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Abstract

We study the e¤ect of changes of players�information on the equilibrium e¤orts and

payo¤s of Tullock contests in which the common value of the prize is uncertain. When

the diseconomies of scale in exerting e¤ort increase at a large (small) rate, in contests

with symmetric information expected e¤ort decreases (increases) as players become

better informed, while in two-player contests with asymmetric information a player

with information advantage exerts less (more) e¤ort, in expectation, than his oppo-

nent. In classic Tullock contests with symmetric information the equilibrium expected

e¤ort and payo¤ are invariant to the information available to the players. And when

information is asymmetric, a player�s information advantage is rewarded. Moreover,

in two-player contests, while both players exert the same expected e¤ort regardless of

their information, expected e¤ort is smaller when one player has information advan-

tage than when both players have the same information. Interestingly, the player with

information advantage wins the prize less frequently than his opponent.
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1 Introduction

Tullock contests (see Tullock 1980) are perhaps the most widely studied models in the litera-

ture on imperfectly discriminating contests. In a Tullock contest each player�s probability of

winning the prize is the ratio of the e¤ort he exerts and the total e¤ort exerted by all players.

We study Tullock contests in which the players�common value for the prize is uncertain.

Our aim is to understand how changes in the information available to the players�a¤ects

their equilibrium behavior and payo¤s.

We provide a simple framework in which players�uncertainty is described by a probability

space. The common value is a random variable on this space, and the common cost of e¤ort

is described by a di¤erentiable, increasing and convex function, c(x). (Our results also apply

when the uncertain cost of e¤ort is c(x) multiplied by a random variable.) Players have

a common prior belief, but upon the realization of the state of nature, and before taking

action, each player obtains some information pertaining to the realized state. The interim

information endowment of each player at the moment of taking action is described by a

�-�eld of subsets (events) of the state space: a player knows which events in his information

�eld have occurred, and which have not.

This representation of players�uncertainty and information is natural, and encompasses

the most general structures. It includes as a particular case situations in which each player

observes some event containing the realized state of nature from a �nite or countably in�nite

partition of the space of states of nature, but it also includes common situations in which

a player information cannot be described by a partition of the state space. This is the case

when, for example, each player observes a noisy signal of the realized value, and the value is

a continuous random variable such that the smallest sigma �eld for which it is measurable

is not generated by a partition of its support.

In this setting, we characterize the equilibria of a contest by a system of equations

involving conditional expectations. Using this characterization, the law of iterated expec-

tations, and Jensen�s and Cauchy-Schwartz�s inequalities, we derive interesting compara-

tive static properties of the equilibria of Tullock contests. It turns our that the impact of

changes in players�information on equilibrium e¤orts depends on the rate at which the disec-

onomies of scale in exerting e¤ort increase with e¤ort. Speci�cally, on whether the function
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'(x) = xc0(x) is convex or concave. Discussing the implications of these results for a certain

class of contests T , in which the cost of e¤ort is a function of the form c(x) = x� with

� 2 [1;1), which are clear cut, help us providing intuition, and allow us to examine the role
of the diseconomies of scale in exerting e¤ort. Classic Tullock contests (for which c(x) = x)

form an important subclass of T that has been extensively studied in the literature.

In contests with symmetric information, the unique, symmetric and interior equilibrium

is identi�ed by a simple equation. This equation reveals that a player�s e¤ort decreases with

the number of players. Using this equation we study the impact on equilibrium e¤ort of

changes in the information available to the players. We show that when the diseconomies of

scale in exerting e¤ort increase at a large (small) rate, i.e., when the function ' is convex

(concave), in expectation players exert less (more) e¤ort the better is their information. For

contests in T , we calculate explicitly players�equilibrium strategy, and show that the players�
expected e¤ort decreases the better informed they are; however, the players�expected cost

of e¤ort is invariant to changes in their information, and since all players win the prize with

the same probability (because equilibrium is symmetric) the expected payo¤ of a player is

also invariant to changes in the players�information.

Next, we consider contests with asymmetric information. For two-player contests, we

show that when the diseconomies of scale in exerting e¤ort increase at a large (small) rate,

in expectation a player with information advantage exert less (more) e¤ort than his op-

ponent. An implication of this result for contests in the class T is that even though the

players�expected cost of e¤ort is the same, the player with information advantage exerts, in

expectation, less e¤ort.

Finally, we study classic Tullock contests. Using our results for contests with symmetric

information, we obtain explicitly the players�equilibrium strategy in this scenario, and derive

as simple corollaries the main properties of equilibrium: expected e¤ort and payo¤ are

invariant to changes in the information available to the players, and decrease with the number

of players. Likewise, our results for two-player contests with asymmetric information readily

imply that in any two-player classic Tullock contest the expected e¤ort of both players is

the same. We show by example that these results do not hold in contest with more than

two players. Then we calculate explicitly the players�equilibrium strategies in two-player

classic Tullock contests in which one player has information advantage, and derive the main
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properties of equilibrium. Interestingly, players�expected e¤ort is smaller than when they

have symmetric information. Moreover, the player with information advantage wins the

prize less frequently than his opponent. However, the payo¤ of the player with information

advantage is greater or equal to that of his opponent (i.e., information advantage is rewarded).

Lastly, we show that (with some quali�cation) information advantages are rewarded

in classic Tullock contests with any number of players, that is, if a player i has better

information than some other player j, then the expected payo¤ of player i is greater than

or equal to that of player j. This result holds for any two players with rankable information

�elds, regardless of the information endowments of the other players in the contest. The

arguments behind our result rely on the proof of the theorem of Einy et al. (2002), which

shows that in any Bayesian Cournot equilibrium of an oligopolistic industry with linear costs

a �rm�s information advantage is rewarded.

There is an extensive literature on Tullock contests that we shall not attempt to re-

view. For the complete information case, Baye and Hoppe (2003) have identi�ed a vari-

ety of economic settings (rent-seeking, innovation tournaments, patent races), which are

strategically equivalent to a Tullock contest. Skaperdas (1996) and Clark and Riis (1998)

provide axiomatic characterizations of Tullock contests. Perez-Castrillo and Verdier (1992),

Baye, Kovenock and de Vries (1994), Szidarovszky and Okuguchi (1997), Cornes and Hart-

ley (2005), Yamazaki (2008) and Chowdhury and Sheremeta (2009) study existence and

uniqueness of equilibrium. Skaperdas and Gan (1995), Glazer and Konrad (1999), Konrad

(2002), Cohen and Sela (2005) and Franke et al. (2011) study the e¤ects of changes in the

payo¤ structure on the behavior of players, and Schweinzer and Segev (2012) and Fu and

Lu (2013) study optimal prize structures.

