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Abstract

We study complete information all-pay contests with n players and two heterogeneous prizes with

distinct values. Among the players, n � 1 are symmetric (i.e., they evaluate the prizes in a similar

manner), whereas the remaining player has different valuations than his opponents for each of the prizes.

Our analysis focuses on the equilibrium profiles and expected payoffs for the case of three players, and we

partially extend our analysis for cases with additional players. Our results show that in all-pay auctions

with heterogeneous prizes, the ordering of the players according to their expected payoffs in equilibrium

might vary significantly, depending on both prizes. In particular, a relatively high first prize does not

necessarily entail a high (or even positive) expected payoff compared to a relatively high second prize.
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1 Introduction

In our society, contests in which multiple prizes are awarded are quite ubiquitous. Examples include em-

ployees who exert effort for the purpose of promotions in organizational hierarchies, students who compete

over grades (and the adjacent ranking), political competitions for ranked places in parliamentary systems,

and obviously sports events where athletes compete over medals or various monetary prizes. Such contests

with multiple prizes can be modeled in several ways, one of the most well-known being the all-pay auction.1

In this contest form, the players with the highest bids receive the prizes, but all the players, including those

who do not win anything, bear the costs of their bids.

Thus far, most of the contest literature has focused on single-prize all-pay auctions where the highest bid-

der is awarded the prize (known as the winner-take-all contest), whereas studies concerning all-pay auctions

with multiple prizes, especially heterogenous ones, are rather neglected. The reason for this is quite straight-

forward - there is a substantial difference, in terms of complexity, between the analysis of a single-prize

all-pay auction or even one with several identical prizes, and that of an all-pay auction with heterogenous

prizes. For example, in a complete information single-prize contest, the player with the highest valuation

wins the prize with the highest probability and has the highest expected payoff. Moreover, if one player

has a strictly higher valuation for winning compared to all the other players, then only he has a positive

expected payoff, while all others have an expected payoff of zero (see Baye et al. 1996). Likewise, in a

complete information all-pay auction with k ¥ 2 identical prizes, the players with the k highest values gain

positive expected payoffs, where a higher private value entails a higher expected payoff.

In contrast, when there are at least two heterogeneous prizes and the ordering of the players’ valuations

vary across prizes, the identity of the winners for each of the prizes, as well as the order of the players’

expected payoffs, are ambiguous. A priori, it is unclear how one should evaluate the winning probability and

expected payoff of a player with a high value for the first prize and a low value for the second one to those

of a player with a lower value for the first prize and a higher value for the second one.

1See, among others, Hillman and Samet (1987), Hillman and Riley (1989), Baye et al. (1993), Amman and Leininger (1996),

Krishna and Morgan (1997), Che and Gale (1998), Lizzeri and Persico (2000), Siegel (2009), Sela (2012), Hart (2016), Einy et

al. (2017), and Lu and Parreiras (2017).
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To illustrate the above argument, consider an all-pay auction with two heterogeneous prizes and four

players, all with different values for both prizes, while the sum of their values is the same. In addition,

for each of the players, the value for the first prize is higher than the value for the second one. In such a

case, it can be shown that the player who has the highest value for the first prize and the lowest value for

the second prize gains the highest expected payoff. Moreover, the player who has the highest value for the

second prize and the lowest value for the first prize has the second highest expected payoff. This result is

somewhat puzzling since each of the four players can potentially win each of the prizes.

In this paper, we try to shed light on the players’ behavior in all-pay auctions with heterogenous prizes

(i.e., the players’ valuations vary across prizes). We assume that each player has a higher value for the first

prize than for the second one, but the player with the highest value for each prize is not necessarily the same.

In order to deal with the players’ behavior in such complex contests, we assume that each of the n players

is one of two types such that there are n � 1 symmetric players all of whom have the same valuations for

each of the prizes (to be clear, all have different values for the first and second prize), while the remaining

player has different values for both prizes compared to his opponents (note that all valuations are public).

The contest evolves as follows. First, each player chooses a bid. Next, the player with the highest bid wins

the first prize, and the player with the second highest bid wins the second prize. Finally, all players bear the

cost of their bids, independently of their winning status.

It turns out that the most complex scenario in our model is when there are only three players, namely, two

symmetric players and a single asymmetric one. The rationale is that if there are more than two symmetric

players, in any equilibrium their expected payoff will necessarily be zero since the number of prizes is smaller

than the number of the symmetric players. On the other hand, if there are only two symmetric players,

they might have positive expected payoffs. Thus, most of the present paper focuses on three players, while

providing some generalizations for n ¡ 3 players.

In contrast to the equilibrium profiles in the all-pay auction with a single prize in which the players’

efforts (or bids) are derived from a common support, in the all-pay auction with two heterogenous prizes,

they are not necessarily derived from the same support. Moreover, the supports of the players’ strategies are

not necessarily convex, namely, they include gaps such that the players’ mixed strategies (distributions over
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bids) are not strictly increasing. Thus, we divide our analysis into five cases according to the relationship

between the players’ values for the prizes. For each case, we provide sufficient conditions ensuring that the

players’ distributions of bids are strictly increasing, and then analyze the players’ equilibrium bids. Since

we provide an explicit solution of the players’ equilibrium strategies, we are able to calculate the players’

expected payoffs as well.

A player type with the higher (lower) value for the first prize will be referred to as an S-type player

(W -type player, respectively). Our equilibrium analysis shows that, depending on the players’ values for the

prizes, either the W -type player(s) or the S-type player(s) has a positive expected payoff, but both types

never have positive expected payoffs at the same time. Furthermore, if the S-type player is the asymmetric

player, he is the only one who has a positive expected payoff. On the other hand, if the S-type players

are the symmetric players, the asymmetric W -type player does not necessarily have an expected payoff of

zero. In that case, depending on his value for the second prize, he might be the only player with a positive

expected payoff although he is allegedly considered the weaker player. Hence, we conclude that although the

values for the first (larger) prize have the greatest effect on the identity of the players with positive expected

payoffs, the value of the second prize might have a non-negligible effect. In other words, the order of the

players according to their expected payoffs depends on the valuations of all the prizes.

We then consider the all-pay auction with n ¡ 3 players. Although we do not provide a complete analysis

of this case, we do show how our results for three players can be generalized. We prove that the asymmetric

player may have a positive expected payoff, whether or not he has the higher value for the first prize. On

the other hand, the n� 1 symmetric players will always have an expected payoff of zero. This is due to the

fact that even if these players have higher values for either the first prize or for both prizes, the competition

among them yields an expected payoff of zero.

As mentioned earlier, we are not the first to deal with the all-pay auction with heterogeneous prizes.

Incomplete information auctions where only the common distribution of private values is commonly known

has been studied, among others, by Moldovanu and Sela (2001, 2006), Moldovanu et al. (2012), and Liu and

Lu (2017). Complete information auctions with identical prizes and linear costs in which the players’ values

are common knowledge has been studied by Barut and Kovenock (1998), and Clark and Riis (1998). Siegel
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(2010) analyzed such contests with nonlinear costs. Bulow and Levin (2006) studied all-pay auctions with

heterogenous prizes and linear costs in which the first-order differences in successive prizes are constants,

and Gonzalez-Diaz and Siegel (2013) extended this work by allowing nonlinear costs. Later, Xiao (2016)

investigated another version of the all-pay auction with heterogenous prizes in which either the ratio of

successive prizes is constant or the second-order differences are a positive constant.

The model most similar to ours, namely, with two symmetric players and one asymmetric player who

compete over two prizes, was studied by Dahm (2018). However, this work places several restrictions on the

prizes’ values so that the value of the second prize is zero for the asymmetric player. Thus, Dahm is mainly

interested in one prize, and considered the symmetric players’ values for the first prize to be larger than the

respective asymmetric player’s value. Xiao (2018) also studied all-pay auctions with two nonidentical prizes,

but he assumed that the sequence of prizes is either convex or concave, that is, the second-order differences

(among prizes) are either a positive or a negative constant. Therefore, in these studies the heterogeneity

among the prizes is limited due to some special properties imposed on the sequence of the prizes’ valuations.2

Furthermore, it is assumed that the ratio of the values for every pair of prizes is the same for all the players

who differ from each other by their ability or, alternatively, their bid cost. In other words, the players

technically have the same value for each prize, but due to the heterogenous cost functions, they differ in

their expected payoff for winning. Nevertheless, the ratio between the values of each pair of prizes is identical

among all the players. In contrast, in our model the players differ in their prize valuations and in the ratios

among these valuations. In other words, the heterogeneity of the prizes between the two types of players in

our model is unrestricted.

The rest of the paper proceeds as follows. In Section 2, we introduce the model, and in Section 3, we

present general properties of the equilibria. In Section 4, we analyze the equilibrium strategies with three

players and two heterogenous prizes where the players’ supports are convex. In Section 5, we illustrate an

equilibrium with non-convex supports, and generalize our equilibrium analysis to contests with more than

three players. Section 6 concludes. Most of the proofs appear in the Appendix.

