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Abstract

We study round-robin tournaments with either three or four symmetric players whose values of

winning are common knowledge. In the round-robin tournament with three players there are three

stages, each of which includes one match between two players. The player who wins in two matches wins

the tournament. We characterize the sub-game perfect equilibrium and show that each player maximizes

his expected payo¤ and his probability to win if he competes in the �rst and the last stages of the

tournament. In the round-robin tournament with four players there are three rounds, each of which

includes two sequential matches where each player plays against a di¤erent opponent in every round.

We characterize the sub-game perfect equilibrium and show that a player who plays in the �rst match

of each of the �rst two rounds has a �rst-mover advantage as re�ected by a signi�cantly higher winning

probability as well as a signi�cantly higher expected payo¤ than his opponents.
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1 Introduction

Sequential all-pay (auctions) contests have been intensively studied as they have many real-life applications

including political lobbying (Becker 1983), patent races (Wright 1983), R&D races (Dasgupta 1986), job

promotion (Rosen 1986) and others. Most studies dealing with sequential all-pay contests assume a two-

stage contest under complete information. Leininger (1991) modeled a patent race between an incumbent

and an entrant as a sequential asymmetric all-pay contest under complete information, and Konrad and

Leininger (2007) characterized the equilibrium of the all-pay contest under complete information in which a

group of players choose their e¤ort �early�and the other group of players choose their e¤ort �late�. On the

other hand, Segev and Sela (2014a,b,c) studied sequential all-pay contests under incomplete information in

which every player plays only in one stage of the contest. They found a �rst-mover disadvantage in their

model and suggested giving a head-start to the player in the �rst stage. We study here a more complicated

form of multi-stage contests in which every player plays in each stage of the contest. This form of multi-stage

contest is known as the round-robin tournament.

Sportive events are commonly organized as round-robin tournaments, two well known examples being

professional football and basketball leagues. In the round-robin tournament, every individual player or

team competes against all the others and in every stage a player plays a pair-wise match against a di¤erent

opponent. Sometimes sportive events can also be organized as a combination of a round-robin tournament in

the �rst part of the season and then as an elimination tournament in the second part where in the elimination

tournament, players play pair-wise matches and the winner advances to the next round while the loser is

eliminated from the competition. Examples of such combinations include US-Basketball, NCAA College

Basketball, the FIFA (soccer) World Cup Playo¤s and the UEFA Champions� League. The elimination

tournament structure has been widely analyzed in the literature on contests. For example, Rosen (1986)

studied an elimination tournament with homogeneous players where the probability of winning a match

is a stochastic function of the players�e¤orts. Gradstein and Konrad (1999) and Harbaugh and Klumpp

(2005) studied a rent-seeking contest à la Tullock (with homogenous players). Groh et al. (2012) studied

an elimination tournament with four asymmetric players where players are matched in the all-pay auction
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in each of the stages and they found optimal seedings for di¤erent criteria. In contrast to elimination

tournaments, the literature on round-robin tournaments seems to be quite sparse, the reason being the

complexity of its analysis. This paper attempts to �ll this gap by studying three-player and four-player

round-robin tournaments with three stages where in each of the stages, a player competes against a di¤erent

opponent in the all-pay auction.1

The outcomes of sequential contests such as round-robin tournaments are obviously a¤ected by the timing

of the play, namely, the order of the players in the contest. In other words, the allocation of players in the

sequential contest a¤ects their probabilities to win as well as their expected payo¤s. In the round-robin

tournaments we study here, we will show that the �rst mover has a meaningful advantage.

In the round-robin tournaments with three players every player competes against all the others and in

every stage two players compete against each other in an all-pay contest. Thus, there are three rounds

where in each round only one match takes place. We characterize the sub-game perfect equilibrium of the

three-player round-robin tournament when the players are symmetric, namely, they have the same value of

winning the tournament. We prove that the expected payo¤ of each player is maximized when he competes

in the �rst and the last stages of the tournament. This result is not straightforward since it is not clear

why a player prefers to play in the last stage while there is a positive probability that the winner of the

tournament will be decided before the last (third) stage and then there is not any meaning to the match in

that stage. However, the intuition for this result is that a player who wins the �rst match has an advantage

and he prefers to play in the last stage since there is a signi�cant probability that his opponent in the last

stage will not have an incentive to compete and then he will win the tournament without wasting much

e¤ort.

In the round-robin tournaments with four players every player competes against all the others and in

every stage a player plays a pair-wise match against a di¤erent opponent in an all-pay contest. There are

three rounds where in each round two matches take place. The two matches in each round are scheduled one

1Three-player round-robin tournaments can be found in the real life, for example, the badminton tournament in the Olympic

Games, London 2012, was organized in the form of a three-player round-robin tournament. In addition, three-player round-robin

tournaments are also used in soccer, rugby and even in debates competitions. Four-player round-robin tournaments are very

common in soccer, basketball, tennis and many other sport branches.
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after another as we can see in many real-life round-robin tournaments. Thus, we have six di¤erent matches

that take place one after another in three rounds such that in every round there are two sequential matches.

In this case there is always one player who plays in the �rst match of the �rst two rounds. We show that

this allocation allows the possibility of a signi�cant �rst mover advantage.

We characterize the sub-game perfect equilibrium of the round-robin tournament with four symmetric

players and prove that the player who plays in the �rst match in each of the �rst two rounds, namely, matches

1 and 3, has a signi�cantly higher probability to win the tournament as well as a signi�cantly higher expected

payo¤ than his opponents. Although all the four players are ex-ante symmetric, the player who plays in

the �rst match of each of the two rounds has a winning probability that is more than twice higher than the

player with the second highest probability of winning and he also has an expected payo¤ that is more than

seven (!) times higher than the player with the second highest expected payo¤. Thus, we conclude that

in round-robin tournaments with four players a contest designer should consider scheduling all the matches

in the same round at the same time in order to obstruct any possible meaningful advantage to one of the

players.