The literature on Tullock contests with incomplete information is more recent and sparse.

Fey 2008 and Wasser 2011 study rent-seeking games under asymmetric information. Einy

et al. (2015) show that under standard assumptions Tullock contests with asymmetric in-

formation have pure strategy Bayesian Nash equilibria, although they neither characterize

equilibrium strategies nor do they study their properties.

The present paper builds on the insights and results of Warneryd (2003) and Einy et

al. (2017). Warneryd (2003) studies two-player generalized Tullock contests in which the

players�cost of e¤ort is linear, and the value is a continuous random variable. In this set-
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ting, Warneryd (2003) considers the equilibria of contests with the information structures

arising when each player either observes the value, or has only the information provided by

the common prior. Our results for two-player contests extend Warneryd (2003)�s results to

contests with general information structures, including those in which the players�informa-

tion endowments are not rankable. In addition, we either obtain extensions of the results to

contests with more than two players, or identify examples showing that they do not extend.

Further, we show that in contests with any number of players, a player�s information advan-

tage over another player �not necessarily the extreme one considered in Warneryd (2003) �

is rewarded, regardless of the information of other players.

Einy et al. (2017) study the impact of changes of the players�information on the equilibria

of Tullock contests with symmetric information. Using direct, simple methods, which do

not rely on high order derivatives of the cost function, we obtain extensions of its results.

Moreover, in some scenarios we are able to calculate the equilibrium explicitly, uncovering

interesting additional features.

The paper is organized as follows: Section 2 describes our setting and provides a charac-

terization of the equilibrium of a Tullock contest. Section 3 studies contests with symmetric

information, while Section 4 studies contests with asymmetric information. Section 5 studies

classic Tullock contests. Section 6 concludes. An Appendix contains the technical proofs.

2 Common-Value Tullock Contests

A group of players N = f1; :::; ng; with n � 2; compete for a prize by exerting e¤ort.

Players� uncertainty is described by a probability space (
;F ; p), where 
 is the set of

states of nature, F is a �-�eld of subsets of 
; and p is a probability measure on (
;F)
representing the players�common prior belief. Players�common value for the prize is an

F-measurable and bounded random variable V : 
 ! R++. Players�common cost of e¤ort

is a di¤erentiable, strictly increasing and convex function c : R+ ! R+ satisfying c(0) = 0.

The private information of player i 2 N is described by a �-sub�eld of F , which we denote
by Fi. This means that for any event A 2 Fi player i knows whether the realized state of
nature is contained in A; in particular, if Fi is generated by a �nite or countably in�nite
partition of 
; then i knows the element of the partition containing the realized state of
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nature.

A common-value Tullock contest (to which we will henceforth refer to simply as a Tullock

contest) starts by a move of nature that selects a state ! from 
; about which every player i

receives the information described by Fi. Then the players simultaneously choose their e¤ort
levels, x = (x1; :::; xn) 2 Rn+. The prize is awarded to the players in a probabilistic fashion,
using a contest success function � : Rn+ ! 4n, where 4n is the n-simplex. Speci�cally, if

x 2 Rn+nf0g; then the probability that player i 2 N wins the prize is

�i(x) =
xiPn
k=1 xk

; (1)

whereas if x = 0; i.e., if no player exerts e¤ort, then the prize is allocated according to some

�xed probability vector �(0) 2 4n: (When clear from the context, henceforth we use 0 to

denote either the zero vector in Rn or the real number.) Hence, the payo¤ of player i 2 N is

ui(!; x) = �i(x)V (!)� c(xi): (2)

For any F-measurable random variable f , we denote by E[f j Fi] a random variable

which is (a version of) the conditional expectation with respect to the �-�eld Fi �see, e.g.,
Borkar (1995) for a formal de�nition. Also, for any two random variables f and g; we write

f = g; f > g; or f � g when each of these relations hold almost everywhere on 
.
A Tullock contest de�nes a Bayesian game in which a pure strategy for player i 2 N is

an Fi-measurable and integrable function Xi : 
 ! R+; which describes i�s choice of e¤ort

in each state of nature. (The measurability restriction implies that player i can condition its

e¤ort only on his private information.) We denote by Si the set of strategies of player i, and

by S = �ni=1Si the set of strategy pro�les. Given a strategy pro�le X = (X1; :::; Xn) 2 S
we denote by X�i the pro�le obtained from X by suppressing the strategy of player i.

Throughout the paper we restrict attention to pure strategies.

An equilibrium of a Tullock contest is a Bayesian Nash equilibrium of the Bayesian game

de�ned by the contest; that is, it is a strategy pro�le X = (X1; :::; Xn) such that for every

i 2 N and every X 0
i 2 Si;

E[ui(�; X (�)] � E[ui(�; X�i (�) ; X 0
i (�))]; (3)

or equivalently,

E[ui(�; (X (�)) j Fi] � E[ui(�; (X�i (�) ; X 0
i (�)) j Fi] (4)
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almost everywhere on 
: Einy et al. (2015) provide conditions that imply the existence of

equilibrium in Tullock contests in which the players�information sub�elds are generated by

�nite or countably in�nite partitions of 
:

Our �rst remark shows that in any equilibrium total e¤ort is positive almost everywhere

on 
. (The reason is simple: if players exert no e¤ort at some positive probability event, any

player can secure the prize in that event by exerting a negligible e¤ort, which would be a

pro�table deviation for some player.) Hence the vector �(0) 2 4n used to allocate the prize

when no player exerts e¤ort does not a¤ect the set of equilibria. Thus, we describe a Tullock

contest by a collection T = (N; (
;F ; p); fFigi2N ; V; c); omitting any reference to the vector
�(0):

Remark 1. If X is an equilibrium of a Tullock contest, then
P

i2N Xi > 0.

Proof. Assume by way of contradiction that there is an equilibrium X and a positive-

measure set B 2 F such that X1 = ::: = Xn = 0 on B: Let i be a player for whom

�i(0) � 1=2: Since Xi is Fi-measurable there is Ai 2 Fi such that Xi = 0 on Ai and B � Ai:
Consider a strategy X 0

i = " � 1Ai +Xi � 1
nAi 2 Si for some " > 0: Then �i(X) � �i(X�i; X
0
i)

on Ai; and �i(X�i; X
0
i) = 1 on B. Thus, by switching from Xi to X 0

i, player i�s payo¤

increases by at least E[V j B] � p(B)=2 � c(") � p(Ai): As c(0) = 0 and c is continuous at 0;
this expression is positive for " su¢ ciently small. Therefore, in expectation X 0

i is pro�table

deviation, which contradicts that X is an equilibrium. �

The results we derive below extend to Tullock contests in which players�cost of e¤ort

is uncertain, i.e., state dependent, so long as it has a multiplicative structure. Our next

remark, which makes this claim precise, follows immediately from the equivalence in terms

of expected payo¤s of a Tullock contest with this cost structure and a Tullock contest as

described above.