2In Olzewski and Siegel (2016) the heterogeneity of the prizes is not limited, but they assume that the numbers of prizes

and players go to infinity.
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2 The model

We first consider a two-prize all-pay auction with three players. There are two types of players who differ

in their prize valuations: the ‘strong’ type, denoted by S, has valuations s1 and s2 for the first and second

prize, and the ‘weak’ type, denoted by W , has valuations w1 and w2 for the first and second prizes. Note

that s1 ¡ s2 ¥ 0 and w1 ¡ w2 ¥ 0. We refer to the types as strong and weak since s1 ¡ w1 is the

basic assumption that affects the type which has a positive expected payoff in equilibrium. Unless stated

otherwise, we assume that among the three players, there are two S-type players and one W -type player.

The bid set of each player is R� and, without loss of generality, we can assume that the bids of S-type

and W -type players are bounded on r0, s1s and r0, w1s, respectively. A strategy of a player is a distribution

over the set of feasible bids (i.e., the CDF) which is denoted by FT for every T P tS,W u. We denote the

random bids of the S-type and W -type players by XS P IS and XW P IW , where IS and IW are the relevant

supports. For clarity of exposition, the analysis is confined to symmetric equilibria with respect to the

players’ types.

Under the mentioned assumptions and given a strategy profile pFS , FW q, the expected payoffs of both

types under a bid of x P R are

USpx|FS , FW q � s1FSpxqFW pxq � s2rFW pxqp1� FSpxqq � FSpxqp1� FW pxqqs � x (1)

� rps1 � 2s2qFSpxq � s2sFW pxq � s2FSpxq � x

and

UW px|FS , FW q � w1F
2
Spxq � 2w2FSpxqp1� FSpxqq � x (2)

� pw1 � 2w2qF 2
Spxq � 2w2FSpxq � x

Note that the expected payoffs do not account for possible ties since ties occur with 0-probability in

equilibrium.
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3 General properties of equilibria

We first introduce some general properties of the equilibrium profile pFS , FW q when there are several S-type

players and one W -type player.

Lemma 1 In a symmetric equilibrium, FS has no atoms in r0, s1q and FW has no atoms in p0, w1q.

Proof. We begin with the CDF FS . Assume, by contradiction, that there exists a symmetric equilibrium

where all S-type players support some atom a P r0, s1q. There are at least two S-type players, so a tie occurs

with positive probability, and a symmetric tie-breaking rule dictates a final allocation. Now consider an

infinitesimal and unilateral upward-deviation of an S-type player, from a to a � ε   s1. On the one hand,

this deviation increases the player’s cost by an infinitesimal amount, but on the other, the expected prize

increases by a strictly positive and relatively high amount due to the increased probability of winning without

the need to split the prize according to some tie-breaking rule.3 Thus, in a symmetric equilibrium, the bids’

distributions of S-type players have no atoms in r0, s1q.

For the CDF FW , we assume, by contradiction, that there exists a symmetric equilibrium in which the

W -type player supports some atom a P p0, w1q. Since a cannot be an atom of XS , either there exists some

small ε ¡ 0 such that PrpXS P pa � ε, aqq ¡ 0, or there exists ε� ¡ 0 such that PrpXS P pa � ε, aqq � 0

for every ε P p0, ε�q. If the latter is the case, then the W -type player has a profitable deviation downwards.

Specifically, for some ε ¡ 0, bids in pa� ε, aq are not supported by the S-type players, so the W -type player

can shift his atom from a to a � ε
2 such that the probability of getting a prize is not affected while the

cost decreases. If, however, there exists some small ε ¡ 0 such that PrpXS P pa � ε, aqq ¡ 0, then any of

the S-type players can shift bids from this small interval upwards to a � ε1, for some small ε1 ¡ 0. Such a

deviation increases the expected payoff by strictly increasing the probability of winning the first prize, while

the increased cost is infinitesimal. Thus, we can conclude that this cannot be an equilibrium, and FW has

no interior atoms in equilibrium.

Corollary 1 In a symmetric equilibrium, if PrpXW P r0, εqq ¡ 0 for any ε ¡ 0, UW px|FS , FW q � 0 for any

x P IW .

3The tie-breaking rule does not have to be symmetric, and any rule would motivate at least one player to shift the private

bid upwards.
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The proof is omitted since it is a straightforward conclusion from the fact that FS is non-atomic at 0.

Namely, since the payoffs are right-side continuous and without an atom at 0 of an S-type player, then the

point-wise expected payoff of the W -type player converges to zero when a bid x approaches 0. Therefore,

by the indifference principle, the expected payoff must be zero.

Lemma 2 In a symmetric equilibrium, for every open interval I � R�� such that PrpXW P Iq ¡ 0, it

follows that PrpXS P Iq ¡ 0.

Proof. Fix a symmetric equilibrium pFS , FW q. Assume, by contradiction, that there is an open interval

I such that PrpXW P Iq ¡ 0 � PrpXS P Iq. If the W -type player has an atom a P I, then there exists a

strictly profitable deviation downwards from a to a1 P pinf I, aq � I since the probability of winning a prize

does not change while the realized cost strictly decreases. Moreover, even if the W -type player has no atoms

in I, then the player can shift a positive-probability set of values (from I) downwards in a similar manner to

the atom shift, while remaining within I. Again, this would not change the probability of winning a prize,

whereas the realized cost strictly decreases. Therefore, we conclude that this cannot be an equilibrium since

the W -type player always has a strictly profitable deviation.

Remark 1 The last lemma suggests that for every symmetric equilibrium in which the random bids XS of

the S-type players and the random bid XW of the W -type player are supported on IS and IW , respectively,

then IW � IS up to a zero-measure deviation of the S-type players.

Lemma 3 In a symmetric equilibrium, IS is a connected set.

Proof. Assume, by contradiction, that IS is not a connected set. By the lack of interior atoms, there

exists an open interval I � R�� such that PrpXS ¥ sup Iq �PrpXS ¤ inf Iq ¡ 0 � PrpXS P Iq. By Lemma 2,

it follows that PrpXW P Iq � 0. Without loss of generality, take I to be the largest possible interval, which

suggests that PrpXS P rsup I, sup I � εqq ¡ 0 for any ε ¡ 0.

Now consider two scenarios: either the W -type player has an atom at sup I or he does not have one. If

an atom exists, then the W -type player has a profitable deviation downwards, for example from sup I to

inf I�sup I
2 . This follows from the fact that the probability of winning the prize does not change by this shift,

while the realized price strictly decreases.
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If, however, the W -type player does not have an atom at sup I, then the S-type players have a profitable

deviation from bids x P rsup I, sup I � εq downwards, for example, to inf I�sup I
2 . Again, by the indifference

principle, all bids produce the same expected payoff and a shift from sup I to inf I�sup I
2 does not entail any

decrease in the winning probability, while the price strictly decreases. Thus, we conclude that this cannot

be an equilibrium, and IS is indeed a connected set.

4 Three-player contests with one weak and two strong players

We next analyze the equilibrium in the all-pay auction with three players who compete for two heterogeneous

prizes. We assume that there are two S-type players and one W -type player. Below, we divide our analysis

to four cases A-D, depending on the players’ valuations of the prizes.

Remark 2 Unless stated otherwise, all subsequent proofs are differed to the Appendix.

4.1 Case A: The weak player stays out of the contest.

The first case depicts an equilibrium where the W -type player stays out of the contest, and the two S-type

players compete against each other, so that each wins one of the prizes.

Proposition 1 In the all-pay auction with two S-type players and one W -type player, if rs1 � s2s ¥

maxtw1, 2w2u, there exists an equilibrium in which both S-type players randomize on the interval r0, s1� s2s

according to their cumulative distribution bid function FSpxq which is

FSpxq �

$''''''''&
''''''''%

0, for x   0,

x
s1�s2 , for 0 ¤ x ¤ s1 � s2,

1, for x ¥ s1 � s2,

(3)

while the W -type player bids 0 with probability 1. Under this equilibrium, the expected payoff of both S-type

players is s2, while the expected payoff of the W -type player is 0.

The following example illustrates an equilibrium under the conditions of Proposition 1.
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Example 1 Assume that there are two S-type players whose prize valuations are s1 � 10, s2 � 5, and a

W -type player whose prizes’ valuations are w1 � 4, w2 � 2, so that the conditions of Proposition 1 hold.

Then, the mixed-strategy equilibrium described in Proposition 1 (see Figure 1) is

FSpxq �

$''''''''&
''''''''%

0, for x   0,

x
5 , for 0 ¤ x ¤ 5,

1, for x ¥ 5,

FW pxq �

$'''&
'''%

0, for x   0,

1, for x ¥ 0.

The expected payoff of each S-type player is 5, and that of the W -type player is 0.

1 2 3 4 5

0.5

1

x

FSpxq

1 2 3 4 5

0.5

1

x

FW pxq

Figure 1: The distributions of the S- and W-type players, in equilibrium, given s1 � 10, s2 � 5, w1 � 4, and w2 � 2

(values sustain the condition of Proposition 1).