The intuition behind the above result is that if the �rst mover in the �rst two rounds wins, the rest of the

players will be discouraged since even if they win in the �rst matches their probabilities of winning as well

as their expected payo¤ will be lower than that of the �rst mover. This creates ahead-behind asymmetry,

which decreases players�e¤orts and therefore increases the asymmetry of winning probabilities and expected

payo¤s between the player with the �rst mover advantage and the other players.

Another interesting result that we �nd is that the order of matches in the last round has no e¤ect on the

players�winning probabilities and their expected payo¤s. This result is quite surprising given that although

in our round-robin tournaments there are only three rounds, independent of the results of the �rst two

rounds, the matches in the �nal round do not really a¤ect the �nal results. The intuition for this result

derives from the previous one about the �rst-mover advantage. Since the �rst-mover advantage is so strong

the tournament is (almost) decided with a relatively high probability before the last round such that the

matches in the last round do not a¤ect the �nal outcome. Thus, against our intuition, we conclude that if

there are attractive matches between two opponents, it is better to allocate them in one of the �rst two
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rounds of the round-robin tournament.

The existence of the �rst mover advantage has sparked much heated debate in both the theoretical and

empirical economic literature. According to the theoretical studies of Kingston (1976) and Anderson (1977),

in a contest between two players, a player who has the �rst mover advantage in the best of k (k � 3 is an odd

number) stages has a higher probability to win than his opponent no matter how the moves are alternated.2

Likewise a �eld study performed by Magnus and Klaasen (1999) revealed that serving �rst in the �rst set

in the Wimbledon Grand Slam tennis tournament provides an advantage to win the set. And in another

paper, Apestigua and Palacios-Huerta (2010) found that in soccer penalty shoot-outs, the �rst-kicking team

has a signi�cant margin of twenty one percent points over the second team. However, on a di¤erent sample

of soccer shoot-outs Kocher, Lenz and Sutter (2012) found that the �rst-kicking team�s winning percentage

was not signi�cantly di¤erent from �fty percent. In addition, in an experimental study involving young

Italian basketball players, Feri, Innocenti and Pin (2013) found no �rst mover advantage in a two-player

free-throw shooting contest in which the leader shoots �ve baskets one after another and then the follower

shoots his �ve baskets. Moreover, they observed that second movers performed signi�cantly better under

psychological pressure. This same second mover advantage was found in an empirical study of Page and Page

(2007) who showed that there is advantage of playing in the second home leg game in soccer European Cups

tournaments. Krumer (2013) explained their result theoretically by assuming existence of a psychological

advantage.

Our paper is also related to the statistical literature on the design of various forms of tournaments.

The pioneering paper3 is David (1959) who considered the winning probability of the top player in a four

player tournament with a random seeding. This literature assumes that, for each match among players i

and j; there is a �xed, exogenously given probability that i beats j: In particular, this probability does not

depend on the stage of the tournament where the particular match takes place nor on the identity of the

expected opponent at the next stage. In contrast, in our round-robin model each match among two players

is an all-pay auction. As a result, winning probabilities in each match become endogenous in that they

2The analysis of our model is related to the analysis of the best-of-k tournaments (see, Konrad and Kovenock (2009), Malueg

and Yates (2010), Sela (2011) and Krumer (2013)) in which the winner is the one who is �rst to win k+1
2

games.
3See also Glenn (1960) and Searles (1963) for early contributions.
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result from mixed equilibrium strategies, and are positively correlated to win valuations. Moreover, the win

probabilities depend on the stage of the tournament where the match takes place, and on the identity of the

future expected opponents.

The paper is organized as follows: Section 2 presents the equilibrium analysis of the round-robin tour-

nament with three symmetric players and Section 3 presents the equilibrium analysis of the round-robin

tournament with four symmetric players. Section 4 concludes. All the possible paths in the tournaments are

presented by tree games in Appendix A and some of the calculations appear in Appendix B.

2 The round-robin tournament with three players

Consider three symmetric players (or teams) i = 1; 2; 3 who compete in a round-robin all-pay tournament.

In each stage t; t = 1; 2; 3 there is a di¤erent pair-wise match such that each player competes in two di¤erent

stages. The player who wins two matches wins the tournament and in the case that each player wins only

once, each of them wins the tournament with the same probability. If one of the players wins in the �rst

two stages, the winner of the tournament is then decided and the players in the last stage exert e¤orts that

approach zero. We model each match among two players as an all-pay auction; both players exert e¤orts,

and the one exerting the higher e¤ort wins. Without loss of generality assume that player i0s value of winning

the tournament is v = 1 and his cost function is c(xi) = xi, where xi is his e¤ort.

We �rst explain how players�strategies are calculated in each match of the tournament. Suppose that

players i and j compete in match g; g = 1; 2; 3:We denote by pij the probability that player i wins the match

against player j and by Ei; Ej the expected payo¤s of players i and j, respectively. The mixed strategies of

the players in game g will be denoted by Fkg(x); k = i; j: Assume now that if player i wins in this match, his

conditional expected payo¤ in the tournament is wig given the previous outcomes and the possible future

outcomes. Similarly, if player i loses in this match, his conditional expected payo¤ in the tournament is lig.

Without loss of generality, assume that wig � lig > wjg � ljg: Then, according to Baye, Kovenock and de

Vries (1996), there is always a unique mixed-strategy equilibrium in which players i and j randomize on the
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interval [0; wjg � ljg] according to their e¤ort cumulative distribution functions, which are given by

Ei = wigFjg(x) + lig(1� Fjg(x))� x = ljg + wig � wjg

Ej = wjgFig(x) + ljg(1� Fig(x))� x = ljg

Thus, player i�s equilibrium e¤ort in match g is uniformly distributed; that is

Fig(x) =
x

wjg � ljg

while player j�s equilibrium e¤ort is distributed according to the cumulative distribution function

Fjg(x) =
ljg � lig + wig � wjg + x

wig � lig

Player j0s probability to win against player i is then

pji =
wjg � ljg
2(wig � lig)

In order to analyze the sub-game perfect equilibrium of the round-robin tournament with three symmetric

players we begin with the last stage of the tournament and go backwards to the previous stages. Figure

1 presents the symmetric round-robin tournament as a tree game. We denote by p�ij the probability that

player i wins against player j in vertex � of the tree game. [Figure 1 about here].