Remark 2. The set of equilibria of a Tullock contests in which the cost of e¤ort is given for

(!; x) 2 
� R+ by W (!)c(x); where W is an F-measurable random variable W : 
! R+
such that infW > 0; coincides with that of the Tullock contest in which the value is V 0 =

V=W , the cost of e¤ort is c, and the players� prior belief is the probability measure p0 on

(
;F) given for ! 2 
 by dp0 (!) = (W (!) =E [W ])dp(!):
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The literature has studied generalized Tullock contests, in which the contest success

function � is given for i 2 N and x 2 Rn+nf0g by

�i(x) =
g(xi)Pn
k=1 g(xk)

;

where g : R+ ! R+ is strictly increasing and satis�es g(0) = 0: In these contests, the payo¤

of player i is

ui(!; x) =
g(xi)Pn
j=1 g(xj)

V (!)� c(xi) =
yiPn
j=1 yj

V (!)� ĉ(yi);

where yj = g(xj) for j 2 N , and ĉ(yi) = c(g�1(yi)): Hence there is a bijection between the
equilibrium sets of a generalized Tullock contest in which the score function is g and the

cost of e¤ort is c; and a Tullock contest in which the cost of e¤ort is ĉ: Thus, the results we

derive below apply to generalized Tullock contests, as established in the following remark.

Remark 3. The pro�le (X1; :::; Xn) is an equilibrium of a generalized Tullock contests

(N; (
;F ; p); fFigi2N ; V; c); in which the score function is g, if and only if (g(X1); :::; g(Xn))

is an equilibrium of the Tullock contest (N; (
;F ; p); fFigi2N ; V; ĉ), where ĉ = g�1 � c.

Henceforth we denote by ' : R+ ! R the function given for x 2 R+ by '(x) = xc0(x):
Since c is convex, ' is increasing, and therefore '�1 is well de�ned. Moreover, '(x) � c(x),
i.e., ' overstates the cost of e¤ort. (Since c is convex, marginal cost is above average cost,

i.e., c0(x) � c(x)=x.) The function ' will be useful in characterizing the equilibria of a

Tullock contest. Its curvature, which is a proxy for the rate of growth of the diseconomies

on scale in exerting e¤ort, plays an important role in our analysis.

Proposition 1 provides a system of equations that characterizes the set equilibria of

a Tullock contest. This characterization will allow us to derive interesting properties of

equilibria in a variety of settings.

Proposition 1. If (X1; :::; Xn) is an equilibrium of a Tullock contest, then for all i 2 N ,

'(Xi) = E

"
Xi
�X�i�

Xi + �X�i
�2V j Fi

#
; (5)

where �X�i =
P

j2NnfigXj:
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The system of equations (5) provides a full characterization of the interior and corner

equilibria of a contest. The left-hand side of equation (5) is well-de�ned almost everywhere

by Remark 1. Using '(Xi) = Xic
0(Xi); and noting that Xi is Fi-measurable, and hence

it may be factorized out of the expectation on the right-hand side of equation (5), we may

write this equation as

Xic
0(Xi) = XiE

"
�X�i�

Xi + �X�i
�2V j Fi

#
:

Thus, when Xi > 0; equation (5) simpli�es to

c0(Xi) = E

"
�X�i�

Xi + �X�i
�2V j Fi

#
;

which has a simply interpretation: it merely requires that, conditional on player i�s informa-

tion, the marginal cost of e¤ort equals its expected marginal bene�t. Moreover, when player

i exerts no e¤ort in some event, '(0) = xc0(0) provides a precise approximation of the cost of

exerting a small amount of e¤ort, which must be larger than the bene�t if exerting no e¤ort

is optimal, and hence equation (5) holds as well. Even though this intuition is simple, the

proof of Proposition 1 requires dealing with some measure theoretic issues, and is therefore

relegated to the Appendix.

In order to provide clear illustration of our �ndings, and facilitate understanding the

role of the curvature of ' in our results, we will consider the class of Tullock contests T
in which players�cost of e¤ort is a function of the form c(x) = x�, for some � 2 [1;1).
For contests in this class we are able to calculate equilibrium explicitly and derive many

interesting properties. We denote by T (�) the subclass of T identi�ed by the parameter

� 2 [1;1); e.g., T (1) is the subclass of classic Tullock contests. Note that for a contest in
T (�); the function ' is '(x) = �x� = �c(x); and its inverse is '�1(y) = (y=�)1=�.

3 Symmetric Information

In this section, we study the equilibria of Tullock contests with symmetric information,

and derive some comparative static properties of the impact of changes in the information

available to the players, and in the number of players, on equilibrium e¤orts and payo¤s.

Existence, uniqueness, symmetry and interiority of equilibrium in such contests has been
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established by Einy et al. (2017) using a di¤erent approach. Proposition 2 provides a

simpli�ed version of Proposition 1 for contests with symmetric information: in this scenario

equilibrium is characterized by a simple equation. This simple characterization of equilibrium

reveals some interesting properties.

Proposition 2. In the unique, symmetric and interior equilibrium of a Tullock contests with

symmetric information players�strategy X is the solution to the equation

'(X) =
n� 1
n2

E [V j G] ; (6)

where G is the �-sub�eld of F describing the players� information. Hence E ['(X)] =

(n� 1)E [V ] =n2 is independent of the players� information. Moreover, a player�s e¤ort

decreases with the number of players in the contest.