If the conditions of Proposition 1 are violated, the W -type player may actually compete. Then, we would

need to verify that the W -type player’s distribution FW , in equilibrium, is well-defined and specifically,

non-decreasing.4 Thus, below we now provide several sufficient conditions so that the relevant distribution

4As we will later show, this assumption is not trivial, since the function FW , described in Equation p1q, might be partially

decreasing in some intervals under various parametric assumptions.
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is non-decreasing:

[A1] w1 ¡ 2w2;

[A2] s1 ¡ 2s2;

[A3] 2pw1 � w2q ¡ ps1 � s2q;

[A4] 2w2s2 ¡ s2
2 � ps1 � 2s2qps1 � w1q.

4.2 Case B: All the players have symmetric supports

We continue our analysis by describing an equilibrium where all the players compete against each other (i.e.,

support a strictly positive bid with probability 1), and both types, S and W , use mixed strategies with a

common support.

Proposition 2 In the all-pay auction with two S-type players and one W -type player, if w1 ¥ s1 � s2 and

the monotonicity conditions, either pA1, A2, A3, A4q, or p A1, A2, A3, A4q hold, then there exists an equi-

librium in which the players randomize on the interval r0, w1s according to their non-decreasing cumulative

distribution bid functions pFS , FW q which are

FSpxq �

$''''''''&
''''''''%

0, for x   0,

w2�
?
w2

2�2w2x�w1x

2w2�w1
, for 0 ¤ x ¤ w1,

1, for x ¡ w1,

FW pxq �

$''''''''&
''''''''%

0, for x   0,

x�s2FSpxq�s1�w1

ps1�2s2qFSpxq�s2 , for 0 ¤ x ¤ w1,

1, for x ¡ w1.

(4)

Under the given equilibrium, the expected payoffs of both S-type players is s1 � w1, whereas the expected

payoff of the W -type player is 0.

The following example shows that the conditions of Proposition 2 are feasible, and that there are param-

eters which simultaneously support all the required constraints.

Example 2 Assume that there are two S-type players whose prize valuations are s1 � 10, s2 � 6, and a

W -type player whose prize valuations are w1 � 8, and w2 � 3, so that the conditions of Proposition 2 hold.

11



Then, a mixed-strategy equilibrium (see Figure 2) is

FSpxq �

$''''''''&
''''''''%

0, for x   0,

?
9�2x�3

2 , for 0 ¤ x ¤ 8,

1, for x ¡ 8,

FW pxq �

$''''''''&
''''''''%

0, for x   0,

x�3
?

9�2x�11
9�?9�2x

, for 0 ¤ x ¤ 8,

1, for x ¡ 8.

The expected payoff of each S-type player is 4, while the expected payoff of the W -type player is 0.

2 4 6 8

0.5

1

x

FSpxq

2 4 6 8

0.33

1

x

FW pxq

Figure 2: The distributions of the S- and W-type players, in equilibrium, given s1 � 10, s2 � 6, w1 � 8, and w2 � 3.

Note that these parameters meet the conditions of Proposition 2.

4.3 Case C: The weak player has a one-sided short support

In Case C, both types of players participate in the contest and none of them stays out with a positive

probability. However, the W -type player has a shorter support relative to the S-type players, namely, the

W -type player’s maximal bid is smaller than the maximal bids of the S-type players.

Proposition 3 In the all-pay auction with two S-type players and one W -type player, if 2w2 ¡ s1�s2 ¥ w1,

K1 � s2 � r2w2�ps1�s2qs2
4p2w2�w1q ¥ 0 and the monotonicity condition A2 holds (i.e., if s1 ¡ 2s2), then there exists

an equilibrium in which the W -type player randomizes on the interval r0, αs, where α � p2w2q2�ps1�s2q2
4p2w2�w1q ,

and the S-type players randomize on the interval r0, s1 �K1s according to their non-decreasing cumulative
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distribution bid functions pFS , FW q which are

FSpxq �

$'''''''''''''&
'''''''''''''%

0, for x   0,

w2�
?
w2

2�2w2x�w1x

2w2�w1
, for 0 ¤ x ¤ α,

1� x�K1�s1
s1�s2 , for α ¤ x ¤ s1 �K1,

1, for x ¡ s1 �K1,

FW pxq �

$''''''''&
''''''''%

0, for x   0,

x�s2FSpxq�K1

ps1�2s2qFSpxq�s2 , for 0 ¤ x ¤ α,

1, for x ¡ α.

(5)

Then, the expected payoffs of both S-type players is K1, and that of the W -type player is 0.

The following example shows that the conditions of Proposition 3 are feasible, and that there are param-

eters which simultaneously support all needed constraints.

Example 3 Assume that there are two S-type players whose prize valuations are s1 � 10, s2 � 4, and a

W -type player whose prize valuations are w1 � 5, and w2 � 4, so that the conditions of Proposition 3 hold.

Then, the mixed-strategy equilibrium described in Proposition 3 (see Figure 3) is

FSpxq �

$'''''''''''''&
'''''''''''''%

0, for x   0,

4�?16�3x
3 , for 0 ¤ x ¤ 7{3,

3x�1
18 , for 7{3 ¤ x ¤ 19{3,

1, for x ¡ 19{3,

FW pxq �

$''''''''&
''''''''%

0, for x   0,

3x�4
?

16�3x�5
20�2

?
16�3x

, for 0 ¤ x ¤ 7{3,

1, for x ¡ 7{3.

The expected payoff of each S-type player is 6 1
3 , while the expected payoff of the W -type player is 0.

4.4 Case D: The weaker player has a two-sided short support

In this case, both types support a positive bid with a probability of 1, but the W -type player has a shorter

support relative to the S-type players. Specifically, the W -type player’s maximal bid is smaller than that of

the S-type players, and the W -type player’s minimal bid is larger than that of the S-type players.

Proposition 4 In the all-pay auction with two S-type players and one W -type player, if 2w2 ¡ s1�s2 ¥ w1,

K2 � r2w2�ps1�s2qs2
p4w2�w1q � s2 ¡ 0, and the monotonicity condition A2 holds (i.e., if s1 ¡ 2s2), then there exists
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2.33 4 6.33

0.33

1

x

FSpxq

2.33 3

0.5

0.92
1

x

FW pxq

Figure 3: The distributions of the S- and W-type players, in equilibrium, given s1 � 10, s2 � 4, w1 � 5, and w2 � 4.

These values sustain the conditions of Proposition 3.

an equilibrium where the W -type player randomizes on the interval rα1, α2s, where

α1 � s2
2w2�s2�

?
p2w2�s2q2�4K2p2w2�w1q

2p2w2�w1q and α2 � s2 � ps1 � s2q2w2 � ps1 � s2q
2p2w2 � w1q ,

and the S-type players randomize on the interval r0, s1s according to the following non-decreasing bid-

distributions

FSpxq �

$''''''''''''''''''&
''''''''''''''''''%

0, for x   0,

x
s2
, for 0 ¤ x ¤ α1,

w2�
?
w2

2�px�K2qp2w2�w1q
2w2�w1

, for α1 ¤ x ¤ α2,

x�s2
s1�s2 , for α2 ¤ x ¤ s1,

1, for x ¡ s1,

FW pxq �

$''''''''&
''''''''%

0, for x   α1,

x�s2FSpxq
ps1�2s2qFSpxq�s2 , for α1 ¤ x ¤ α2,

1, for x ¡ α2.

(6)

Under this equilibrium, the expected payoffs of the S-type players is 0, while the expected payoff of the W -type

player is K2.

The following example illustrates that the conditions of Proposition 4 are feasible, and that there are

parameters that simultaneously support all the required constraints.

Example 4 Assume that there are two S-type players whose prize valuations are s1 � 30, s2 � 1, and a

14



W -type player whose prize valuations are w1 � 25, and w2 � 20, so that the conditions of Proposition 4

hold. Then, the players’ mixed-strategy equilibrium-strategies (see Figure 4) are

FSpxq �

$''''''''''''''''''&
''''''''''''''''''%

0, for x   0,

x, for 0 ¤ x ¤ 39�?1460
30 u 0.026,

40�?1539�60x
30 , for 0.026 u 39�?1460

30 ¤ x ¤ 349
30 u 11.633,

x�1
29 , for 11.633 u 349

30 ¤ x ¤ 30,

1, for x ¡ 30,

FW pxq �

$''''''''&
''''''''%

0, for x   39�?1460
30 u 0.026,

30x�40�?1539�60x
1150�28

?
1539�60x

, for 0.026 u 39�?1460
30 ¤ x ¤ 349

30 u 11.633,

1, for x ¡ 349
30 u 11.633.

The expected payoff of each S-type player is 0, and that of the W -type player is 1. 2.

