(x)); (1)

where the LHS of (1) is the designer�s monetary resource for subsidy, and the RHS of (1) is the expected

change of total e¤ort as a result of the cost subsidy. The designer�s expected payo¤ in e¤ort units is

Rcs = TE � g(�); (2)

where TE is the contestants�expected total e¤ort, and g(�) is the cost of the designer�s subsidy in e¤ort

units.

Alternatively, the designer can also tax the contestants by increasing their marginal costs of e¤ort. In

such a case, contestant i�s cost of e¤ort will be �
(xi) where � > 1 is referred to as the marginal taxation

rate. Then, the designer imposes a tax rate of � � 1 on each e¤ort unit of a contestant in which case, the

designer�s expected payo¤ in e¤ort units is

Rct = TE + g (n(� � 1)E(
(x))) ; (3)

where TE is the contestants�expected total e¤ort, and g (n(� � 1)E(
(x))) is the designer�s expected pro�t

from taxation in e¤ort units.

2.1 Cost subsidy

We �rst study the all-pay auction with cost subsidy. If there is a symmetric monotonically increasing

equilibrium e¤ort function x(vi), the utility function of contestant i; i = 1; ::; n; is

U(vi) = viG(vi)� �
(x(vi)); (4)

where G(vi) = Fn�1(vi) is the probability that the value vi is the highest among all the n contestants, and

the marginal subsidy rate satis�es 0 < � � 1. The �rst order condition (FOC) of the maximization problem

of contestant i�s expected payo¤ given by (4) is

G0(vi)vi � � (
(x(vi)))0 = 0:
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Rearranging yields

�
(x(vi)) =

viZ
0

sG0(s)ds+ k:

Since 
(x(0) = 0, we have


(x(vi)) =
1

�

viZ
0

sG0(s)sds:

Integrating by parts and rearranging yields the equilibrium e¤ort of contestant i; i = 1; 2; :::; n as follows:

xcs(vi) = g

0@ 1
�

0@viG(vi)� viZ
0

G(s)ds

1A1A : (5)

It can be easily veri�ed that the above equilibrium e¤ort is monotonically increasing. Then, contestant i

with value vi has the the following expected payo¤:

U(vi) = viG(vi)� �
(x)

=

viZ
0

G(s)ds;

which is exactly the contestant�s expected payo¤ in the standard all-pay auction with linear cost functions

(see Krishna 2010). Thus, we can conclude that the contestants are indi¤erent between having or not having

a cost subsidy. Contrary to the contestants, we show below that the designer might have an incentive to

apply a cost subsidy in all-pay auctions.

Since the allocated subsidy should be equal to the designer�s resource �; we have

� = n(1� �)E(
(x))

= n(1� �)
1Z
0

1

�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv = (1� �)
�

Rlin;

This yields that that the marginal taxation rate is

� =
Rlin

� +Rlin
; (6)

where Rlin = n

1Z
0

�
vG(v)�

R v
0
G(s)ds

�
f(v)dv is the designer�s expected payo¤ in the standard all-pay

auction with linear cost functions and without subsidy.

The designer�s expected payo¤ in an all-pay auction with a cost subsidy will be denoted by Rcs and is
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equal to the contestants�expected total e¤ort minus the cost of a subsidy in e¤ort units.

Rcs = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � g (�) (7)

= n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � g
0@n(1� �) 1Z

0

1

�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
1A :

Note that the �rst part of (7) is the contestants�expected total e¤ort, while the second part is the subsidy

paid by the designer in e¤ort units. The following result demonstrates the conditions under which a cost

subsidy is either pro�table or not for the contest designer.

Proposition 1 In the all-pay auction with a resource subsidy of � � Rlin

n�1 , if the cost function 
 is concave

(convex) then the designer�s expected payo¤ is larger (smaller) than in the same contest without any subsidy.

Proof. See Appendix.