Proof. Substituting Xi = X and �X�i = (n� 1)X in equation (5) of Proposition 1 we get

'(X) = E

�
(n� 1)X2

(X + (n� 1)X)2
V j G

�
=
n� 1
n2

E [V j G] :

Since ' is increasing and ((n� 1) =n2) decreases with n; X decreases with n. �

In the equilibrium of a Tullock contest with symmetric information, which is symmetric,

each player wins the prize with equal probability. Thus, the expected payo¤ of a player

is E [V ] =n minus his expected cost of e¤ort. For a contest T 2 T (�) � T , equation (6)
becomes

�X� =
n� 1
n2

E [V j G] : (7)

Taking expectation in this equation we readily calculate a player�s expected cost of e¤ort as

E [c(X)] = E [X�] =
n� 1
�n2

E [V ] :

Thus, in equilibrium player�s cost of e¤ort is independent of their information. Also, players�

total e¤ort is

nX = n

�
n� 1
�n2

� 1
�

(E [V j G])
1
� :

Since n[(n� 1) =(�n2)]1=� increases with n, total e¤ort increases with n: We state these
results in the following corollary.
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Corollary 1. The equilibrium of a Tullock contests with symmetric information T 2 T (�) �
T , is given by X = [(n� 1)E [V j G])=(�n2)]1=�, where G is the �-sub�eld of F describing

players�information. Hence total e¤ort increases with the number of players. Moreover, a

player�s expected cost of e¤ort is E[c(X)] = (n � 1)E [V ] =(�n2), and his expected payo¤ is
E [V ] =n� (n� 1)E [V ] =(�n2); independently of the players�information.

Our next result shows that the curvature of the function ', which is a proxy for size

of the diseconomies of scale in exerting e¤ort, determines whether players�expected e¤ort

increases or decreases as they become better informed: when ' is convex (concave) player�s

equilibrium e¤ort is larger (smaller) the better informed they are.

Let G and G 0 be any two �-sub�elds of F , and assume that G 0 is �ner than G (i.e., G � G 0).
If the realized state of nature is ! 2 
; then for each A 2 G such that ! 2 A there exists
B 2 G 0 such that B � A and ! 2 B; that is, players have more precise information about
! when their information is that given by G 0 than when it is that given by G. Thus, players
are better informed the �ner is the �-sub�eld describing their information.

Proposition 3. Let XG and XG0 be the equilibria of two identical Tullock contests with

symmetric information, except that players� information is given by the �-sub�elds G and
G 0, respectively, where G � G 0. If ' is convex, then E[XG] � E[XG0 ], whereas if ' is concave,

then E[XG] � E[XG0 ].

The following lemma will be useful in proving propositions 3 and 5.

Lemma 1. Let G be a �-sub�eld of F , and let X and Y be random variables such that '(X)

and '(Y ) are integrable and satisfy '(X) = E ['(Y ) j G]. If ' is convex, then E[X] � E[Y ]:
whereas if ' is concave, then E[X] � E[Y ].

Proof. Assume that ' is convex. By the law of iterated expectations (see, e.g., Theorem

34.4 of Billingsley (1995)) and the conditional Jensen�s inequality (see, e.g., Corollary 3.1.1
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(ii) of Borkar (1995)),

E[X] = E['�1('(X))]

= E['�1(E['(Y ) j G])]

� E['�1(' (E[Y j G]))]

= E[E[Y j G]]

= E[Y ]: �

With this lemma in hand we can easily prove Proposition 3.

Proof of Proposition 3. Since G � G 0, equation (6) and the law of iterated expectations
imply

'(XG) =
n� 1
n2

E [V j G] = E
�
n� 1
n2

E [V j G 0] j G
�
= E ['(XG0) j G] :

Hence the conclusions of Proposition 3 follow from Lemma 1. �

Our last result in this section derives the implications of Proposition 3 for contests in the

class T : In these contests, '(x) = �x�, and hence '00(x) = �2 (�� 1)x��2 > 0; if � > 1,

and '00(x) = 0 if � = 1; i.e., ' is convex. Thus, the following corollary is a direct implication

of Proposition 3. Note that when ' is strictly convex and the value is a non-degenerate

random variable, expected e¤ort strictly decreases the �ner is the sub�eld describing the

players�information.

Corollary 2. In the equilibrium of a Tullock contests with symmetric information T 2 T
players�expected e¤ort decreases as they become better informed.

4 Asymmetric Information

In this section we study the equilibria of contests with asymmetric information. Proposition

4 establishes an auxiliary result for two-player contests that has important implications.

Note that Proposition 4 does not involve any assumption about the players�information.

Proposition 4. In any equilibrium (X1; X2) of a two-player Tullock contest, E['(X1)] =

E['(X2)]:
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Proof. Let (X1; X2) be an equilibrium of a two-player Tullock contest. Proposition 1 and

the law of iterated expectations imply

E['(X1)] = E

�
E

�
X1X2

(X1 +X2)
2V j F1

��
= E

�
X1X2

(X1 +X2)
2V

�
= E

�
E

�
X2X1

(X2 +X1)
2V j F2

��
= E ['(X2)] : �

For a contest T 2 T ; '(x) = �c(x) for some � 2 [1;1): Thus, Proposition 4 implies

E[�c(X1)] = E['(X1)] = E['(X2)] = E[�c(X2)]:

Hence the following corollary.

Corollary 2. In any equilibrium (X1; X2) of a two-player Tullock contest in T , E[c(X1)] =

E[c(X2)].

Our next proposition establishes that in two-player contests a player with information

advantage exerts less e¤ort, in expectation, than his opponent. Formally, player i 2 N is said

to have an information advantage over player j 2 N if Fj � Fi. As noted above, the �ner is
the information sub�eld of a player, the more precise is the player�s information about the

realized state of nature.

Proposition 5. Let (X1; X2) be an equilibrium of a two-player Tullock contest in which

player 2 has an information advantage over player 1. If ' is convex, then E[X1] � E[X2],

whereas if ' is concave, then E[X1] � E[X2].

Proof. Let (X1; X2) be an equilibrium. Since F1 � F2, Proposition 1 and the law of iterated
expectation imply

'(X1) = E

�
X1X2V

(X1 +X2)
2 j F1

�
= E

�
E

�
X2X1V

(X1 +X2)
2 j F2

�
j F1

�
= E ['(X2) j F1] :

13



Hence the conclusions of Proposition 5 follow from Lemma 1. �

The following example identi�es a three-player classic Tullock contest with a unique

equilibrium. In this equilibrium players� expected cost of e¤ort di¤er, and the expected

e¤ort of players 2 and 3, who have information advantage over player 1, is greater than that

of player 1. Hence the results of this section do not extend to contests with more than two

players.