2.6 � 10�2 11.63 30

0.37

1

x

FSpxq

2.6 � 10�2 11.63

0.5

1

x

FW pxq

Figure 4: The distributions of the S- and W-type players, in equilibrium, given s1 � 30, s2 � 1, w1 � 25, and

w2 � 20. Note that these parameters sustain the conditions of Proposition 4.
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5 Three-player contests with one strong and two weak players

In this section, we assume that there are two W -type players and a single S-type player. Thus, given a

strategy profile pFS , FW q, the expected payoffs of all types under a bid of x P R are

UW px|FS , FW q � w1FW pxqFSpxq � w2rFSpxqp1� FW pxqq � FW pxqp1� FSpxqqs � x

� rpw1 � 2w2qFW pxq � w2sFSpxq � w2FW pxq � x,

and

USpx|FS , FW q � s1F
2
W pxq � 2s2FW pxqp1� FW pxqq � x

� ps1 � 2s2qF 2
W pxq � 2s2FW pxq � x.

We construct our analysis as follows. First, we define a profile pFS , FW q of strategies. Then, we prove

that the function FS is a well-defined CDF (specifically, a non-decreasing function), and later we explicitly

use this result to establish an equilibrium.

5.1 Case E: The strong player has a one-sided short support

In this set-up of two W -type players and a single S-type player, our equilibrium analysis shows that both

types participate with a probability of 1, but the S-type player has a shorter support relative to the W -type

players. Specifically, the S-type player’s minimal bid is larger than that of the W -type players.

Proposition 5 In the all-pay auction with two W -type players and one S-type player, if

0   α � w2

2∆psq
�
�2s2 � w2 �

a
p2s2 � w2q2 � 4∆psqps1 � w1q

�
  w1 , ∆psq � s1 � 2s2 ¡ 0,

and the monotonicity condition 4s2 ¡ 2w2 ¡ w1 hold, then there exists an equilibrium in which the W -type

players randomize on the interval r0, w1s, and the S-type player randomizes on the interval rα,w1s according

16



to their non-decreasing cumulative distribution bid functions pFS , FW q which are

FW pxq �

$'''''''''''''&
'''''''''''''%

0, for x   0,

x
w2
, for 0 ¤ x ¤ α,

�s2�
?
s22�∆psqps1�w1�xq

∆psq , for α ¤ x ¤ w1,

1, for x ¡ w1,

FSpxq �

$''''''''&
''''''''%

0, for x   α,

x�w2FW pxq
pw1�2w2qFW pxq�w2

, for α ¤ x ¤ w1,

1, for x ¡ w1.

(7)

Then, the expected payoff of both W -type players is 0, and that of the S-type player is s1 � w1.

The following example shows that the conditions of Proposition 5 are feasible, and that there are param-

eters which simultaneously support all the required constraints.

Example 5 Assume that there is a single S-type player whose prize valuations are s1 � 5, s2 � 2, and two

W -type players whose prize valuations are w1 � 3, and w2 � 2, so that the conditions of Proposition 5 hold,

where

α � w2

2∆psq
�
�2s2 � w2 �

a
p2s2 � w2q2 � 4∆psqps1 � w1q

�
�
?

12� 2.

Then, the players’ mixed-strategy equilibrium-strategies described in Proposition 5 (see Figure 5) are

FW pxq �

$'''''''''''''&
'''''''''''''%

0, for x   0,

x
2 , for 0 ¤ x ¤ ?12� 2,

�2�?6� x, for
?

12� 2 ¤ x ¤ 3,

1, for x ¡ 3,

FSpxq �

$''''''''&
''''''''%

0, for x   ?12� 2,

x�4�2
?

6�x
4�?6�x , for

?
12� 2 ¤ x ¤ 3,

1, for x ¡ 3.

The expected payoff of the S-type player is 2, while that of each of the W -type players is 0.

6 Extensions

6.1 A non-convex support for the ‘weak’ player

Thus far, we have provided sufficient conditions such that the W -type player’s distribution over bids, FW ,

is monotonically increasing. However, in some cases, these conditions do not hold and a different type of

17



1.46 3

0.73

1

x

FSpxq

1.46 3

0.73

1

x

FW pxq

Figure 5: The distributions of the S- and W-type players, in equilibrium, given s1 � 5, s2 � 2, w1 � 3, and w2 � 2.

These values sustain the conditions of Proposition 5.

equilibrium arises. Specifically, according to Proposition 2, if A4 is violated, then FW may decrease close

to zero. Thus, we need to depict new equilibrium strategies for which the support of the W -type player’s

strategy is non-convex.

Claim 1 Assume that there are two S-type players whose values of the prizes are s1 � 8, s2 � 6, and a

single W -type player whose values are w1 � 4, and w2 � 0. Then, a mixed-strategy equilibrium (see Figure

6) is

FSpxq �

$'''''''''''''&
'''''''''''''%

0, for x   0,

3x
10 , for 0 ¤ x ¤ 25{9
?
x

2 , for 25{9 ¤ x ¤ 4

1, for x ¡ 4,

FW pxq �

$'''''''''''''&
'''''''''''''%

0, for x   0,

2
3 , for 0 ¤ x ¤ 25{9,

4�x�3
?
x

6�2
?
x
, for 25{9 ¤ x ¤ 4

1, for x ¡ 4.

(8)

Note that FW pxq is not strictly increasing, and is fixed for all 0 ¤ x ¤ 25{9. In that case, the expected

payoffs of both S-type players is 4, and that of the W -type player is 0.

6.2 More than three players

We now proceed to study the case of n ¡ 3 players, where there are at least three players of the same type

and one player of a different type. This model is not only tractable, but even simpler to analyze than the
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2.77 4

0.83

1

x

FSpxq

2.77 4

0.67

1

x

FW pxq

Figure 6: The distributions of the S- and W-type players, in equilibrium, given s1 � 8, s2 � 6, w1 � 4, and w2 � 0

(as given in Claim 1).

three-player contest, since the competition among more than two players of the same type, regardless of

whether their type is S or W , implies that their expected payoffs are zero. This is demonstrated in the

following propositions, where in Proposition 6 there are multiple S-type players, and in Proposition 7 there

are multiple W -type players.

Proposition 6 In the all-pay auction with n� 1 S-type players and one W -type player, where either rs1 �

pn� 2qs2s ¥ maxtw1, pn� 1qw2u or pn� 2qs2 ¥ pn� 1qw2 hold, there exists an equilibrium where the S-type

players randomize on the interval r0, s1s according to their cumulative distribution bid function FSpxq which

is given by

s1F
n�2
S pxq � s2pn� 2qFn�3

S pxqr1� FSpxqs � x � 0, (9)

while the single W -type player bids 0 with a probability of 1. Then, the expected payoffs of all the players is

0.

Now, let us consider the case with more-than-two W -type players and a single S-type one.
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Proposition 7 Consider an all-pay auction with n�1 W -type players, one S-type player, and the functions

FW pxq �

$'''''''''''''&
'''''''''''''%

0, for x   0,

�
x
w2

� 1
pn�2q

, for 0 ¤ x ¤ α1,

Gpxq, for α1 ¤ x ¤ w1,

1, for x ¡ w1,

FSpxq �

$''''''''&
''''''''%

0, for x   α1,

x�w2F
n�2
W pxq

Fn�3
W pxqrpw1�pn�2qw2qFW pxq�w2pn�3qs , for α1 ¤ x ¤ w1,

1, for x ¡ w1,

(10)

where α1 and Gpxq are given by

s1 � w1 � α1 � s1

�
α1

w2

�pn�1q{pn�2q
� s2pn� 2qα1

w2

�
1�

�
α1

w2

�1{pn�2q�
,

s1 � w1 � x � s1G
n�1pxq � s2pn� 2qGn�2pxqr1�Gpxqs.

If FSp�q is non-decreasing on rα1, w1s and s1 ¥ s2pn�2q, then there exists an equilibrium in which the W -type

players randomize on the interval r0, w1s and the S-type player randomizes on the interval ra1, w1s according

to the given strategies pFS , FW q. Moreover, under this equilibrium, the expected payoffs of all W -type players

are 0, while the expected payoff of the single S-type player is s1 � w1.

7 Conclusion

Most of the contest literature has focused on the all-pay auction with a single prize or several identical

prizes. In the current work, we study all-pay auctions with heterogeneous prizes and demonstrate that

the equilibrium strategies might be rather complex. In particular, we show that the players’ distributions

over bids are not necessarily strictly increasing. When the players’ distributions are strictly increasing, we

analyze the equilibrium strategies and show that the results may significantly differ from the standard all-pay

auctions, with either identical prizes or heterogeneous prizes where the ratio of each pair of prizes is the same

for all the players. We demonstrate that the identity of the dominant player, namely, the player with the

highest expected payoff changes (in a non-trivial manner) depending on the heterogeneity of the prizes. Due

to the complexity of the analysis of our model with heterogeneous prizes, we assume a partial asymmetry

among the players. Obviously a sharper asymmetry among the players will produce less predictable and

plausibly, even more interesting results.
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8 Appendix

8.1 Proof of Proposition 1

Proof. Consider the strategy profile pFS , FW q in which FW pxq � 0 and FSpxq is given by (3), and under

which, the expected payoffs of all the players for a bid of x P r0, s1 � s2s are

USpx|FS , FW q � s1FSpxq � s2r1� FSpxqs � x

� ps1 � s2q � x

s1 � s2
� s2 � x � s2,

UW px|FS , FW q � w1F
2
Spxq � 2w2FSpxqr1� FSpxqs � x

� x2 w1 � 2w2

ps1 � s2q2 � x
2w2 � s1 � s2

s1 � s2
.