2.1 Stage 3 - player 2 vs. player 3

Players 2 and 3 compete in the last stage only if at least one of them won in the previous stages. Thus, we

have the following three scenarios:

1. Assume �rst that player 2 won the match in the �rst stage and player 3 won the match in the second

stage (vertex A in Figure 1). Then if each of the players wins in stage 3, he also wins the tournament. Thus,

following Hillman and Riley (1989) and Baye, Kovenock and de Vries (1996), there is always a unique mixed

strategy equilibrium in which both players randomize on the interval [0; 1] according to their cumulative

distribution functions F (3)i ; i = 2; 3 which are given by

1 � F (3)i (x)� x = 0 i = 2; 3 (1)
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Then, player 2�s probability to win in the third stage is

pA23 = 0:5

2. Assume now that player 2 won the match in the �rst stage and player 3 lost the match in the second

stage (vertex B in Figure 1). Then, if player 2 wins in this stage, he wins the tournament and his payo¤ is

1; whereas player 3�s payo¤ is zero. But, if player 3 wins in this stage, then each of the players has exactly

one win, and then each of the players has an expected payo¤ of 1=3. Thus, we obtain that players 2 and

3 randomize on the interval [0; 1=3] according to their e¤ort cumulative distribution functions F (3)i ; i = 2; 3

which are given by

1 � F (3)3 (x) +
1

3
� (1� F (3)3 (x))� x =

2

3
(2)

1

3
� F (3)2 (x)� x = 0

Then, player 2�s probability to win in the third stage is

pB23 = 1�
1

4
= 0:75

3. Finally, assume that player 2 lost the match in the �rst stage and player 3 won the match in the

second stage (vertex C in Figure 1). Then, similarly to the previous case, we obtain that players 2 and 3

randomize on the interval [0; 1=3] according to their e¤ort cumulative distribution functions F (3)i ; i = 2; 3

which are now given by

1 � F (3)2 (x) +
1

3
� (1� F (3)2 (x))� x =

2

3
(3)

1

3
� F (3)3 (x)� x = 0

Then, player 20s probability to win in the third stage is

pC23 = 0:25

2.2 Stage 2 - player 1 vs. player 3

Based on the results of the match in the �rst stage, we have two possible scenarios:
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1. Assume �rst that player 1 lost the match in the �rst stage (vertex D in Figure 1). Then, if player 3

wins in this stage, by (1) his expected payo¤ in the next stage is zero. If player 3 loses in this stage, by (2)

his expected payo¤ is zero as well. Thus, in such a case, player 3 has no incentive to exert a positive e¤ort

and player 1 wins in this stage with a probability of one.4

2. Assume now that player 1 won the match in the �rst stage (vertex E in Figure 1). Then, if he wins

again in this stage he also wins the tournament and therefore his payo¤ is 1: The other players�payo¤s are

then zero. However, if player 1 loses in this stage, then by (3) player 3�s expected payo¤ is 2=3 and player

1�s expected payo¤ depends on the result of the match between players 2 and 3 in the last stage. If player 3

wins in the last stage, which happens with a probability of 0.75, player 1�s expected payo¤ is zero. On the

other hand, if player 2 wins in the last stage which happens with a probability of 0.25, each of the players

has one win and therefore an expected payo¤ of 1=3. In sum, if player 1 loses in this stage, his expected

payo¤ is 1=12:

Thus, we obtain that players 1 and 3 randomize on the interval [0; 2=3] according to their e¤ort cumulative

distribution functions F (2)i ; i = 1; 3 which are given by

1 � F (2)3 (x) +
1

12
� (1� F (2)3 (x))� x =

1

3
(4)

2

3
� F (2)1 (x)� x = 0

Then, player 1�s probability to win in the second stage is

pE13 = 1�
8

22
=
7

11

2.3 Stage 1 - player 1 vs. player 2

If player 1 wins the match in the �rst stage (vertex F in Figure 1), by (4) his expected payo¤ in the next

stage is 1=3. But if player 1 loses the match in the �rst stage, he has an expected payo¤ of 1=3 only if he

wins in the second stage which happens with a probability of one, and player 2 loses against player 3 in the

4 It is important to note that when a player has no incentive to exert a positive e¤ort we actually do not have an equilibrium.

However, in order to solve this problem, similarly to Groh et al. (2012), we can assume that each player obtains a payment

k > 0, independent from his performance, and then we consider the limit behavior as k ! 0. This assumption does not a¤ect

the players�behavior in our model but ensures the equilibrium existence.
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last stage which happens with a probability of 0:25. Thus, if player 1 loses in the �rst stage his expected

payo¤ in the next stage is 1=12:

Now, if player 2 wins the match in the �rst stage (vertex F in Figure 1), player 1 wins for sure in the

second stage and then by (2) player 2�s expected payo¤ is 2=3: However, if player 2 loses the match in the

�rst stage, and player 1 wins also in the second stage player 2 has an expected payo¤ of zero. Furthermore,

even if player 1 loses in the second stage, by (3) player 2 has an expected payo¤ of zero. Thus, we obtain that

players 1 and 2 randomize on the interval [0; 1=4] according to their e¤ort cumulative distribution functions

F
(1)
i ; i = 1; 2 which are given by

1

3
� F (1)2 (x) +

1

12
� (1� F (1)2 (x))� x =

1

12
(5)

2

3
� F (1)1 (x)� x =

5

12

Then, player 1�s probability to win in the �rst stage is

pF12 =
3

16

By the above analysis we obtain:

Proposition 1 In the sub-game perfect equilibrium of the round-robin tournament with three symmetric

players, the players� expected payo¤s are as follows: player 1�s expected payo¤ is 1=12; player 2�s is 5=12;

and player 3�s is zero.