Example 1 Consider a three-player classic Tullock contest in which 
 = f!1; !2g, p(!1) =
1=8, V (!1) = 1; and V (!2) = 8. Players 2 and 3 observe the value; player 1 has only the

prior information. The unique equilibrium is (X1(!1); X1(!2)) = (168=121; 168=121) and

(X2(!1); X2(!2)) = (X3(!1); X3(!2)) = (0; 224=121). Hence for i 2 f2; 3g

E[c(X1)] = E[X1] =
168

121
<

�
7

8

�
224

121
= E[Xi] = E[c(Xi)]:

5 Classic Tullock Contests

In this section we study the properties of the equilibria of classic Tullock contests. We begin

by stating corollaries describing the implications of our result in sections 3 and 4 for classic

Tullock contests. Our �rst result follows immediately from Corollary 1. (Simply, set � = 1

in the formulae.) The result that in classic Tullock contests with symmetric information

changes in the information available to the players have no impact on their expected e¤ort

and payo¤ is derived by Einy et al. (2017) using an indirect approach. Instead, Corollary

3 provides explicitly the players�equilibrium strategy as well as their expected e¤ort and

payo¤, which allows deriving additional properties of equilibrium.

Corollary 3. In the equilibrium of a classic Tullock contests with symmetric information

a player�s strategy is X = (n� 1)E [V j G] =n2; where G is the �-sub�eld of F describing

players�information. Hence the expected e¤ort of a player is E[X] = (n� 1)E [V ] =n2; and
his expected payo¤ is E [V ] =n2, independently of the players�information.

Next we study the properties of the equilibria of Tullock contests with asymmetric infor-

mation. A direct implication of Corollary 2 is that in any equilibrium of a two-player classic

14



Tullock contests both players exert the same expected e¤ort regardless of their information.

This result, which we state in Corollary 4, has been established by Warneryd (2003) in a

setting in which F1 = f?;
g and F2 is the minimal �-�eld with respect to which a contin-
uously distributed V is measurable. Corollary 4, however, involves no assumptions on the

distribution of the value or on the information of the players. Example 1 shows that this

result does not extend to contests with more than two players.

Corollary 4. In any equilibrium of a two-player classic Tullock contest both players exert

the same expected e¤ort.

In what follows, we study other properties of the equilibria of classic Tullock contests in

which a player has information advantage. We begin by studying two-player contests. Our

next proposition derives explicitly the unique interior equilibrium of such contests. We shall

use these formulae to derive interesting properties of these contests.

Proposition 6. In an interior equilibrium of a two-player classic Tullock contest in which

player 2 has information advantage over player 1, i.e., F1 � F2, players� strategies are
(X1; X2) = (Z

2; Z
p
E[V j F2]� Z2), where Z = E[

p
E [V j F2] j F1]=2:

Proof. Let (X1; X2) be an interior equilibrium. Since '(x) = x; Proposition 1 implies

X2 = E

�
X1X2V

(X1 +X2)
2 j F2

�
:

Since both X1 and X2 are F2-measurable (because F1 � F2) and X2 > 0; this equation may

be written as

1 = E

�
X1V

(X1 +X2)
2 j F2

�
=
X1E [V j F2]
(X1 +X2)

2 :

Hence

X2 =
p
X1

p
E[V j F2]�X1: (8)

Also by Proposition 1,

X1 = E

�
X1X2V

(X1 +X2)
2 j F1

�
;

and since X1 > 0 is F1-measurable, we may write this equation as

1 = E

�
X2V

(X1 +X2)
2 j F1

�
:

15



By the law of iterated expectations

E

�
X2V

(X1 +X2)
2 j F1

�
= E

�
E

�
X2V

(X1 +X2)
2 j F2

�
j F1

�
:

Substituting X2 from equation (8) and recalling that X1 is F2-measurable, we get

1 = E

264E
264

�p
X1

p
E[V j F2]�X1

�
V�

X1 +
�p
X1

p
E[V j F2]�X1

��2 j F2
375 j F1

375
= E

"
E

"
V

p
X1

p
E[V j F2]

� V

E[V j F2]
j F2

#
j F1

#

=
1p
X1

E

"
E[V j F2]p
E[V j F2]

j F1

#
� E

�
E[V j F2]
E[V j F2]

j F1
�

=
E
hp
E[V j F2] j F1

i
p
X1

� 1:

Hence p
X1 =

E
hp
E [V j F2] j F1

i
2

: (9)

The formulae given in Proposition 6 follows from equations (8) and (9). �

The following corollary is an interesting direct implication of Proposition 6 for classic

Tullock contests in which one player observes the value before taking action and the other

player has only the prior information.

Corollary 5. Consider a two-player classic Tullock contest in which player 2 observes the

state of nature and player 1 has only the prior information, i.e., F2 = F and F1 = f
;?g.
If inf V � (E[

p
V ])2=4, i.e., the value distribution is not too dispersed, then the unique

equilibrium of the contests is (X1; X2) = (E[
p
V ])2=4; E[

p
V ](2

p
V � E[

p
V ])=4):

In two-player classic Tullock contest, when players have symmetric information each

player�s expected e¤ort is E[V ]=4 (Corollary 2), while when one observes the value and the

other player has only the prior information their expected e¤ort is E[
p
V ])2=4 (Corollary 5).

Since (E[
p
V ])2 � E[V ] by Jensen�s inequality, this implies that in expectation players exert

less e¤ort, and hence capture a larger share of the surplus, in the latter scenario. Warneryd

(2003) obtains this result (see his Proposition 5) when V is a continuous random variable.
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Our next corollary shows that this inequality holds in any classic Tullock contest in which a

player has information advantage, even if it is not as extreme as that of Corollary 5.

Corollary 6. In the interior equilibrium of a two-player classic Tullock contest in which

one player has information advantage, players�expected e¤ort is less than or equal to that

under symmetric information.

Proof. Let (X1; X2) be an interior equilibrium of two-player classic Tullock contest in

which player 2 has an information advantage over player 1, i.e., F1 � F2. By Corollary 4,
E[X2] = E[X1]: Also, Proposition 6, and Jensen�s inequality imply

E[X1] =

E

��
E
hp
E[V j F2] j F1

i�2�
4

� E[V ]

4
;

which establishes the corollary, since by Corollary 1, E[V ]=4 is the equilibrium expected

e¤ort when players have symmetric information. �

Our next result establishes that in a two-player classic Tullock contest a player with

information advantage tends to win the prize less frequently than his opponent. Warneryd

(2003) arrives at the same result (see his Proposition 2) is the restrictive setting he considers.

Proposition 7. In the interior equilibrium of a two-player classic Tullock contest a player

with information advantage wins the prize less frequently than his opponent.