Clearly, the S-type players have no profitable deviations upwards which would induce a higher cost while

the probability of winning then is identical when the bid is equal to x � s1 � s2.

Now, to see that the W -type player has no profitable deviation from x � 0, note that UW px|FS , FW q

is a quadratic function of x. For x � s1 � s2, we get UW ps1 � s2|FS , FW q � w1 � s1 � s2 ¤ 0, where the

inequality follows from the lemma’s conditions. So, we now need to verify that the derivative of UW at x � 0

is negative. Specifically, U 1
W p0|FS , FW q � 2w2�s1�s2

s1�s2 � 2w2

s1�s2 � 1 ¤ 1 � 1 � 0, and the W -type player has

no profitable deviations as well, thus concluding the proof.

8.2 Proof of Proposition 2

Proof. Consider the strategy profile pFS , FW q given by (4). The proof is divided into two parts: First

we establish that FW is non-decreasing on r0, w1s, and then we prove that the given profile pFS , FW q is an

equilibrium.

Part I: FW is non-decreasing on r0, w1s.

It easy to verify that FSpxq is strictly increasing on r0, w1s, and its derivative is

fSpxq � 1

2

�
w2

2 � xp2w2 � w1q
��1{2

.

Note that A1 implies that FS is concave (i.e., f 1Spxq   0 for every x P r0, w1s), and  A1 suggests that FS is

convex (i.e., f 1Spxq ¥ 0 for every x P r0, w1s).
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Denote ∆psq � ps1 � 2s2q. To see that FW pxq is strictly increasing on r0, w1s as well, we differentiate

both sides of the equation USpx|FS , FW q � s1 � w1, and then we get

0 � ∆psqfSpxqFW pxq �∆psqFSpxqfW pxq � s2fW pxq � s2fSpxq � 1.

fW pxq � 1� r∆psqFW pxq � s2s fSpxq
r∆psqFSpxq � s2s

Note that r∆psqFSpxq � s2s ¡ 0 for every x P r0, w1s, since

r∆psqFSp0q � s2s � s2 ¡ 0 , r∆psqFSpw1q � s2s � s1 � s2 ¡ 0,

and FSpxq in increasing on r0, w1s. Therefore, FW pxq is increasing if and only if

r∆psqFW pxq � s2s fSpxq   1, for all x P r0, w1s.

If FW is either convex or concave (which means that fW is a monotone function), we only need to verify

that FW is increasing near the end points of its support, 0 and w1. If that is indeed the case (namely, if

fW pxq ¡ 0, for x � 0, w1), then FW is increasing on the interval r0, w1s. Therefore, we can differentiate the

previous equation once more, and get

0 � ∆psqrf 1SpxqFW pxq � 2fSpxqfW pxq � FSpxqf 1W pxqs � s2rf 1W pxq � f 1Spxqs,

f 1W pxq � �f 1Spxqrs2 �∆psqFW pxqs � 2∆psqfSpxqfW pxq
s2 �∆psqFSpxq .

The conditions pA1, A2q imply that f 1W pxq ¥ 0 and FW is convex, while the conditions p A1, A2q ensure

that f 1W pxq ¤ 0 and FW is concave. In any case, fW is monotone, and we need to verify that fW pxq ¡ 0

for x � 0, w1. Specifically,

r∆psqFW pw1q � s2s fSpw1q � r∆psq � s2s 1

2pw1 � w2q   1,

r∆psqFW p0q � s2s fSp0q �
�
∆psqs1 � w1

s2
� s2

�
1

2w2
� ∆psqps1 � w1q � s2

2

2w2s2
  1,

where the first inequality follows from A3, and the second inequality follows from A4, thus concluding the

first part of the proof.

Part II: pFS , FW q is an equilibrium.

We begin by showing that both functions are well-defined CDFs given that FW is non-decreasing. Note

that FW p0q � s1�w1

s2
¥ FSp0q � 0, where the inequality follows from the assumption that w1 ¥ s1 � s2.
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Also, note that FW pw1q � FSpw1q � 1, and that one can easily verify that FSpxq is strictly increasing on

r0, w1s. Thus, the functions FS and FW are well-defined CDFs, and we can now evaluate the players’ payoffs

at every point x, to establish an equilibrium.

Under the given strategy profile, the expected payoff of all S-type players for a bid of x P r0, w1s is

USpx|FS , FW q � ∆psqFSpxqFW pxq � s2 rFW pxq � FSpxqs � x

� ∆psqFSpxqx� s2FSpxq � s1 � w1

∆psqFSpxq � s2
� s2

�
x� s2FSpxq � s1 � w1

∆psqFSpxq � s2
� FSpxq

�
� x

� ∆psq �xFSpxq � s2F
2
Spxq

�
∆psqFSpxq � s2

� xs2 � s2∆psqF 2
Spxq

∆psqFSpxq � s2
� ps1 � w1q∆psqFSpxq � s2

∆psqFSpxq � s2
� x

� ∆psqxFSpxq � xs2

∆psqFSpxq � s2
� s1 � w1 � x � s1 � w1.

Therefore, all the S-type players are indifferent between any bid x P r0, w1s, and no player has an incentive

to deviate upwards above w1. The expected payoff of the W -type player for a bid of x P r0, w1s is

UW px|FS , FW q � rw1 � 2w2sF 2
Spxq � 2w2FSpxq � x

� rw1 � 2w2s
�
w2 �

a
w2

2 � 2w2x� w1x

2w2 � w1

�2

� 2w2
w2 �

a
w2

2 � 2w2x� w1x

2w2 � w1
� x

� �
�
w2

2 � 2w2

a
w2

2 � 2w2x� w1x� w2
2 � 2w2x� w1x

2w2 � w1

�

� 2w2
w2 �

a
w2

2 � 2w2x� w1x

2w2 � w1
� x

� 2w2

a
w2

2 � 2w2x� w1x� 2w2x� w1x� 2w2

a
w2

2 � 2w2x� w1x

2w2 � w1
� x

� 2w2x� w1x

2w2 � w1
� x � 0.

Thus, the W -type player has no profitable deviation, as well, and the profile is indeed an equilibrium with

expected payoffs s1 � w1 and 0, as stated.

8.3 Proof of Proposition 3

Proof. Consider the strategy profile pFS , FW q given by (5). The proof is divided into two parts: First we

establish that FW is non-decreasing on r0, w1s, and second we prove that the given profile pFS , FW q is an

equilibrium.

Part I: FW is non-decreasing on r0, w1s.
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Note that FSpxq is strictly increasing on r0, αs, and its derivative is

fSpxq � 1

2

�
w2

2 � xp2w2 � w1q
��1{2

.

Note that 2w2 ¡ s1 � s2 ¥ w1 implies that FS is convex (i.e., f 1Spxq ¥ 0 for every x P r0, w1s). Recall that

∆psq � ps1 � 2s2q. Similarly to the first part of the proof of Proposition 2, we differentiate both sides of the

equation USpx|FS , FW q � K1, and we get

fW pxq � 1� r∆psqFW pxq � s2s fSpxq
r∆psqFSpxq � s2s ,

Thus, we conclude that FW pxq is non-decreasing in r0, αs if and only if

r∆psqFW pxq � s2s fSpxq ¤ 1, for all x P r0, αs.

Again, as in the proof of Proposition 2, the conditions 2w2 ¡ s1 � s2 ¥ w1 and A2 ensure that F 2
W pxq ¤ 0

and that FW is concave. Thus, fW is a monotone function and it remains to verify that fW pxq ¥ 0 for x � 0

and x � α. Specifically, for x � 0 we get

r∆psqFW p0q � s2s fSp0q �
�
∆psqK1

s2
� s2

�
1

2w2

�
�
∆psq

�
1� r2w2 � ps1 � s2qs2

4s2p2w2 � w1q
�
� s2

�
1

2w2

 
�
s1 � s2 � ∆psqr2w2 � ps1 � s2qs2

4s2p2w2 � w1q
�

1

s1 � s2

� 1� ∆psqr2w2 � ps1 � s2qs2
4s2ps1 � s2qp2w2 � w1q ¤ 1,

where the first inequality follows from the condition 2w2 ¡ s1 � s2, and the second inequality follows from

the fact that ∆psqr2w2�ps1�s2qs2
4s2ps1�s2qp2w2�w1q ¥ 0. Moving on to x � α, we get

r∆psqFW pαq � s2s fSpαq � r∆psq � 1� s2s 1

2
a
w2

2 � αp2w2 � w1q
� rs1 � s2s 1b

4w2
2 � 4p2w2 � w1q p2w2q2�ps1�s2q2

4p2w2�w1q
� 1,

as needed. This concludes the first part of the proof.

Part II: pFS , FW q is an equilibrium.