We point out that in the case of linear cost functions, by the revenue equivalent theorem (RET), the

designer�s expected payo¤ is the same with and without a subsidy of any �. However, when the cost functions

are non-linear, the RET no longer holds. Then, by Proposition 1, if the cost function 
 is concave, a relatively

small subsidy increases the designer�s expected payo¤. The intuition behind this result is that for a subsidy

to be pro�table for the designer depends on whether the marginal increase in the contestant�expected total

e¤ort is larger than the marginal cost of a subsidy. The marginal increase of e¤orts and the marginal cost of

a subsidy are both forms of g0(x) which is the derivative of the inverse cost function g. Since g is convex such

that g0(x) is an increasing function and the fact that the expected e¤ort is larger than the level of subsidy,

we obtain that by applying a subsidy, the marginal increase of the expected total e¤ort is larger than the

marginal increase of the cost of a subsidy. Therefore, we can conclude tat it is pro�table for the designer to

allocate a subsidy if the cost function 
 is concave, and vice versa when it is convex.

It will be veri�ed below that although by Proposition 1 the e¢ ciency of the cost subsidy certainly holds

for � � Rlin

n�1 , the optimal value of the cost subsidy �
� might be much larger than this upper bound. By (7),
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the optimal subsidy is obtained by

@Rcs
@�

= �n 1
�2
@�

@�

1Z
0

g0

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv � g0 (�) (8)

=
n

Rlin

1Z
0

g0

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv � g0 (�) = 0:
In the following example we show that the optimal cost subsidy might be much larger than the upper limit

Rlin

n�1 given by Proposition 1.

Example 1 Consider an all-pay auction with n � 2 contestants where each contestant�s value is distributed

according to F (v) = v. The e¤ort cost function is concave and is given by 
(x) = x0:5. Then, by (8), the

optimal subsidy is obtained by

@Rcs
@�

= 2

�
(n+ 1)2

n(2n+ 1)

�
� +

n� 1
n+ 1

�
� �
�
= 0:

Thus, the optimal cost subsidy is

�� =
n2 � 1

n2 � n� 1 ;

and by (6), the optimal cost subsidy rate is

�� =
n2 � n� 1
n(2n+ 1)

:

Substituting these parameters into the designer�s expected payo¤ (7) yields the following designer�s optimal

expected payo¤ with a cost subsidy

R�cs =
(n� 1)2

n2 � n� 1 :

In the following table we present the optimal cost subsidy ��, the oatmeal designer�s expected payo¤ with cost

subsidy R�cs, and his expected payo¤ without any subsidy R for di¤erent numbers of contestants n.

n - contestants ��- the optimal subsidy R�cs- payo¤ with subsidy R- payo¤ without subsidy

2 3 1 0:1

3 8
5 0:8 0:1905

4 15
11 0:818 0:25

5 24
19 0:842 0:2909

6 35
29 0:862 0:32051

:
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We can see that the optimal cost subsidy ��decreases in the number of contestants n, such that for n = 2 we

get the highest subsidy level of �� = 3 >> Rlin. Furthermore, the designer�s optimal expected payo¤ when

there are two contestants (R = 1) is larger than the designer�s expected payo¤ in the same contest without a

subsidy but with an additional contestant (R = 0:1905). In other words, an additional contestant might be

worth less to the designer than the ability to set the optimal subsidy.

2.2 Cost taxation

Now we consider the all-pay auction with cost taxation. As in the previous case, if there is a symmetric

monotonically increasing equilibrium e¤ort function x(vi), the utility function of contestant i; i = 1; ::; n, is

U(vi) = viG(vi)� �
(x(vi)) (9)

where G(vi) = Fn�1(vi) is the probability that the value vi is the highest among all the n contestants, and

the cost taxation rate satis�es � > 1: It easy to see that the contestants�equilibrium e¤orts have the same

form as with a cost subsidy except that � has di¤erent values. However, the designer�s expected payo¤ in

the all-pay auction with a cost taxation (denoted by Rct) has a di¤erent form than in the all-pay auction

with a cost subsidy and is given by

Rct = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + g (n(� � 1)E(
(x))) (10)

= n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + g
0@n(� � 1) 1Z

0

1

�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
1A

Note that the �rst part of (10) is the contestants�expected total e¤ort, while the second part is the tax

payment in e¤ort units. The following result demonstrates the conditions under which taxation is either

pro�table or not for the contest designer.

Proposition 2 In the all-pay auction with a cost taxation rate of 1 < � � n+1
n , if the cost function 
 is

convex (concave), the designer�s expected payo¤ is larger (smaller) than in the same contest without any cost

taxation.