Proof. Assume that player 2 has information advantage over player 1, and let (X1; X2) be

an interior equilibrium. By Proposition 6

E

�
X1

X1 +X2

�
= E

"
X1

X1 +
p
X1

p
E[V j F2]�X1

#

= E

" p
X1p

E[V j F2]

#

=
1

2
E

24E
hp
E [V j F2] j F1

i
p
E[V j F2]

35
(by Jensen�s Inequality) � 1

2
: �
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Example 2 describes an eight-player classic Tullock contest in which a player who has

an information advantage over the other players wins the prize more frequently than every

other player, which shows that Proposition 7 does not extend to contests with more than

two players.

Example 2 Consider an eight-player classic Tullock contest in which 
 = f!1; !2g, p(!1) =
1=2, V (!1) = 1; and V (!2) = 2. Player 8 observes the value; all the other players have only

the prior information. The unique equilibrium X of this contest is X1 = ::: = X7 = (x; x)

and X8 = (0; y), where

x =
7
p
229 + 139

1575
; y =

56
p
229� 238
1575

:

Thus, the ex-ante probability that player i 2 f1; 2; :::; 7g wins the prize is

1

2
(
1

7
+

x

7x+ y
) =

p
229 + 37

420
;

whereas the ex-ante probability that player 8 win the prize is

1� 7
 p

229 + 37

420

!
=
161� 7

p
229

420
>

p
229 + 37

420
:

Next we examine the impact of information advantages on payo¤s. More information

allows an individual to better tune his actions to the realized state of nature. However, in

a strategic setting the lack of information serves as a potentially useful commitment instru-

ment, and hence having more information is a mixed blessing, which impact on payo¤s is

generally dubious. Proposition 8 establishes that in a two-player classic Tullock contest the

expected payo¤ of a player with information advantage is greater or equal to that of his op-

ponent; that is, information advantages are rewarded. Warneryd (2003) derives an analogous

result for contests in which one player has full information and the other player has only the

prior information, and in which the value is a continuous random variable. Proposition 7,

however, involves no assumption about the value, and applies to any information advantage,

not necessarily the extreme information advantage assumed in Warneryd (2003).

Proposition 8. In the interior equilibrium of a two-player classic Tullock contest the payo¤

of a player with information advantage is greater than or equal to that of his opponent.
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Proof. Assume that player 2 has information advantage over other player 1; i.e., F1 � F2;
and let X be the interior equilibrium. Since E [X1] = E [X2] by Corollary 4, we show that

E[u2(�; X (�)]� E[u1(�; X (�)] = E

�
X2V

X1 +X2

�X2

�
� E

�
X1V

X1 +X2

�X1

�
= E

�
X2 �X1

X1 +X2

V

�
� 0:

Using the formulae of Proposition 6 we get

E

�
X2 �X1

X1 +X2

V

�
= E

"p
X1

p
E[V j F2]�X1 �X1

X1 +
p
X1

p
E[V j F2]�X1

V

#

= E

"p
X1

p
E[V j F2]� 2X1p
X1

p
E[V j F2]

V

#

= E [V ]� 2E
" p

X1p
E[V j F2]

V

#

= E [V ]� E

24E
hp
E [V j F2] j F1

i
p
E[V j F2]

V

35 :
We show that 0@E

24E
hp
E [V j F2] j F1

i
p
E[V j F2]

V

351A2

� (E [V ])2 ;

which establishes the proposition. By Jensen�s Inequality

E

��
E
hp
E [V j F2] j F1

i�2�
� E[V ]:

Also

E

�
V

E[V j F2]

�
= E

�
E

�
V

E[V j F2]
j F2

��
= E

�
E[V j F2]
E[V j F2]

�
= 1:

Hence0@E
24E

hp
E [V j F2] j F1

i
p
E[V j F2]

V

351A2

=

 
E

"�
E
hp
E [V j F2] j F1

ip
V
�s V

E[V j F2]

#!2

(by Cauchy-Schwartz�s Inequality) � E

��
E
hp
E [V j F2] j F1

ip
V
�2�

E

�
V

E[V j F2]

�
= E

��
E
hp
E [V j F2] j F1

ip
V
�2�

(by Cauchy-Schwartz�s Inequality) � E

��
E
hp
E [V j F2] j F1

i�2�
E[V ]

(by Jensen�s Inequality) � (E[V ])2 : �
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Proposition 9, our last result, shows that (with some quali�cation) information advan-

tages are rewarded in classic Tullock contests with any number of players. Proposition 9 is

proved by observing a formal equivalence between a Tullock contest and a Cournot oligopoly

with asymmetric information, and by appealing to (the proof of) a result of Einy et al. (2002)

which shows that the equilibria of such industries have the desired property. It applies to

both interior and corner equilibria, but it does not imply Proposition 8, as it assumes that

in equilibrium total e¤ort is bounded above zero.

Proposition 9. Let X be an equilibrium of a classic Tullock contest such that inf
Pn

j=1Xj >

0: If player i has information advantage over other player j; i.e., Fj � Fi, then E[ui(�; X (�)] �
E[uj(�; X (�)]:

Proof. For X = (X1; :::; Xn) 2 S and ! 2 
; the payo¤ of each player i 2 N may be written

as

ui(!;X(!)) =
Xi(!)Pn
j=1Xj(!)

V (!)� c(Xi(!))

= P (!;
Xn

j=1
Xj(!))Xi(!))� C(!;Xi(!));

where the functions P : 
� R++ ! R+ and C : 
� R+ ! R+ are de�ned as

P (!; x) =
V (!)

x
; and C(!; x) = c(x): (10)

Thus, if X is an equilibrium of the contests, then X is an equilibrium of the oligopolistic

industry (N; (
;F ; p); (Fi)i2N ; P; C); where P is the inverse market demand and C is the

�rms�cost function.

Einy et al. (2002) show that an information advantage is rewarded in any equilibrium of

an oligopolistic industry under certain conditions on the inverse demand and cost functions:

Some of the conditions are not satis�ed, however, by the function P in (10). Fortunately,

the proof of Einy et al. (2002) applies to the present setting provided that

E

�
1Xi>0 �

d

dxi
ui(�; X (�)) j Fi

�
= 0 (11)

holds for every i 2 N: Equation (11) immediately yields equation (2.6) of Einy et al. (2002),
page 157, from which point on their proof applies without change. We establish that equation

(11) holds in the Appendix. �
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It is worth noticing that Proposition 9 that does not involve any assumption about

the information of the players whose information �elds are not being compared: a player�s

information advantage over another player (again, not necessarily an extreme advantage) is

rewarded regardless of the information endowments of the other players; that is, its conclusion

holds whenever two players have rankable information.

We conclude with a remark showing that the quali�cation in Proposition 9 on the sum

of equilibrium e¤orts being bounded above zero holds under some general conditions. The

proof of this remark is given in the Appendix.