We begin by showing that both functions are well-defined CDFs, given that FW is non-decreasing. Note

that FW p0q � K1

s2
¥ FSp0q � 0, where the inequality follows from the assumption that K1 ¥ 0. Also note
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that FSps1 �K1q � 1, and that

FSpαq �
w2 �

b
w2

2 � p2w2q2�ps1�s2q2
4p2w2�w1q pw1 � 2w2q

2w2 � w1
� w2 � s1�s2

2

2w2 � w1
� 1� α�K1 � s1

s1 � s2
. (11)

Therefore, ps1 � s2qFSpαq � α�K1 � s2. Hence,

FW pαq � α� s2FSpαq �K1

ps1 � s2qFSpαq � s2FSpαq � s2
� α� s2FSpαq �K1

α�K1 � s2 � s2FSpαq � s2
� 1.

Similarly to the proof of Proposition 2, it is straightforward to verify that FSpxq is strictly increasing on

r0, w1s. We thus conclude that the functions FS and FW are well-defined CDFs, and can now evaluate the

players’ point-wise payoffs in order to establish an equilibrium.

Under the given strategy profile, the expected payoffs of the W -type player for a bid of x P r0, αs is

UW px|FS , FW q � rw1 � 2w2sF 2
Spxq � 2w2FSpxq � x

� rw1 � 2w2s
�
w2 �

a
w2

2 � 2w2x� w1x

2w2 � w1

�2

� 2w2
w2 �

a
w2

2 � 2w2x� w1x

2w2 � w1
� x

� �
�
w2

2 � 2w2

a
w2

2 � 2w2x� w1x� w2
2 � 2w2x� w1x

2w2 � w1

�

� 2w2
w2 �

a
w2

2 � 2w2x� w1x

2w2 � w1
� x

� 2w2x� w1x

2w2 � w1
� x � 0.

Therefore, the W -type player is indifferent between any bid x P r0, αs. In addition, a bid of x P pα, s1 �K1s

would produce a negative payoff for the W -type player as rFSpxq � 1sps1 � s2q � s1 �K1 � x and

UW px|FS , FW q � rw1 � 2w2sF 2
Spxq � 2w2FSpxq � rFSpxq � 1sps1 � s2q � s1 �K1

� ∆pwqt2 � p2w2 �∆ps1qqt� s2 �K1,

where t � F 2
Spxq, ∆pwq � w1�2w2, and ∆ps1q � s1� s2. Denote Hptq � ∆pwqt2�p2w2�∆ps1qqt� s2�K1,

which is a parabolic function with a unique maximum point (by the assumption that ∆pwq   0) and

HpFSpαqq � 0. Moreover, H 1ptq � 2∆pwqt� p2w2 �∆ps1qq and

H 1pFSpαqq � 2∆pwqFSpαq � p2w2 �∆ps1qq � �2
�
w2 � s1�s2

2

�� p2w2 �∆ps1qq � 0,

where the second equality follows from Equation (11). Thus, Hptq is decreasing for every t ¡ FSpαq, which

implies that UW px|FS , FW q   0 for every x ¡ α, as needed. Thus, the W -type player has an incentive to

deviate upwards, above α.
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We now consider the S-type players. Denote ∆psq � s1� 2s2. The expected payoff of the S-type players

for a bid of x P r0, αs is

USpx|FS , FW q � ∆psqFSpxqFW pxq � s2 rFW pxq � FSpxqs � x

� ∆psqFSpxqx� s2FSpxq �K1

∆psqFSpxq � s2
� s2

�
x� s2FSpxq �K1

∆psqFSpxq � s2
� FSpxq

�
� x

� ∆psq �xFSpxq � s2F
2
Spxq

�
∆psqFSpxq � s2

� xs2 � s2∆psqF 2
Spxq

∆psqFSpxq � s2
�K1

∆psqFSpxq � s2

∆psqFSpxq � s2
� x

� ∆psqxFSpxq � xs2

∆psqFSpxq � s2
�K1 � x � K1,

and for a bid of x P rα, s1 �K1s, the expected payoff is

USpx|FS , FW q � ∆psqFSpxq � s2 r1� FSpxqs � x

� ∆ps1qFSpxq � s2 � x

� ∆ps1q
�
1� x�K1 � s1

∆ps1q
�
� s2 � x

� ∆ps1q � x�K1 � s1 � s2 � x � K1.

Thus, no player has a profitable deviation, and the stated profile is indeed an equilibrium, with expected

payoffs of K1 and 0, as needed.

8.4 Proof of Proposition 4

Proof. Consider the strategy profile pFS , FW q given by (6). The proof is divided into two parts: First we

establish that FW is non-decreasing on r0, w1s, and then we prove that this profile is an equilibrium.

Part I: FW is non-decreasing on r0, w1s.

Note that FSpxq is strictly increasing on r0, αs, and its derivative is

fSpxq � 1

2

�
w2

2 � px�K2qp2w2 � w1q
��1{2

.

Note that 2w2 ¡ s1 � s2 ¥ w1 implies that FS is convex (i.e., f 1Spxq ¥ 0 for every x P r0, w1s). Recall that

∆psq � ps1 � 2s2q. Similarly to the first part of the proof of Proposition 2, we differentiate both sides of the

equation USpx|FS , FW q � 0, and we get

fW pxq � 1� r∆psqFW pxq � s2s fSpxq
r∆psqFSpxq � s2s ,
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We can conclude that FW pxq is non-decreasing in rα1, α2s if and only if

r∆psqFW pxq � s2s fSpxq ¤ 1, for all x P rα1, α2s.

As in the proof of Proposition 2, the conditions 2w2 ¡ s1 � s2 ¥ w1 and A2 ensure that f 1W pxq ¤ 0 and

FW is concave. Thus, fW is a monotone function and it remains to verify that fW pxq ¥ 0 for x � α1, α2.

Note that

α2 �K2 � s2 � ps1 � s2q2w2 � ps1 � s2q
2p2w2 � w1q � r2w2 � ps1 � s2qs2

4p2w2 � w1q � s2

� ps1 � s2q2w2 � ps1 � s2q
2p2w2 � w1q � 4w2

2 � 4w2ps1 � s2q � ps1 � s2q2
4p2w2 � w1q

� �ps1 � s2q2
2p2w2 � w1q �

4w2
2 � ps1 � s2q2

4p2w2 � w1q � 4w2
2 � ps1 � s2q2

4p2w2 � w1q ,

and

fSpα2q � 1

2

�
w2

2 � pα2 �K2qp2w2 � w1q
��1{2

� 1

2

�
w2

2 �
4w2

2 � ps1 � s2q2
4p2w2 � w1q p2w2 � w1q

��1{2
� 1

s1 � s2
.

In addition, since α1 ¤ α2, we get

fSpα1q � 1

2

�
w2

2 � pα1 �K2qp2w2 � w1q
��1{2 ¤ 1

2

�
w2

2 � pα2 �K2qp2w2 � w1q
��1{2 � 1

s1 � s2
.

Thus, using A2 (i.e., s1 ¡ 2s2), for each i � 1, 2, it follows that

r∆psqFW pαiq � s2s fSpαiq ¤ r∆psq � 1� s2s 1

s1 � s2

� rps1 � 2s2q � s2s 1

s1 � s2
� 1,

as needed. Thus, we conclude the first part of the proof.

Part II: pFS , FW q is an equilibrium.

We begin by showing that both functions are well-defined CDFs, given that FW is non-decreasing. Note
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that FSp0q � 0   FSps1q � 1 and FS is strictly increasing in r0, s1s. Also note that

α1 � s2
2w2 � s2 �

ap2w2 � s2q2 � 4K2p2w2 � w1q
2p2w2 � w1q

� s2

2w2 � s2 �
c
p2w2 � s2q2 � 4

�
r2w2�ps1�s2qs2

4p2w2�w1q � s2

	
p2w2 � w1q

2p2w2 � w1q

� s2
2w2 � s2 �

a
2s1s2 � s2

1 � 4s1w2 � 4s2w1

2p2w2 � w1q

¤ s2
2w2 � s2 �

a
2s1s2 � s2

1 � 2s1ps1 � s2q � 4s2ps1 � s2q
2p2w2 � w1q

� s2
2w2 � s2 �

a
s2

1 � 4s2s1 � 4s2
2

2p2w2 � w1q
� s2

2w2 � s2 � ps1 � 2s2q
2p2w2 � w1q

� s2
2w2 � ps1 � s2q

2p2w2 � w1q ¤ s2 � 1   α2,

as needed. Moreover, we can show that the proposition’s conditions imply that α1 ¥ 0 (i.e., 2w2 ¥ s2), and

it is a straightforward to verify that FS is continuous, specifically at x � α1, α2. Therefore, we can conclude

that both functions are well defined.

Let us now verify that the profile of strategies which consists of FW and FS constitutes an equilibrium.