By the above analysis we also obtain:

Proposition 2 In the sub-game perfect equilibrium of the round-robin tournament with three symmetric

players, the players�probabilities to win the tournament are as follows:

Player 1�s probability to win is

P1 = p
F
12 � pE13 +

pF12 � pE31 � pC23
3

+
pF21 � pD13 � pB32

3
= 0:193

Player 2�s probability to win is

P2 = p
F
21 � pD13 � pB23 + pF21 � pD31 � pA23 +

pF12 � pE31 � pC23
3

+
pF21 � pD13 � pB32

3
= 0:682
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and player 3�s probability to win is

P3 = p
F
12 � pE31 � pC32 + pF21 � pD31 � pA32 +

pF12 � pE31 � pC23
3

+
pF21 � pD13 � pB32

3
= 0:125

By Propositions 1 and 2 we can conclude that

Theorem 1 In the round-robin tournament with three symmetric players, the player who competes in the

�rst and the last stages has the highest probability to win the tournament as well as the highest expected

payo¤.

Theorem 1 demonstrates the �rst-mover advantage in the round-robin tournament with three symmetric

players where the player who does not play in the �rst stage (player 3) has the lowest probability to win the

tournament as well as the lowest expected payo¤. In the next section we show that the �rst-mover advantage

is even stronger in the round-robin tournament with four symmetric players.

3 The round-robin tournament with four players

Consider four symmetric players (or teams) competing for a single prize in the round-robin tournament.

Without loss of generality assume that the players� value of winning the tournament is v = 1 and this

value is commonly known. As previously, the players play pair-wise matches and each match between two

players is modelled by an all-pay contest where both players simultaneously exert e¤orts, and the player

with the higher e¤ort wins the match. In this tournament the players compete one time against each of their

opponents in sequential matches, such that every player plays three matches. We consider three rounds,

denoted by r = 1; 2; 3 , where each player plays one match in each round, and there are two sequential

matches in each round. Thus, there are six di¤erent matches in the tournament denoted by g = 1; 2; 3; 4; 5; 6.

Player i�s cost in match g is c(xig) = xig where xig is his e¤ort. A player that wins the highest number of

matches wins the tournament. In the case that two or more players have the same highest number of wins,

there will be a draw to determine the winner of the tournament. If one of the players has three wins before

the last match, the winner of the tournament is decided and the players exert e¤orts that approach zero in

the later matches.

11



Suppose that players i and j compete in match g; g = 1; 2; 3; 4; 5; 6: As in the previous section we denote

by pij the probability that player i wins the match against player j and by Ei; Ej the expected payo¤s of

players i and j, respectively. The mixed strategies of the players in game g will be denoted by Fkg(x); k = i; j:

While in a round robin tournament with four asymmetric players there are many possible allocations of

players in the six matches, in our model with four symmetric players there are only two di¤erent allocations

of players. The �rst possible allocation is when one of the players always plays in the �rst match of each

round, namely, he plays in matches 1, 3 and 5. In the second, one of the players always plays in the second

match of each round, namely, he plays in matches 2,4 and 6. Any other allocation of the players is equivalent

to one of these two possible allocations because of the symmetry among the players. Below we analyze the

sub-game equilibrium in the round robin tournament with four players for each possible allocation of players.

In each possible allocation we calculate for every possible match the players�strategies, their expected payo¤s

and their probabilities of winning.

3.1 Case A: One of the players always plays in the �rst match of each round

Assume that player 1 always plays in the �rst match of each round. Then, without loss of generality, the

order of the games is

Round 1: Game 1: player 1 - player 2

Game 2: player 3 - player 4

Round 2: Game 3: player 1 - player 3

Game 4: player 2 - player 4

Round 3: Game 5: player 1 - player 4

Game 6: player 2 - player 3

Figures 2 and 3 in Appendix A present all the possible paths of this tournament. [Figures 2 and 3 about

here]

As in the previous section in order to analyze the sub-game perfect equilibrium of the round-robin

tournament with four players we begin with the last match of the tournament and go backwards to the

previous matches. Because of the complexity of the analytical analysis, we provide only the �nal results of
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this analysis in Table 1 (Appendix B). These include the players�mixed strategies, their expected payo¤s

as well as their winning probabilities in each vertex (match) of the tree game given by Figures 2 and 3

(Appendix A). Similarly to the previous section we can assume that each player obtains a payment of k > 0

when he wins a single match, and then we can consider the limit behavior as k ! 0. This assumption

does not a¤ect the players�behavior in our model, but rather serves to ensure the existence of equilibrium.

The �rst result provides the ranking of the players�winning probabilities and their expected payo¤s and

emphasizes the �rst mover advantage.

Proposition 3 In the sub-game perfect equilibrium of the round-robin tournament with four symmetric

players, if player 1 plays in the �rst match of each of the rounds he has the highest expected payo¤ as well

as the highest probability to win the tournament.