Remark 4. Let X be an equilibrium of a classic Tullock contest in which either (i) F1; :::;Fn
are �nite, or (ii) n = 2 and inf V > 0: If player i has information advantage over player j;

then E[ui(�; X (�)] � E[uj(�; X (�)]:

6 Conclusions

We provide a general framework well suited for studying the outcomes generated by Tullock

contest under incomplete information. We characterize the equilibria of a contest as the

solutions to a system of equations involving conditional expectations. Simple calculations,

the use of the law of iterated expectation and well know inequalities allows us to derive

interesting properties equilibria. For a simple class of contests, which includes the widely

studied classic Tullock contests, equilibrium can be calculated explicitly.

In contests with symmetric information, the players�expected e¤ort increases (decreases)

with their level of information when exerting e¤ort is subject to diseconomies of scale that

grow at a large rate. In two-player contests with asymmetric information, a player with

information advantage exert less (more) e¤ort than his opponent when the diseconomies of

scale in exerting e¤ort increase at a large (small) rate �this result does not extend to contests

with more than two players.

Our results for two-player classic Tullock contests are clear cut: while both players exert

the same expected e¤ort regardless of their information, players exert more e¤ort when

they are symmetrically informed than when one of the players has information advantage.

Moreover, the player with information advantage capture more surplus than his opponent,

even though he wins the prize less frequently. Further, while the result on the equality of
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expected e¤ort and the frequency with which a player with information advantage wins the

prize do not extend to contests with more than two players, information advantages are

rewarded in classic Tullock contests with any number of players.

There are several interesting open questions. It is unclear whether the result on the

reward of information advantages extends to contests in which the cost of e¤ort is not

linear. Whereas Einy et al. (2002) provide an example showing that their result for Cournot

oligopolies does not extend to industries in which �rms produce the good with diseconomies

of scale, �nding an example with this feature in our setting has shown to be elusive. Also, the

study of the equilibria of contests in which player�s information is not rankable is particularly

challenging. Our result for two-player Tullock contests, showing that when there are large

diseconomies of scale in exerting e¤ort, in expectation players exert more e¤ort when their

information is symmetric (and coarse) than when one player has information advantage

over the other, may suggest that a principal who organizes a contest with the objective of

maximizing expected total e¤ort should maintain participants symmetrically informed, and

minimize information disclosure. However, such conclusion is not warranted, since we do not

know how much e¤ort players exert when their information is non-rankable. Nevertheless,

we believe our framework and methods are suitable for these tasks.

7 Appendix

Proof of Proposition 1. Let X be an equilibrium and let i 2 N: For any " 2 R de�ne
X 0
i;" := maxfXi + "; 0g 2 Si: Inequality (4) implies

E[ui(�; X(�)) j Fi] � E[ui(�; X�i (�) ; X 0
i;" (�)) j Fi]:

It follows that, for any " > 0;

E

�
ui(�; X�i (�) ; X 0

i;" (�))� ui(�; X (�))
"

j Fi
�
� 0; (12)

and

E

�
ui(�; X�i (�) ; X 0

i;�" (�))� ui(�; X (�))
�" j Fi

�
� 0: (13)
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As Xi and X 0
i;�" are Fi-measurable and non-negative, multiplying by X 0

i;�" both sides of

inequalities (12) and (13) we obtain

E

�
Xi (�)�

ui(�; X�i (�) ; X 0
i;" (�))� ui(�; X (�))
"

j Fi
�
� 0 (14)

and

E

�
X 0
i;�" (�)�

ui(�; X�i (�) ; X 0
i;�" (�))� ui(�; X (�))
�" j Fi

�
� 0: (15)

For every ! 2 
 the function ui(!; x) is concave in the variable xi; and hence for any
" > 0 ����Xi (!)�

ui(!;X�i (!) ; X
0
i;" (!))� ui(!;X (!))
"

���� (16)

� Xi (!)�maxf
���� ddxiui(!;X (!))

���� ; ���� ddxiui(!;X�i (!) ; Xi;" (!))

����g (17)

and

����X 0
i;�" (!)�

ui(!;X�i (!) ; X
0
i;�" (!))� ui(!;X (!))
�"

���� (18)

� X 0
i;�" (!)�maxf

���� ddxiui(!;X (!))
���� ; ���� ddxiui(!;X�i (!) ; Xi;�" (!))

����g (19)

(The partial derivative d
dxi
ui (!; x) may not be de�ned when xi + x�i = 0: However, the

bounds in (17) and (19) vanish in such a case, being multiples of xi = 0, and are thus

well-de�ned.)

Since the cost function c is convex and strictly increasing, there exists b > 0 such that

c(b) > v := supV: (Recall that V has bounded support.) It follows that Xi is bounded from

above by b almost everywhere on 
, as otherwise the expected equilibrium payo¤ of player i

would be negative conditional on some positive-measure event Ai 2 Fi, making it pro�table
for player i to deviate to Yi = 1
nAi �Xi: Now, notice that

d

dxi
ui(!; x) =

x�i

(xi + x�i)
2V (!)� c

0(xi) (20)

whenever xi + x�i > 0: Since Xi � b as argued above, it can be easily seen from (20) that
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for all " 2 (0; 1] the random variables����Xi (�)�
d

dxi
ui(�; X (�))

���� ;����Xi (�)�
d

dxi
ui(�; X�i (�) ; Xi;" (�))

���� ;����X 0
i;�" (�)�

d

dxi
ui(�; X (�))

���� ; and����X 0
i;�" (�)�

d

dxi
ui(�; X�i (�) ; Xi;�" (�))

����
and are bounded from above by 1

2
v + c0(b + 1). (While the second factor in each of these

random variables may be undertermined, each such variable is 0 when the �rst factor is 0.)