We begin with the W -type player. For x P rα1, α2s we get

UW px|FS , FW q � rw1 � 2w2sF 2
Spxq � 2w2FSpxq � x

� rw1 � 2w2s
�
w2 �

a
w2

2 � px�K2qp2w2 � w1q
2w2 � w1

�2

� 2w2
w2 �

a
w2

2 � px�K2qp2w2 � w1q
2w2 � w1

� x

� �2w2
2 � px�K2qp2w2 � w1q � 2w2

a
w2

2 � px�K2qp2w2 � w1q
2w2 � w1

� 2w2
w2 �

a
w2

2 � px�K2qp2w2 � w1q
2w2 � w1

� x

� px�K2qp2w2 � w1q
2w2 � w1

� x � K2.

Therefore, the W -type player is indifferent between all values of x P rα1, α2s that produce an expected payoff

of K2.
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Now consider x P r0, α1q,

UW px|FS , FW q � rw1 � 2w2sF 2
Spxq � 2w2FSpxq � x

� rw1 � 2w2s x
2

s2
2

� 2w2
x

s2
� x.

Thus, for x P r0, α1q, the function UW px|FS , FW q is parabolic with UW p0|FS , FW q � 0, U 1
W p0|FS , FW q ¥ 0

(which follows from 2w2 ¡ s1 � s2 ¥ w1 and K2 ¡ 0 ) and

U 1
W pα1|FS , FW q � 2 rw1 � 2w2s α1

s2
2

� 2w2

s2
� 1

� 2 rw1 � 2w2s s2
2w2 � s2 �

ap2w2 � s2q2 � 4K2p2w2 � w1q
2p2w2 � w1qs2

2

� 2w2

s2
� 1

� �2w2 � s2 �
ap2w2 � s2q2 � 4K2p2w2 � w1q

s2
� 2w2 � s2

s2

�
ap2w2 � s2q2 � 4K2p2w2 � w1q

s2
¥ 0.

Since UW pα1|FS , FW q � K2 and UW px|FS , FW q is increasing for x P r0, α1q, we conclude that UW px|FS , FW q ¤

K2 for every x P r0, α1q, and that there exists no profitable deviation downwards for the W -type player.

We now consider x P pα2, s1s.

UW px|FS , FW q � rw1 � 2w2sF 2
Spxq � 2w2FSpxq � x

� rw1 � 2w2s px� s2q2
ps1 � s2q2 � 2w2

x� s2

s1 � s2
� x.

So,

U 1
W pα2|FS , FW q � 2 rw1 � 2w2s

�
s2 � ps1 � s2q 2w2�ps1�s2q

2p2w2�w1q � s2

	
ps1 � s2q2 � 2w2

s1 � s2
� 1

� �2w2 � ps1 � s2q
s1 � s2

� 2w2

s1 � s2
� 1 � 0,

while UW pα2|FS , FW q � K2, and UW ps1|FS , FW q � w1 � s1   0. Therefore, we can conclude that

UW px|FS , FW q ¤ K2 for every x P pα2, s1s, as needed. Therefore, we have established that the W -type

player has no profitable deviations.

We now consider the S-type players. For x P r0, α1q, we get

USpx|FS , FW q � ps1 � 2s2qFSpxqFW pxq � s2 rFW pxq � FSpxqs � x

� ps1 � 2s2qFSpxq � 0� s2

�
0� x

s2

�
� x � 0,
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whereas, for x P pα2, s1s, we get

USpx|FS , FW q � ps1 � 2s2qFSpxqFW pxq � s2 rFW pxq � FSpxqs � x

� ps1 � 2s2q x� s2

s1 � s2
� 1� s2

�
1� x� s2

s1 � s2

�
� x

� ps1 � 2s2q x� s2

s1 � s2
� s2

x� s1 � 2s2

s1 � s2
� x � 0,

Therefore, in these intervals, the S-type players get an expected payoff of 0 for every bid. In addition, for

x P rα1, α2s,

USpx|FS , FW q � ps1 � 2s2qFSpxq x� s2FSpxq
ps1 � 2s2qFSpxq � s2

� s2

�
x� s2FSpxq

ps1 � 2s2qFSpxq � s2
� FSpxq

�
� x

� rps1 � 2s2qFSpxq � s2s x� s2FSpxq
ps1 � 2s2qFSpxq � s2

� s2FSpxq � x � 0.

Hence, we can conclude that the S-type players have an expected payoff of 0 for every x P r0, s1s, and that

there are no profitable deviations for any of the players, thus establishing an equilibrium.

8.5 Proof of Proposition 5

Proof. Consider the strategy profile pFS , FW q given by (7). The proof is divided into two parts: First we

establish that FS is non-decreasing on rα,w1s, then we prove that the given profile pFS , FW q is an equilibrium.

Part I: FS is non-decreasing on rα,w1s.

Note that FW pxq is strictly increasing and continuous in r0, w1s (i.e., α is fixed specifically so that FW is

continuous), and its derivatives in rα,w1s are

fW pxq � 1

2

�
s2

2 �∆psqps1 � w1 � xq
��1{2

,

f 1W pxq � �∆psq
4

�
s2

2 �∆psqps1 � w1 � xq
��3{2

.

Since ∆psq ¡ 0, we deduce that FW is concave (namely, f 1W pxq ¤ 0 for every x P rα,w1s). Now, we can

differentiate (twice) both sides of the following equation

UW px|FS , FW q � rpw1 � 2w2qFW pxq � w2sFSpxq � w2FW pxq � x � 0,

and get

fSpxq � 1� rpw1 � 2w2qFSpxq � w2s fW pxq
rpw1 � 2w2qFW pxq � w2s ,

f 1Spxq � f 1W pxq rp2w2 � w1qFSpxq � w2s � 2p2w2 � w1qfW pxqfSpxq
rpw1 � 2w2qFW pxq � w2s .
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Thus, we conclude that FSpxq is non-decreasing in rα,w1s if and only if

rpw1 � 2w2qFSpxq � w2s fW pxq ¤ 1, for all x P rα,w1s.

Combining the fact that f 1W pxq ¤ 0 and 2w2 ¡ w1 (by assumption), we get that f 1Spxq ¡ 0 for every

x P rα,w1s. This means that fS is a monotone function, FS is convex, and it remains to verify that

fSpxq ¥ 0 for x P tα,w1u. Specifically,

fSpαq � 1� rpw1 � 2w2qFSpαq � w2s fW pαq
rpw1 � 2w2qFW pαq � w2s

� 1� w2fW pαq
rpw1 � 2w2qFW pαq � w2s

� 1� w2r2
a
s2

2 �∆psqps1 � w1 � αqs�1

rpw1 � 2w2qFW pαq � w2s ¡ 0,

where the last inequality follows from the assumptions that 2s2 ¡ w2 and ∆psq ¡ 0. In addition,

fSpw1q � 1� rpw1 � 2w2qFSpw1q � w2s fW pw1q
rpw1 � 2w2qFW pw1q � w2s

� 1� pw1 � w2q 1
2

�
s2

2 �∆psqps1 � w1 � w1q
��1{2

w1 � w2

�
1� w1�w2

2ps1�s2q
w1 � w2

¡
1� 2w2�w2

2p2s2�s2q
w1 � w2

� 2s2 � w2

2s2pw1 � w2q ¡ 0,

where the first inequality follows from w1   2w2 and s1 ¡ 2s2, and the second inequality follows from

2s2 ¡ w2. Thus, FS is increasing in rα,w1s, and we conclude the first part of the proof.

Part II: pFS , FW q is an equilibrium.

Note that both functions are well-defined CDFs, given that FS is non-decreasing. Specifically, FW p0q �

FSpαq � 0   FW pw1q � FSpw1q � 1, and FW is strictly increasing and continuous (by the choice of α) in

r0, w1s.

We now verify that the profile of strategies pFW , FSq constitutes an equilibrium. We begin with the

W -type players. For x P r0, αs, we get

UW px|FS , FW q � rpw1 � 2w2qFW pxq � w2sFSpxq � w2FW pxq � x

�
�
pw1 � 2w2q xw2

� w2

�
� 0� w2

x
w2
� x � 0,
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and for x P rα,w1s, we get

UW px|FS , FW q � rpw1 � 2w2qFW pxq � w2sFSpxq � w2FW pxq � x

� rpw1 � 2w2qFW pxq � w2s x� w2FW pxq
pw1 � 2w2qFW pxq � w2

� w2FW pxq � x � 0.

Hence, the W -type players are indifferent between all values of x P r0, w1s which produce an expected payoff

of 0.

We now consider the S-type player. For x P rα,w1s, we get

USpx|FS , FW q � ∆psqF 2
W pxq � 2s2FW pxq � x

� ∆psq
�
�s2 �

a
s2

2 �∆psqps1 � w1 � xq
∆psq

�2

� 2s2
�s2 �

a
s2

2 �∆psqps1 � w1 � xq
∆psq � x

� s2
2 � 2s2

a
s2

2 �∆psqps1 � w1 � xq � s2
2 �∆psqps1 � w1 � xq

∆psq

� 2s2
�s2 �

a
s2

2 �∆psqps1 � w1 � xq
∆psq � x

� ∆psqps1 � w1 � xq
∆psq � x � s1 � w1,

therefore, the expected payoff of the S-type player is s1 � w1 for every x P rα,w1s. In addition, we consider

x P r0, αs, and note that USpx|FS , FW q constitutes the following parabolic function,

USpx|FS , FW q � ps1 � 2s2qF 2
W pxq � 2s2FW pxq � x

� ps1 � 2s2q x
2

w2
2

� 2s2
x

w2
� x.