Proof. See Appendix.
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According to Proposition 2, if the cost taxation rate is su¢ ciently low and if the contestants�cost functions

are convex, taxation will be pro�table for the contest designer. The intuition behind this result is that the

marginal decrease in the contestants�e¤orts is smaller than the marginal pro�t from taxation. Since the tax

payment and the expected level of the equilibrium e¤ort are functions of g0 (which is a decreasing function)

and the the tax payment level is smaller than the expected level of the equilibrium e¤ort, we obtain that

by applying the taxation, the marginal decrease of the expected total e¤ort is smaller than the marginal

increase of the tax payment. Therefore, it is pro�table for the designer to set a tax if the cost function 
 is

convex, but it is not pro�table when the cost function is concave.

Proposition 2 indicates that a cost taxation might be pro�table for the designer who wishes to maximize

his expected payo¤, but the value of the optimal cost taxation rate �� could be relatively large. This optimal

cost taxation is determined by

@Rct
@�

= �n 1
�2

1Z
0

g0

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv (11)

+n
1

�2

0@ 1Z
0

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
1A g0

0@n(� � 1) 1Z
0

1

�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
1A = 0

In the following example we show that the optimal cost taxation rate might be much larger than the

upper limit n+1n given by Proposition 2.

Example 2 Consider an all-pay auction with n � 2 contestants where each contestant�s value is distributed

according to F (v) = v: Each contestant�s cost function is convex and is given by 
(x) = x2. Then, by (11)

we get

@Rct
@�

= 0:5

 
�n 1
�2

2
p
�

2

r
n� 1
n

1
n
2 + 1

+
1

�2
2

s
�

� � 1
2

r
n� 1
n+ 1

!
= 0

Thus, the optimal cost taxation rate is

�� =
1

4n+ 4n2
�
8n+ 5n2 + 4

�
:

In the following table we present the optimal cost taxation rate ��, the oatmeal designer�s expected payo¤

with cost taxation R�ct, and his expected payo¤ without any taxation R for di¤erent numbers of contestants

11



n.

n - contestants ��- optimal taxation rate R�ct- revenue with taxation R- revenue without taxation

2 1:66 0:91287 0:707

3 1:52 1:208 0:979

4 1:45 1:3904 1:1547

5 1:408 1:5613 1:277

6 1:38 1:609 1:369

:

In contrast to the all-pay auction with an optimal cost subsidy, here the designer�s optimal expected payo¤

increases in the number of contestants. On the other hand, similar to the all-pay auction with a cost subsidy,

we can see that the designer�s optimal expected payo¤ with a cost taxation when there are three contestants

(R�ct = 1:208) is larger than the designer�s expected payo¤ in the same contest without a taxation but with

an additional contestant (R = 1:1547). Thus, an additional contestant might be worth less to the designer

than the ability to set the optimal taxation.

3 Prize subsidy and prize taxation

Consider n � 2 contestants who compete in an all-pay auction for a single prize. Contestant i�s value

of winning is vi; i = 1; ::; n; and is private information. The contestants�values are drawn independently of

each other from an interval [0; 1] according to the distribution function F which is common knowledge. We

assume that F is continuously di¤erentiable and that f(x) = F 0(x) > 0 for all 0 � x � 1. The contestant

with the highest e¤ort wins and and all contestants pay for their costs of e¤ort where an e¤ort of x yields a

cost of 
(x): We assume that 
(x) satis�es 
0 > 0; 
(0) = 0; and g = 
�1:

The designer can increase the winner�s value of winning by awarding a prize subsidy (bonus) of � > 0.

Then, his expected payo¤ is

Rps = TE � g (�) (12)

where TE is the contestants�expected total e¤ort, and g (�) is the cost of subsidy in e¤ort units.

Alternatively, the designer can decrease the winner�s value of winning by imposing a tax of � > 0. Then,
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his expected payo¤ is

Rpt = TE + g (�) (13)

where TE is the contestants�expected total e¤ort, and g (�) is the tax payment in e¤ort units. Notice that

in contrast to the model with cost subsidy (taxation) in which all the contestants are subsided (taxed), in

this model with prize subsidy (taxation) only the winner is subsided (taxed).