In particular, the terms in (17) and (19) are bounded from above by 1
2
v+ c0(b+1) when " 2

(0; 1]. Additionally, for every ! 2 


lim
"!0+

Xi (!)�
ui(!;X�i (!) ; X

0
i;" (!))� ui(!;X (!))
"

(21)

= lim
"!0+

X 0
i;�" (!)�

ui(!;X�i (!) ; X
0
i;�" (!))� ui(!;X (!))
�"

= Xi (!)�
d

dxi
ui(!;X (!)):

Given (16)-(17), (18)-(19), and the boundedness arguments above, (21) leads to the following

equalities by the conditional dominated convergence theorem (see Corollary 3.1.1 (iv) in

Borkar (1995)):

lim
"!0+

E

�
Xi (�)�

ui(�; X�i (�) ; X 0
i;" (�))� ui(�; X (�))
"

j Fi
�

(22)

= lim
"!0+

E

�
X 0
i;�" (�)�

ui(�; X�i (�) ; X 0
i;�" (�))� ui(�; X (�))
�" j Fi

�
= E

�
Xi (�)�

d

dxi
ui(�; X (�)) j Fi

�
:

From (14), (15) and (22) we now obtain

E

�
Xi (�)�

d

dxi
ui(�; X (�)) j Fi

�
= 0:
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Using (20) this becomes

0 = E

"
XiX�i�

Xi +X�i
�2V �Xic

0(Xi) j Fi

#

= E

"
XiX�i�

Xi +X�i
�2V j Fi

#
� E [Xic

0(Xi) j Fi]

= E

"
XiX�i�

Xi +X�i
�2V j Fi

#
�Xic

0(Xi);

i.e.,

'(Xi) = E

"
XiX�i�

Xi +X�i
�2V j Fi

#
: �

Proof of equation (11) used in the proof of Proposition 9. Let X be an equilibrium

of the contest. We rely on the proof of the �rst part of Proposition 1 and the notations

therein. Note �rst that for every ! 2 


lim
"!0+

1Xi>0 (!) �
ui(!;X�i (!) ; X

0
i;" (!))� ui(!;X (!))
"

(23)

= lim
"!0+

1Xi>0 (!) �
ui(!;X�i (!) ; X

0
i;�" (!))� ui(!;X (!))
�"

= 1Xi>0 (!) �
d

dxi
ui(!;X (!)):

Next, for every ! the function ui(!; x) is concave in the variable xi; and hence for any

" 2
�
0; a

2

�
and ! 2 
 ����ui(!;X�i (!) ; X

0
i;" (!))� ui(!;X (!))
"

���� (24)

� maxf
���� ddxiui(!;X (!))

���� ; ���� ddxiui(!;X�i (!) ; Xi;" (!))

����g
and

����ui(!;X�i (!) ; X
0
i;�" (!))� ui(!;X (!))
�"

���� (25)

� maxf
���� ddxiui(!;X (!))

���� ; ���� ddxiui(!;X�i (!) ; Xi;�" (!))

����g:
As Xi is bounded by some b (as argued in the proof of Proposition 1), and inf

P
i2N Xi :=

a > 0 by assumption (implying in particular that �X�i +Xi;�" � a
2
for " 2

�
0; a

2

�
), it follows
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from (20) that the right-hand side functions in both (24) and (25) are bounded from above

by 4b+2a
a2
v + c0(b + a

2
) when " 2

�
0; a

2

�
. Using this fact, (23), and the conditional dominated

convergence theorem, we obtain

lim
"!0+

E

�
1Xi>0 (�)�

ui(�; X�i (�) ; X 0
i;" (�))� ui(�; X (�))
"

j Fi
�

(26)

= lim
"!0+

E

�
1Xi>0 (�)�

ui(�; X�i (�) ; X 0
i;�" (�))� ui(�; X (�))
�" j Fi

�
= E

�
1Xi>0 (�)�

d

dxi
ui(�; X (�)) j Fi

�
:

As 1Xi>0 is Fi-measurable and can be extracted from the expectation, by using (??) �with

all three terms multiplied by 1Xi>0 �and (26), we obtain

E

�
1Xi>0 (�)�

d

dxi
ui(�; X (�)) j Fi

�
= 0;

which is the desired (11). �

Proof Remark 4. We show that if either conditions (i) or (ii) hold, then in any equilibrium

of a classic Tullock contest X the inequality inf
Pn

j=1Xj > 0 holds, and hence the conclusion

of Remark 4 follows from Proposition 9.

Case (i). As
P

i2N Xi is measurable w.r.t. _i2NFi (the smallest �-�eld containing each Fi),
which is �nite, the probabilities p

�P
i2N Xi � a

�
can take only �nitely many values in [0; 1]:

Let � = maxa>0 p
�P

i2N Xi � a
�
; and suppose that it is attained at a0 > 0: By Remark 1,P

i2N Xi > 0 in any equilibrium X, and hence lima&0 p
�P

i2N Xi � a
�
= p

�P
i2N Xi > 0

�
= 1: Therefore � = 1 and a0 is the desired bound for the equilibrium sum of e¤orts.

Case (ii). Assume w.l.o.g. that player 2 has an information advantage over player 1. Write

v := inf V and �v = supV; and let " > 0 be such that c(3") < v
4
: (Such value exists since

c(0) = 0 and c is continuous at 0:) Also, let a 2 (0; ") be such that

2a

"+ 2a
<

�
c(")� c( "

2
)
�

v
:

(Such value exists because the left-hand side vanishes when a ! 0+; while the right-hand

side is positive.) Now consider an equilibrium X in the contest. We will show that X1 � a.
Assume by the way of contradiction that this is false. Then there exists a positive-measure

set A1 2 F1 such that X1 < a on A1: We show that X2 � " a.e. on A1:
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Indeed, suppose to the contrary that X2 > " on some positive-measure A2 2 F2 which is
a subset of A1. Consider a strategy

X 0
2 =

"

2
� 1A2 +Xi � 1
nA2

in S2: Then, by switching from X2 to X 0
2, player 2 decreases his expected reward by at most

2a
"+2a

v �p(A2); and simultaneously decreases his expected cost by at least
�
c(")� c( "

2
)
�
�p(A2):

By the choice of a; the �rst expression is smaller than the second; and hence deviating to

X 0
2 is, in expectation, pro�table for player 2; in contradiction to X being an equilibrium.

It follows that maxfX1; X2g � " a.e. on A1. Let i be a player for whom E(�i(X) j A1) �
1
2
; and consider a strategy

X 00
i = 3" � 1A1 +Xi � 1
nA1

Since A1 2 F1 � F2; X 00
i is measurable w.r.t. both F1 and F2: Hence X 00

i 2 Si: Notice

that �i(X) � �i(X�i; X
00
i ) a.e. on A1; and that E(�i(X�i; X

00
i ) j A1) � 3

4
(this is due to the

fact that, a.e. on A1; �i(X�i; X
00
i ) � 3"

3"+"
= 3

4
): Thus, by switching from Xi to X 00

i player

i improves his expected reward by at least 1
4
v � p(A1); while incurring an expected cost

increase of at most c(3") � p(A1): By the choice of "; such a deviation leads to a net gain in
the expected utility, in contradiction to X being an equilibrium. We conclude that, indeed,

X1 � a: �
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