Proof. By the analysis given in Table 1 (Appendix B) of the sub-game perfect equilibrium of the round-

robin tournament with four symmetric players when player 1 always plays in the �rst match of each round

(games 1, 3 and 5), player 2 plays in matches 1,4 and 6, player 3 plays in matches 2, 3 and 6, and player 4

plays in matches 2, 4 and 5, the players�expected payo¤s and their winning probabilities are

Player Expected payo¤ Winning probability

1 0:3 0:621

2 0:039 0:051

3 0:009 0:252

4 0:001 0:076

The intuition behind Proposition 3 can be explained by the �rst mover advantage. If player 1 wins in

the �rst match of the �rst round, then if his next opponent in the next round (player 3) also wins in the

�rst round, they both have the same probability to win in the second round. However, if his next opponent

loses in the �rst round then his probability to win against player 1 is extremely low. Moreover, if player 1

wins in the �rst match of the �rst round, then there is no chance that the winner of the tournament will be

decided before player 1�s last match (game 5). On the other hand, if player 2 wins against player 1 in the

�rst match of the �rst round, there is still a positive probability that the winner of the tournament will be
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decided before the last match of player 2 (Vertexes 38 and 40 in Figures 2 and 3). Furthermore, even if player

2 wins in the �rst match against player 1, player 3, and not player 2, will have the �rst mover advantage

since he will play in the �rst match of round 2 (game 3) against player 1, who has already lost one match

and now he becomes the underdog in the next match against player 3. Therefore, even if player 2 wins in

the �rst match against player 1, it doesn�t make him the favorite. This situation discourages player 2 and

reduces his (costly) exerted e¤orts in the �rst match such that player 1 wins with relatively high probability

in the �rst round which gives him an advantage over his opponents also in the following rounds.

3.2 Case B: One of the players always plays in the last match of each round

Assume now that player 4 always plays in the second match of each round. Then, without loss of generality,

the order of the games is

Round 1: Game 1: player 1 - player 2

Game 2: player 3 - player 4

Round 2: Game 3: player 1 - player 3

Game 4: player 2 - player 4

Round 3: Game 5: player 2 - player 3

Game 6: player 1 - player 4

Figures 4 and 5 (Appendix A) present all the possible paths of this tournament, and Table 2 (Appendix

B) provides the calculations of the players�expected payo¤s and their winning probabilities. [Figures 4 and

5 about here]; [Table 2 about here]. A comparison of the results given by Tables 1 and 2 reveals that the

players�expected payo¤s and their probabilities of winning in Case B are the same as in Case A. Therefore

we obtain the following main result.

Theorem 2 In the sub-game perfect equilibrium of the round-robin all-pay tournament with four symmetric

players, the player who plays in the �rst matches of each of the �rst two rounds has the highest expected

payo¤ as well as the highest probability to win the tournament.

It is important to emphasize that according to Theorem 2 the player who plays in the �rst matches of

the �rst two rounds has a winning probability that is 2.5 (!) times higher than the player with the second
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highest probability of winning and an expected payo¤ that is 7.7 (!) times higher than the player with the

second highest expected payo¤. Hence, the �rst-mover advantage in the round-robin tournament with four

symmetric players is quite dramatic and a¤ects the players�ex-ante probabilities to win the tournament.

If we compare the order of the games in cases A and B we can see that the di¤erence between them is

only in the last round. Thus, given that the players�expected payo¤s and their probabilities of winning in

Case B are the same as in Case A we obtain the following result.

Proposition 4 In the sub-game perfect equilibrium of the round-robin tournament with four symmetric

players, the order of the games in the last round of the tournament (games 5 and 6) has no e¤ect on the

players�expected payo¤s as well as on their winning probabilities.

The intuition behind Proposition 4 is that sequential contests are sometimes decided before the last stage

or they are almost surely decided such that the games in the last stages are completely not equal. Indeed,

in Case A there are 7 sub-cases in which the winner of the tournament is decided before the last match

(Vertexes 25, 26, 29, 30, 32, 38 and 40 in Figures 2 and 3). Moreover, in 12 other sub-cases the last match

(game 6) occurs with a probability of zero (Vertexes 1, 4, 8, 9, 12, 13, 14, 15, 16, 17, 22, 24 in Figures 2 and

3) and in 4 other sub-cases, even the �rst match in the last round (game 5) occurs with a probability of zero

(Vertexes 30, 31, 34 and 35 in Figures 2 and 3).

In Case B, we have a similar situation. There are 7 sub-cases in which the winner of the tournament is

decided before the last match (Vertexes 27, 28, 33, 35, 36, 37, 39 in Figures 4 and 5), 12 other sub-cases in

which the last game occurs with a probability of zero (Vertexes 3, 6, 8, 9, 10, 11, 12, 13, 16, 17, 19 and 21

of Figures 4 and 5) and 4 other sub-cases in which the �rst match of the last round (game 5) occurs with a

probability of zero (Vertexes 30, 31, 34 and 35 of Figures 4 and 5).

4 Concluding remarks

We �rst analyzed the sub-game perfect equilibrium of the round-robin tournaments with three asymmetric

players. We showed that a player�s expected payo¤ is maximized when he plays in the �rst and the last stages.

We then analyzed the sub-game perfect equilibrium of the round-robin tournament with four symmetric

15



players. We showed that a player who plays in the �rst match of each of the �rst two rounds has a signi�cantly

higher probability to win as well as a signi�cantly higher expected payo¤ than his opponents. These results

emphasize the �rst mover advantage in the round-robin tournaments and thus raises the question of fairness

in this form of tournaments. Therefore, even though the contest designer wishes to increase his revenue, in

light of the fair play principle, in the round-robin tournament with four players he might want to allocate

all the matches in the same round at the same time. The analysis of such a round-robin tournament where

all the matches at the same round are at the same time is much more complicated than the analysis of

our model where the matches are sequential in each round. Thus, a comparison of these two structures of

round-robin tournaments with four players is not simple.

We also found that the order of the matches in the last round of the tournament with four players has

no e¤ect on players�winning probabilities and their expected payo¤s. The reason is that there is a high

probability that the tournament will be decided before the last round and then some of the players will have

no real incentive to compete in the last round.

Further research could be extended to include several prizes in order to investigate whether the �rst

mover advantage exists in multi-prize round-robin tournaments. It would also be of interest to examine our

results in a laboratory setting or using real-world data.
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Figure 1: The tree game of the round-robin tournament with three symmetric players.