3.1 Prize subsidy

We �rst study the all-pay auction with a prize subsidy in which the designer awards a positive subsidy of

� > 0 for the winner of the contest. If there is a symmetric monotonically increasing equilibrium e¤ort

function x(vi) : [0; 1]! [0; 1], the utility function of contestant i; i = 1; ::; n; is

Ui(vi) = (vi + �)G(vi)� 
(xi): (14)

where G(vi) = Fn�1(vi) is the probability that the value vi is the highest among all n contestants. By a

similar analysis of the all-pay auction with cost subsidy, we obtain that the equilibrium e¤ort function is as

follows

Proposition 3 The equilibrium e¤ort function in the all-pay auction with a prize subsidy of � is

xps(v) = g

�
(v + �)G(v)�

Z v

0

G(s)ds

�
: (15)

The designer�s expected payo¤ (denoted by Rps) is the contestants�expected total e¤ort minus the cost

of the prize subsidy g (�) in e¤ort units as follows:

Rps = n

1Z
0

g

�
(v + �)G(v)�

Z v

0

G(s)ds

�
f(v)dv � g (�) : (16)

The following result demonstrates the conditions under which a prize subsidy increases the designer�s ex-

pected payo¤.

Proposition 4 In the all-pay auction, if the cost function 
 is strictly concave on (0; 1], then there exists a

subsidy of � > 0 such that the designer�s expected payo¤ is larger than in the same contest without any prize

subsidy.

13



Proof. See Appendix.

The intuition behind the result of Proposition 4 according to which prize subsidy is pro�table for the

contest designer when the cost function is concave is quite similar to the intuition for the result of Proposition

1 according to which the cost subsidy is pro�table to the contest designer for every concave cost function.

By the proof of Proposition 4, if the prize subsidy is relatively small then it is pro�table to the contest

designer. In the following example, we show that the optimal prize subsidy is not necessarily small and its

e¤ect on the designer�s expected payo¤ is signi�cant.

Example 3 Consider an all-pay auction with two contestants where each contestant�s value is distributed

according to F (v) = v. The cost function is concave and is given by 
(x) = x0:5. Then, by (16), the

designer�s expected payo¤ is

Rps = 2

1Z
0

�
(v + �)v �

Z v

0

sds

�2
dv � (�)2

= �1
3
�2 +

1

2
� +

1

10

and

dRps
d�

= �2
3
� +

1

2

Thus, the optimal prize subsidy is

�� =
3

4

We can see that the prize subsidy makes the following change in the designer�s expected payo¤

Rps(� =
3

4
)�R(� = 0) = 0:1875

Note that this di¤erence in the designer�s expected payo¤ is larger than his expected payo¤ when there is no

subsidy (� = 0).

3.2 Prize taxation

Now we consider the all-pay auction with a prize taxation in which the winner has to pay a tax of � > 0. In

that case, if the tax is larger than contestant i�s type, � > vi, he will stay out of the contest. Then, If there

14



is a symmetric monotonically increasing equilibrium e¤ort function x(vi) : [0; 1]! [0; 1], the utility function

of contestant i; i = 1; ::; n; is

Ui(vi) = (vi � �)G(vi)� 
(xi): (17)

Similar to the previous sections, the symmetric equilibrium e¤ort function is

xpt(v) =

8>><>>:
0 0 � v < �;

g
�
(v � �)G(v)�

R v
�
G(s)ds

�
� � v � 1 :

(18)

Then, the designer�s expected payo¤ is

Rpt = n

Z 1

�

xpt(v)f(v)dv + g(�) Pr(there is a winner) = (19)

= n

Z 1

�

g

�
(v � �)G(v)�

Z v

�

G(s)ds

�
f(v)dv + g(�) (1� Fn(�)) :

The following result demonstrates the condition under which a prize taxation increases the designer�s ex-

pected payo¤.

Proposition 5 In the all-pay auction, if the cost function 
 is either linear or convex on (0; 1], then there

exists � > 0 such that the designer�s expected payo¤ is larger than in the same contest without any prize

taxation.

Proof. See Appendix.