By differentiating and inserting in x � α, we get

U 1
Spα|FS , FW q � ∆psq2α

w2
2

� 2s2

w2
� 1

� ∆psq
2 w2

2∆psq
�
�2s2 � w2 �

ap2s2 � w2q2 � 4∆psqps1 � w1q
�

w2
2

� 2s2

w2
� 1

� �2s2 � w2 �
ap2s2 � w2q2 � 4∆psqps1 � w1q

w2
� 2s2

w2
� 1 ¡ 0,

As such, the function is increasing for x below and sufficiently close to α. Combining this result with the

fact that USp0|FS , FW q � 0, we conclude that USpx|FS , FW q   USpα|FS , FW q � s1 � w1 for x P r0, αs, and
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that the S-type player does not have a profitable deviation downwards. To conclude, we have shown that

there are no profitable deviations for any of the players, thus establishing an equilibrium.

8.6 Proof of Claim 1

Proof. Consider the strategy profile pFS , FW q given by (8). It is straightforward to verify that both CDFs

are well defined. Clearly, no player can deviate to x   0, nor has an incentive to bid above 4, so we consider

x P r0, 25{9s. For the S-type players, we get

USpx|FS , FW q � ps1 � 2s2qFSpxqFW pxq � s2 rFW pxq � FSpxqs � x

� �4 � 2

3
� 3x

10
� 6

�
2

3
� 3x

10

�
� x � 4,

while for the W -type player we get

UW px|FS , FW q � pw1 � 2w2qF 2
Spxq � 2w2FSpxq � x

� 4
9x2

100
� x ¤ 0.

Now, we consider x P r25{9, 4s, and get

USpx|FS , FW q � ps1 � 2s2qFSpxqFW pxq � s2 rFW pxq � FSpxqs � x

� �4 � 4� x� 3
?
x

6� 2
?
x

�
?
x

2
� 6

�
4� x� 3

?
x

6� 2
?
x

�
?
x

2

�
� x

� p6� 2
?
xq4� x� 3

?
x

6� 2
?
x

� 3
?
x� x � 4.

Thus, both S-type players are indifferent between all values of x P r0, 4s. For the W -type player we get

UW px|FS , FW q � pw1 � 2w2qF 2
Spxq � 2w2FSpxq � x

� 4
x

4
� x � 0.

Hence, no player has an incentive to deviate, and the given profile is indeed an equilibrium.

8.7 Proof of Proposition 6

Proof. Consider the strategy profile pFS , FW q where FW pxq � 0 and FSpxq is given by (9). Fix FW � 1tx¥0u

so that the W -type player always bids x � 0. Given some CDF FS with no atoms in r0, s1q, the W -type
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player has an expected payoff of 0, whereas an S-type player who bids x has an expected payoff of

USpx|FS , FW q � s1F
n�2
S pxq � s2pn� 2qFn�3

S pxqp1� FSpxqq � x.

Now, we fix FS such that USpx|FS , FW q � 0 for every x P r0, s1s. Note that this CDF is well defined since

FSpxq � 0 for every x ¤ 0, FSpxq � 1 for every x ¥ s1, and the function is strictly increasing in the given

interval.

To show that pFS , FW q is an equilibrium, we consider a unilateral deviation of some player, either of type

W or type S. An S-type player has no profitable deviation for a bid x P r0, s1s since all bids generate a

payoff of zero. In addition, any deviation upwards to x ¡ s1 entails a negative expected payoff. Thus, we

can focus on a deviation of an W -type player.

Assume that the W -type player bids x ¡ 0, and that rs1 � pn� 2qs2s ¥ maxtw1, pn� 1qw2u. According

the Eq. (2), the player’s expected payoff would be

UW px|FS , FW q � w1F
n�1
S pxq � w2pn� 1qp1� FSpxqqFn�2

S pxq � x

¤ rs1 � pn� 2qs2sFn�1
S pxq � rs1 � pn� 2qs2sr1� FSpxqsFn�2

S pxq � x

� ps1 � pn� 2qs2qFn�2
S pxq � x

  s1F
n�2
S pxq � s2pn� 2qFn�3

S pxqp1� FSpxqq � x

� USpx|FS , FW q � 0,

where the first inequality follows from the condition rs1 � pn� 2qs2s ¥ maxtw1, pn� 1qw2u, and the second

inequality follows from the fact that s2pn � 2qFn�3pxq ¡ 0 for x ¡ 0. Otherwise, assume that pn � 2qs2 ¥

pn� 1qw2 and recall that s1 ¡ w1. Then,

UW px|FS , FW q � w1F
n�1
S pxq � w2pn� 1qp1� FSpxqqFn�2

S pxq � x

  s1F
n�2
S pxq � s2pn� 2qp1� FSpxqqFn�3

S pxq � x

� USpx|FS , FW q � 0,

where the inequality follows from our preliminary assumptions, pn � 2qs2 ¥ pn � 1qw2 and s1 ¡ w1, along

with the fact that FSpxq ¤ 1. We conclude that the W -type player has no profitable deviation upwards, and

pFS , FW q is indeed an equilibrium.
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8.8 Proof of Proposition 7

Proof. Consider the strategy profile pFS , FW q given by (10). We begin by showing that the functions FW

and FS are well-defined CDFs, given that FS is non decreasing in rα1, w1s. For that purpose, we first need

to prove that α1 and Gpxq are well-defined. Consider the equation

s1 � w1 � α1 � s1

�
α1

w2

�pn�1q{pn�2q
� s2pn� 2qα1

w2

�
1�

�
α1

w2

�1{pn�2q�
.

If we substitute α1 with 0, then the LHS is strictly greater than the RHS. However, for α1 � w2, we obtain

the reverse inequality. Thus, by the Mean-Value Theorem (MVT), there exists a solution α1 P r0, w1s.

Similarly, for every x P pα1, w1q, we can take the equation

s1 � w1 � x � s1G
n�1pxq � s2pn� 2qGn�2pxqr1�Gpxqs,

and substitute Gpxq with 0 and 1. Again, we get reverse inequalities (between the two cases), and the

MVT ensures that a solution Gpxq exists. Note that for x � w1 we get Gpw1q � 1, and for x � α1 both

equations coincide so that Gpα1q �
�
α1

w2

� 1
n�2

. Thus, α1 and Gpxq are well-defined, and FW is continuous,

thus implying that FS is continuous, as well. By differentiating both sides of the second equation, we get

G1pxq � 1

Gn�3pxq rGpxqrs1pn� 1q � s2pn� 2qpn� 1qs � s2pn� 2q2s ¥ 0, @Gpxq P p0, 1s.

Therefore, Gpxq is non-decreasing. We conclude that both functions, FW and FS , are well-defined CDFs, as

needed.

We next establish an equilibrium, beginning with the single S-type player. Taking the expected payoff

of the single S-type player and inserting in FW for x P rα1, w1s, we get

USpx|FS , FW q � s1G
n�1pxq � s2pn� 2qGn�2pxqr1�Gpxqs � x � s1 � w1,

where the equality follows from the definition of Gpxq. To evaluate a possible deviation of the S-type player

downwards to x P r0, α1q, consider the functions

USpx|FS , FW q � rs1 � s2pn� 2qsFn�1
W pxq � s2pn� 2qFn�2

W pxq � x

� rs1 � s2pn� 2qs �
�
x

w2

�n�1
n�2 � s2pn� 2qx

w2
� x

dUSpx|FS , FW q
dx

� rs1 � s2pn� 2qs � n� 1

pn� 2qx �
�
x

w2

�n�1
n�2 � s2pn� 2q

w2
� 1.
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Since s1 ¥ s2pn� 2q, it follows that U 1
S is non-decreasing for x P r0, α1q. In other words, the monotonicity of

U 1
S implies that US is convex with no interior maxima in x P r0, α1q . Since USp0|FS , FW q � 0   s1 � w1 �

USpα1|FS , FW q, we conclude that USpx|FS , FW q   USpα1|FS , FW q for every x P r0, α1q, which implies that

the S-type player has no profitable deviations downwards.

For the W -type players, the expected payoff is given by

UW px|FS , FW q � w1F
n�2
W pxqFSpxq � w2

�p1� FSpxqqFn�2
W pxq � pn� 3qFn�3

W pxqFSpxqp1� FW pxqq
�� x.

For x P r0, α1s we get

UW px|FS , FW q � w1F
n�2
W pxq � 0� w2

�p1� 0qFn�2
W pxq � pn� 3qFn�3

W pxq � 0 � p1� FW pxqq
�� x

� w2F
n�2
W pxq � x

� w2
x

w2
� x � 0.

For x P rα1, w1s, we can see that FS is specifically defined under the condition that UW � px|FS , FW q � 0.

Therefore, again, no player has a profitable deviation, and pFS , FW q is an equilibrium as stated.
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