The intuition behind the result of Proposition 5 according to which prize taxation is pro�table for the

designer when the cost function is convex is similar to the intuition for the result of Proposition 2 according

to which the cost taxation is pro�table for every convex cost function. Note that a prize taxation "serves"

also as a reserve price and it is well known that a reserve price is a pro�table tool to enhance the contestants�

expected total e¤ort.

In the following example, we show that even for a linear cost function the optimal prize subsidy is

non-negligible and its e¤ect on the designer�s expected payo¤ is signi�cant.

Example 4 Consider an all-pay auction with two contestants where each contestant�s value is distributed

according to F (v) = v. The cost function is linear and is given by 
(x) = x. Then, by (19), the designer�s
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expected payo¤ is

Rst = 2

Z 1

�

�
(v � �) (v)�

Z v

�

sds

�
dv + (�)

�
1� (�)2

�
= �4

3
�3 + �2 +

1

3
;

and

dRts
d�

= �2� (2� � 1) :

Thus, the optimal prize taxation is

�� = 0:5

We can see that the prize taxation makes the following change in the designer�s expected payo¤

Rts(� = 0:5)�R(� = 0) = 0:083

Note that R(� = 0) = 1
3 such that the increase in the designer�s expected payo¤ by the prize taxation is about

25%. For a convex cost function, such an increase will be even larger than for a linear cost function.

4 Cost subsidy/taxation vs. prize subsidy/taxation

So far we have shown that the designer who wishes to maximize his expected payo¤ can apply either cost

(taxation) subsidy or prize subsidy (taxation). In the following, we compare between a cost subsidy and a

prize subsidy.

Proposition 6 In the all-pay auction, if the resource subsidy of � is su¢ ciently small, then if the cost

function 
 is concave (convex) the designer�s expected payo¤ with a cost (prize) subsidy is larger than in the

same contest with a prize (cost) subsidy.

Proof. See Appendix

Since by Propositions 1 and 4, a subsidy is e¢ cient when the contestants� cost function is concave,

Proposition 6 implies that in that case a cost subsidy is better than a prize subsidy if the subsidy resource

is su¢ ciently small. The comparison between a cost taxation and a prize taxation is not clear since in an

all-pay auction with a cost taxation there is no tax resource as with a prize subsidy. However, when the
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cost function is linear this comparison becomes clear since by Proposition 5, for linear cost functions, the

designer�s expected payo¤with a prize taxation is higher than in the same contest without any taxation. On

the other hand, for a cost taxation, the revenue equivalence theorem holds, such that the designer�s expected

payo¤ is the same as in that contest without any taxation. Thus we have

Corollary 5 In the all-pay auction with a linear cost function, the designer�s expected payo¤ is larger with

prize taxation than in the same contest with cost taxation.

The intuition behind this result is that in contrast to a cost taxation prize taxation, cost taxation acts

also as an entry fee, and this implies a larger expected total e¤ort in the case of a prize taxation as long as

the tax is su¢ ciently small.

5 Conclusion

Lichtenberg (1988) and other researchers raised the question "why does the government provide a subsidy for

private military R&D, in addition to establishing prizes for innovation.�In order to answer this question we

focused on all-pay auctions (contests) with n contestants who have private information about their values of

winning and have non-linear cost functions. The optimal structure of such a contest is unknown to a designer

who wishes to maximize the contestants�expected total e¤ort. We suggest two forms of a subsidy and a

taxation and show that they both make the contest more pro�table. The �rst is a cost subsidy (taxation)

that increases (decreases) all the contestants�marginal costs, and the second is a prize subsidy (taxation)

that increases (decreases) the winner�s value of winning. We showed that in the case of convex cost functions

a su¢ ciently small a taxation of both forms is pro�table to the designer, while in the case of concave cost

functions, a subsidy of both forms will be pro�table. The majority of the considered cost functions in the

economics literature are convex, so according to our �ndings the designer should apply a taxation. On the

other hand, for concave cost functions, the designer should apply a subsidy. In addition, we showed that

even in the case of a linear cost function, taxation could be a good substitute to other well-known methods

for enhancing the designer�s expected payo¤, and, in particular, the contestants�expected total e¤ort. We

also compared both forms of a subsidy and showed that if the resource of subsidy is su¢ cient small and the
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contestants�cost functions are concave, then a cost subsidy is superior to a prize subsidy from the designer�s

point of view. However, since we have shown that the subsidy might be optimal when the level of the subsidy

resource is relatively large, this comparison has limited signi�cance.

6 Appendix

6.1 Proof of Proposition 1

If 
 is concave and strictly increasing, its inverse function g = 
�1 is convex. If 0 < � � 1, there exists

g

�
vG(v)�

Z v

0

G(s)ds

�
= g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�
�

1A � g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�

1A�: (20)

Hence, by (2), and Jensen�s inequality, since g is convex we have

Rcs = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � g (�)
= n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � g
0@n(1� �) 1Z

0

1

�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
1A

� n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � 1Z
0

g

0@n1� �
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv:

Since � � Rlin

n�1 where Rlin =

1Z
0

g

��
vG(v)�

vR
0

G(s)ds

��
f(v)dv is the expected payo¤ in the all-pay auction

with linear cost functions, by (6) we get n (1� �) � 1. Thus, by (20) we have

Rcs � n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � 1Z
0

g

0@n1� �
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv
� n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � n (1� �) 1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv
= n

1Z
0

�g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv;
which implies that

Rcs � n
1Z
0

�g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � n 1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv = R;
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where R is the contestants �expected total e¤ort without a subsidy.

Similarly, if 
 is convex and strictly increasing, its inverse function g = 
�1 is concave, and then

g

�
vG(v)�

Z v

0

G(s)ds

�
= g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�
�

1A � g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�

1A�:
Likewise, by the same analysis for concave cost functions we obtain the opposite inequality

Rcs � n
1Z
0

g

�
vG(v)�

Z v

0

G(s)ds

�
f(v)dv = R:

�

6.2 Proof of Proposition 2

If 
 is concave and strictly increasing, its inverse function g = 
�1 is convex. If � > 1, then 1
� < 1 and there

exists

g

0@0@vG(v)� vZ
0

G(s)ds

1A 1

�

1A � g

0@vG(v)� vZ
0

G(s)ds

1A 1

�
: (21)

Hence, by (3), and Jensen�s inequality, since g is convex we have

Rct = n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + g
0@n(� � 1) 1Z

0

1

�

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
1A

� n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + 1Z
0

g

0@n� � 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv:
Since n (� � 1) � 1; by (21) we get

Rct � n

1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + n (� � 1) 1Z
0

g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv
= n

1Z
0

�g

0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv � n 1Z
0

�
1

�
g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
= n

1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv = R:
where Rall is the contestants�expected total e¤ort in the all-pay auction without any taxation.

Similarly, if 
 is convex and strictly increasing, its inverse function g = 
�1 is concave, and then

g

0@vG(v)� vZ
0

G(s)ds
1

�

1A � g

0@vG(v)� vZ
0

G(s)ds

1A 1

�
:
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By the same analysis for concave cost functions we have the opposite inequality

Rct � n
1Z
0

g

�
vG(v)�

Z v

0

G(s)ds

�
f(v)dv = R:

�

6.3 Proof of Proposition 4

Di¤erentiating the designer�s expected payo¤ (12) with respect to the prize subsidy � yields

@Rps
@�

= n

1Z
0

g0
�
(v + �)G(v)�

Z v

0

G(s)ds

�
G(v)f(v)dv � g0 (�)

When � approaches zero we get

lim
�!0

@Rps
@�

= n

1Z
0

g0
�
vG(v)�

Z v

0

G(s)ds

�
G(v)f(v)dv � g0 (0)

Note that n

1Z
0

g0
�
vG(v)�

R v
0
G(s)ds

�
G(v)f(v)dv is actually the derivative of the e¤ort function of the con-

testant with the highest value of winning. Since the highest equilibrium e¤ort is larger than zero, and

the inverse cost function function g = 
�1 is convex (which implies that g0 is increasing) we obtain that

lim�!0
@Rps

@� > 0. Thus, a relatively small resource of prize subsidy will increase the designer�s expected

payo¤. When the cost function 
 is convex we have the opposite result. �

6.4 Proof of Proposition 5

Di¤erentiating (13) with respect to the prize taxation � we get

@Rpt
@�

= n

Z 1

�

g0
�
(v � �)G(v)�

Z v

�

G(s)ds

�
(G(�)�G(v)) f(v)dv + g0(�) (1� Fn(�))� g(�)nG(�)f(�):

When � approaches zero we have

lim
�!0

@Rpt
@�

= g0(0)� n
Z 1

0

g0
�
vG(v)�

Z v

0

G(s)ds

�
G(v)f(v)dv:

Note that n

1Z
0

g0
�
v)G(v)�

R v
0
G(s)ds

�
G(v)f(v)dv is actually the derivative of the e¤ort function of the

contestant with the highest value of winning. Since the highest equilibrium e¤ort is larger than zero, and

the inverse cost function function g = 
�1 is convex and in particular g0 is increasing, we obtain that
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lim�!0
@Rps

@� < 0. Thus, a relatively small resource of a prize taxation will decrease the designer�s expected

payo¤ when the cost function 
 is concave. When the cost function 
 is convex, we have the opposite result.

Now suppose that 
 is linear. Di¤erentiating (13) with respect to � we get

@Rpt
@�

= nG(�) (1� F (�)� �f(�)) :

Note that for a su¢ ciently small � we get @Rpt

@� > 0: Thus, we obtain that even when the cost functions

are linear a relatively small resource of a prize taxation will increase the designer�s expected payo¤. �

6.5 Proof of Proposition 6

By (2) and (12), the di¤erence between the designer�s expected payo¤ in the all-pay auction with a cost

subsidy and a prize subsidy is

Rcs �Rps = n
1Z
0

24g
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A� g�(v + �)G(v)� Z v

0

G(s)ds

�35 f(v)dv:
Since � = Rlin

�+Rlin
, di¤erentiating the designer�s expected payo¤ in the case of a cost subsidy is

@Rcs
@�

=
@Rcs
@�

@�

@�
= n

1Z
0

24g0
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A 1

�2

0@vG(v)� vZ
0

G(s)ds

1A �

� +Rlin

35 f(v)dv

= n

1Z
0

2664g0
0@ 1
�

0@vG(v)� vZ
0

G(s)ds

1A1A vG(v)�
vR
0

G(s)ds

Rlin

3775 f(v)dv
Similarly, di¤erentiating the designer�s expected payo¤ in the case of a prize subsidy is

@Rps
@�

= n

1Z
0

�
g0
�
(v + �)G(v)�

Z v

0

G(s)ds

�
G(v)

�
f(v)dv:

Thus, when � approaches zero we get

lim
�!0

@ (Rcs �Rps)
@�

=
n

Rlin

1Z
0

24g0
0@vG(v)� vZ

0

G(s)ds

1A0@vG(v)� vZ
0

G(s)ds�G(v)Rlin

1A35 f(v)dv: (22)

It can be easily veri�ed that there is 0 < v� < 1 such that h(v) = vG(v)�
vR
0

G(s)ds�G(v)Rlin is decreasing

for 0 < v < v� and is increasing for v� � v � 1. In particular, there is 0 < v�� < 1 such that h(v) < 0

for 0 < v < v��, and h(v) � 0 for v�� � v � 1: Thus, if g is concave such that g0
�
vG(v)�

vR
0

G(s)ds

�
is a
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decreasing function, we obtain that

1Z
0

24g0
0@vG(v)� vZ

0

G(s)ds

1A0@vG(v)� vZ
0

G(s)ds�G(v)Rlin

1A35 f(v)dv
�

1Z
0

24g0
0@v��G(v��)� v��Z

0

G(s)ds

1A0@vG(v)� vZ
0

G(s)ds�G(v)Rlin

1A35 f(v)dv:
Thus, by (22), we have

@ (Rcs �Rps)
@�

j�=0 � g0

0@v��G(v��)� v��Z
0

G(s)ds

1A n

Rlin

1Z
0

240@0@vG(v)� vZ
0

G(s)ds

1A�G(v)Rlin
1A35 f(v)dv

= g0

0@v��G(v��)� v��Z
0

G(s)ds

1A n

Rlin
[Rlin �Rlin] = 0;

That is, since Rcs(0) = Rps(0) we obtain that if g is concave then for su¢ ciently small �, Rcs(�)�Rps(�) � 0.

On the other hand, if g is convex then for su¢ ciently small �, Rcs(�)�Rps(�) � 0. �
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