5 Appendix A

We present in Figure 1 all the possible paths of the round-robin tournament with three symmetric players,

and in Figures 2,3,4 and 5 we present the tree game of the round-robin tournaments for the two possible

allocations of players in the round-robin tournament with four symmetric players (Case A and Case B).

Each tree game describes all the possible paths in the round-robin tournament. Since there are 55 possible

matches (vertexes) in the tournament with four players, each tree game is exceedingly large and we have to

divide it into two parts.
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Figure 2: Part I of the tree game in Case A of the round-robin tournament with four symmetric players.

20



Figure 3: Part II of the tree game in Case A of the round-robin tournament with four symmetric players.
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Figure 4: Part I of the tree game in Case B of the round-robin tournament with four symmetric players.
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Figure 5: Part II of the tree game in Case B of the round-robin tournament with four symmetric players.
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6 Appendix B

In the following, we provide in every possible vertex (match) the players�mixed-strategies, their expected

payo¤s and their probabilities of winning. These results are summarized in Table 1 (Case A) and Table 2

(Case B) each of which includes 55 vertexes. We provide �rst the expected payo¤s and winning probabilities

of Case A by Table 1 and then of Case B in Table 2.
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Vertex 1:

E2 =
1
2 � F36(x)� x = 0

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Vertex 2:

E2 = 0 � F36(x)� x = 0

E3 =
1
3 � F26(x)� x =

1
3

p23 = 0

Vertex 3:

E2 =
1
3 � F36(x)� x = 0

E3 = 1 � F26(x) + 1
3 � (1� F26(x))� x =

2
3

p23 =
1
4

Vertex 4:

E2 =
1
2 � F36(x)� x = 0

E3 = 1 � F26(x) + 1
2 � (1� F26(x))� x =

1
2

p23 =
1
2

Vertex 5:

E2 = 0 � F36(x)� x = 0

E3 = 1 � F26(x) + 1
2 � (1� F26(x))� x = 1

p23 = 0

Vertex 6:

E2 = 0 � F36(x)� x = 0

E3 = 1 � F26(x) + 1
2 � (1� F26(x))� x = 1

p23 = 0

Vertex 7:

E2 =
1
3 � F36(x)� x =

1
3

E3 = 0 � F26(x)� x = 0

p23 = 1

Vertex 8:

E2 =
1
2 � F36(x)� x = 0

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Vertex 9:

E2 =
1
2 � F36(x)� x = 0

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Vertex 10:

E2 = 0 � F36(x)� x = 0

E3 =
1
3 � F26(x)� x =

1
3

p23 = 0

Vertex 11:

E2 = 1 � F36(x) + 1
3 � (1� F36(x))� x =

2
3

E3 =
1
3 � F26(x)� x = 0

p23 =
3
4

Vertex 12:

E2 = 1 � F36(x) + 1
2 � (1� F36(x))� x =

1
2

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Table 1 : Players0 expected payo�s and winning probabilities in Vertexes 1� 12 of Figures 2� 3:
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Vertex 13:

E2 =
1
2 � F36(x)� x = 0

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Vertex 14:

E2 =
1
2 � F36(x)� x = 0

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Vertex 15:

E2 = 1 � F36(x)� x = 0

E3 = 1 � F26(x)� x = 0

p23 =
1
2

Vertex 16:

E2 = 1 � F36(x)� x = 0

E3 = 1 � F26(x)� x = 0

p23 =
1
2

Vertex 17:

E2 =
1
2 � F36(x)� x = 0

E3 = 1 � F26(x) + 1
2 � (1� F26(x))� x =

1
2

p23 =
1
2

Vertex 18:

E2 =
1
3 � F36(x)� x = 0

E3 = 1 � F26(x) + 1
3 � (1� F26(x))� x =

2
3

p23 =
1
4

Vertex 19:

E2 = 1 � F36(x) + 1
2 � (1� F36(x))� x = 1

E3 = 0 � F26(x)� x = 0

p23 = 1

Vertex 20:

E2 = 1 � F36(x) + 1
2 � (1� F36(x))� x = 1

E3 = 0 � F26(x)� x = 0

p23 = 1

Vertex 21:

E2 =
1
3 � F36(x)� x =

1
3

E3 = 0 � F26(x)� x = 0

p23 = 1

Vertex 22:

E2 = 1 � F36(x) + 1
2 � (1� F36(x))� x =

1
2

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Vertex 23:

E2 = 1 � F36(x) + 1
3 � (1� F36(x))� x =

2
3

E3 =
1
3 � F26(x)� x = 0

p23 =
3
4

Vertex 24:

E2 =
1
2 � F36(x)� x = 0

E3 =
1
2 � F26(x)� x = 0

p23 =
1
2

Table 1 : Players0 expected payo�s and winning probabilities in Vertexes 13� 24 of Figure 3:
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Vertex 25:

E1 = 1 � F45(x) + 1
2 � (1� F45(x))� x = 1

E4 = 0 � F15(x)� x = 0

p14 = 1

Vertex 26:

E1 = 1 � F45(x) + 1
3 � (1� F45(x))� x =

2
3

E4 =
1
3 � F15(x)� x = 0

p14 =
3
4

Vertex 27:

E1 =
1
12 � F45(x)� x =

1
12

E4 = 0 � F15(x)� x = 0

p14 = 1

Vertex 28:

E1 = 0 � F45(x)� x = 0

E4 = 0 � F15(x)� x = 0

p14 =
1
2

Vertex 29:

E1 = 1 � F45(x) + 1
3 � (1� F45(x))� x =

2
3

E4 =
1
3 � F15(x)� x = 0

p14 =
3
4

Vertex 30:

E1 = 1 � F45(x)� x = 0

E4 = 1 � F15(x)� x = 0

p14 =
1
2

Vertex 31:

E1 =
1
2 � F45(x)� x = 0

E4 =
1
2 � F15(x)� x = 0

p14 =
1
2

Vertex 32:

E1 =
1
3 � F45(x)� x = 0

E4 = 1 � F15(x) + 1
3 � (1� F15(x))� x =

2
3

p14 =
1
4

Vertex 33:

E1 =
1
12 � F45(x)� x =

1
12

E4 = 0 � F15(x)� x = 0

p14 = 1

Vertex 34:

E1 =
1
2 � F45(x)� x = 0

E4 =
1
2 � F15(x)� x = 0

p14 =
1
2

Vertex 35:

E1 = 0 � F45(x)� x = 0

E4 = 0 � F15(x)� x = 0

p14 =
1
2

Vertex 36:

E1 = 0 � F45(x)� x = 0

E4 =
1
12 � F15(x)� x =

1
12

p14 = 0

Table 1 : Players0 expected payo�s and winning probabilities in Vertexes 25� 36 of Figures 2� 3:
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Vertex 37:

E1 = 0 � F45(x)� x = 0

E4 = 0 � F15(x)� x = 0

p14 =
1
2

Vertex 38:

E1 =
1
3 � F45(x)� x = 0

E4 = 1 � F15(x) + 1
3 � (1� F15(x))� x =

2
3

p14 =
1
4

Vertex 39:

E1 = 0 � F45(x)� x = 0

E4 =
1
12 � F15(x)� x =

1
12

p14 = 0

Vertex 40:

E1 = 0 � F45(x)� x = 0

E4 = 1 � F15(x) + 1
2 � (1� F15(x))� x = 1

p14 = 0

Vertex 41:

E2 = 0 � F44(x)� x = 0

E4 = 0 � F24(x)� x = 0

p24 =
1
2

Vertex 42:

E2 = 0 � F44(x)� x = 0

E4 = 0 � F24(x)� x = 0

p24 =
1
2

Vertex 43:

E2 =
1
12 � F44(x)� x =

1
12

E4 = 0 � F24(x)� x = 0

p24 = 1

Vertex 44:

E2 = 0 � F44(x)� x = 0

E4 =
2
3 � F24(x)� x =

2
3

p24 = 0

Vertex 45:

E2 =
2
3 � F44(x)� x =

2
3

E4 = 0 � F24(x)� x = 0

p24 = 1

Vertex 46:

E2 = 0 � F44(x)� x = 0

E4 =
1
12 � F24(x)� x =

1
12

p24 = 0

Vertex 47:

E2 = 1 � F44(x) + 1
12 � (1� F44(x))� x =

1
3

E4 =
2
3 � F24(x)� x = 0

p24 =
7
11

Vertex 48:

E2 =
2
3 � F44(x)� x = 0

E4 = 1 � F24(x) + 1
12 � (1� F24(x))� x =

1
3

p24 =
4
11

Table 1 : Players0 expected payo�s and winning probabilities in Vertexes 37� 48 of Figures 2� 3:
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Vertex 49:

E1 =
5
6 � F33(x) +

1
24 � (1� F33(x))� x =

1
24

E3 =
5
6 � F13(x) +

1
24 � (1� F13(x))� x =

1
24

p13 =
1
2

Vertex 50:

E1 =
2
3 � F33(x)� x =

7
12

E3 =
1
12 � F13(x)� x = 0

p13 =
15
16

Vertex 51:

E1 =
1
12 � F33(x)� x = 0

E3 =
2
3 � F13(x)� x =

7
12

p13 =
1
16

Vertex 52:

E1 = 0 � F33(x)� x = 0

E3 = 0 � F13(x)� x = 0

p13 =
1
2

Vertex 53:

E3 =
1
24 � F42(x)� x = 0

E4 =
1
24 � F32(x)� x = 0

p34 =
1
2

Vertex 54:

E3 =
7
12 � F42(x)� x =

95
192

E4 =
1
6 � F32(x) +

5
64 � (1� F32(x))� x =

5
64

p34 =
207
224

Vertex 55:

E1 =
5
16 � F21(x)� x =

1615
5376

E2 =
275
5376 � F11(x) +

5
128 (1� F11(x))� x =

5
128

p12 =
659
672

Table 1 : Players0 expected payo�s and winning probabilities in Vertexes 49� 55 of Figures 2� 3:
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Vertex 1:

E1 = 1 � F46(x) + 1
2 � (1� F46(x))� x = 1

E4 = 0 � F16(x)� x = 0

p14 = 1

Vertex 2:

E1 = 1 � F46(x) + 1
2 � (1� F46(x))� x = 1

E4 = 0 � F16(x)� x = 0

p14 = 1

Vertex 3:

E1 = 1 � F46(x) + 1
2 � (1� F46(x))� x =

1
2

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Vertex 4:

E1 = 1 � F46(x) + 1
3 � (1� F46(x))� x =

2
3

E4 =
1
3 � F16(x)� x = 0

p14 =
3
4

Vertex 5:

E1 =
1
3 � F46(x)� x =

1
3

E4 = 0 � F16(x)� x = 0

p14 = 1

Vertex 6:

E1 =
1
2 � F46(x)� x = 0

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Vertex 7:

E1 = 1 � F46(x) + 1
3 � (1� F46(x))� x =

2
3

E4 =
1
3 � F16(x)� x = 0

p14 =
3
4

Vertex 8:

E1 = 1 � F46(x) + 1
2 � (1� F46(x))� x =

1
2

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Vertex 9:

E1 = 1 � F46(x)� x = 0

E4 = 1 � F16(x)� x = 0

p14 =
1
2

Vertex 10:

E1 = 1 � F46(x)� x = 0

E4 = 1 � F16(x)� x = 0

p14 =
1
2

Vertex 11:

E1 =
1
2 � F46(x)� x = 0

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Vertex 12:

E1 =
1
2 � F46(x)� x = 0

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Table 2 : Players0 expected payo�s and winning probabilities in Vertexes 1� 12 of Figure 4
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Vertex 13:

E1 =
1
2 � F46(x)� x = 0

E4 = 1 � F16(x) + 1
2 � (1� F16(x))� x =

1
2

p14 =
1
2

Vertex 14:

E1 =
1
3 � F46(x)� x = 0

E4 = 1 � F16(x) + 1
3 � (1� F16(x))� x =

2
3

p14 =
1
4

Vertex 15:

E1 =
1
3 � F46(x)� x =

1
3

E4 = 0 � F16(x)� x = 0

p14 = 1

Vertex 16:

E1 =
1
2 � F46(x)� x = 0

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Vertex 17:

E1 =
1
2 � F46(x)� x = 0

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Vertex 18:

E1 = 0 � F46(x)� x = 0

E4 =
1
3 � F16(x)� x =

1
3

p14 = 0

Vertex 19:

E1 =
1
2 � F46(x)� x = 0

E4 =
1
2 � F16(x)� x = 0

p14 =
1
2

Vertex 20:

E1 =
1
3 � F46(x)� x = 0

E4 = 1 � F16(x) + 1
3 � (1� F16(x))� x =

2
3

p14 =
1
4

Vertex 21:

E1 =
1
2 � F46(x)� x = 0

E4 = 1 � F16(x) + 1
2 � (1� F16(x))� x =

1
2

p14 =
1
2

Vertex 22:

E1 = 0 � F46(x)� x = 0

E4 =
1
3 � F16(x)� x =

1
3

p14 = 0

Vertex 23:

E1 = 0 � F46(x)� x = 0

E4 = 1 � F16(x) + 1
2 � (1� F16(x))� x = 1

p14 = 0

Vertex 24:

E1 = 0 � F46(x)� x = 0

E4 = 1 � F16(x) + 1
2 � (1� F16(x))� x = 1

p14 = 0

Table 2 : Players0 expected payo�s and winning probabilities in Vertexes 13� 24 of Figures 4� 5
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Vertex 25:

E2 = 0 � F35(x)� x = 0

E3 = 0 � F25(x)� x = 0

p23 =
1
2

Vertex 26:

E2 = 0 � F35(x)� x = 0

E3 =
1
12 � F25(x)� x =

1
12

p23 = 0

Vertex 27:

E2 =
1
3 � F35(x)� x = 0

E3 = 1 � F25(x) + 1
3 � (1� F25(x))� x =

2
3

p23 =
1
4

Vertex 28:

E2 = 0 � F35(x)� x = 0

E3 = 1 � F25(x) + 1
2 � (1� F25(x))� x = 1

p23 = 0

Vertex 29:

E2 =
1
12 � F35(x)� x =

1
12

E3 = 0 � F25(x)� x = 0

p23 = 1

Vertex 30:

E2 = 0 � F35(x)� x = 0

E3 = 0 � F25(x)� x = 0

p23 =
1
2

Vertex 31:

E2 =
1
2 � F35(x)� x = 0

E3 =
1
2 � F25(x)� x = 0

p23 =
1
2

Vertex 32:

E2 = 0 � F35(x)� x = 0

E3 =
1
12 � F25(x)� x =

1
12

p23 = 0

Vertex 33:

E2 = 1 � F35(x) + 1
3 � (1� F35(x))� x =

2
3

E3 =
1
3 � F25(x)� x = 0

p23 =
3
4

Vertex 34:

E2 =
1
2 � F35(x)� x = 0

E3 =
1
2 � F25(x)� x = 0

p23 =
1
2

Vertex 35:

E2 = 1 � F35(x)� x = 0

E3 = 1 � F25(x)� x = 0

p23 =
1
2

Vertex 36:

E2 =
1
3 � F35(x)� x = 0

E3 = 1 � F25(x) + 1
3 � (1� F25(x))� x =

2
3

p23 =
1
4

Table 2 : Players0 expected payo�s and winning probabilities in Vertexes 25� 36 of Figures 4� 5
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Vertex 37:

E2 = 1 � F35(x) + 1
2 � (1� F35(x))� x = 1

E3 = 0 � F25(x)� x = 0

p23 = 1

Vertex 38:

E2 =
1
12 � F35(x)� x =

1
12

E3 = 0 � F25(x)� x = 0

p23 = 1

Vertex 39:

E2 = 1 � F35(x) + 1
3 � (1� F35(x))� x =

2
3

E3 =
1
3 � F25(x)� x = 0

p23 =
3
4

Vertex 40:

E2 = 0 � F35(x)� x = 0

E3 = 0 � F25(x)� x = 0

p23 =
1
2

Vertex 41:

E2 = 0 � F44(x)� x = 0

E4 = 0 � F24(x)� x = 0

p24 =
1
2

Vertex 42:

E2 = 0 � F44(x)� x = 0

E4 = 0 � F24(x)� x = 0

p24 =
1
2

Vertex 43:

E2 =
1
12 � F44(x)� x =

1
12

E4 = 0 � F24(x)� x = 0

p24 = 1

Vertex 44:

E2 = 0 � F44(x)� x = 0

E4 =
2
3 � F24(x)� x =

2
3

p24 = 0

Vertex 45:

E2 =
2
3 � F44(x)� x =

2
3

E4 = 0 � F24(x)� x = 0

p24 = 1

Vertex 46:

E2 = 0 � F44(x)� x = 0

E4 =
1
12 � F24(x)� x =

1
12

p24 = 0

Vertex 47:

E2 = 1 � F44(x) + 1
12 � (1� F44(x))� x =

1
3

E4 =
2
3 � F24(x)� x = 0

p24 =
7
11

Vertex 48:

E2 =
2
3 � F44(x)� x = 0

E4 = 1 � F24(x) + 1
12 � (1� F24(x))� x =

1
3

p24 =
4
11

Table 2 : Players0 expected payo�s and winning probabilities in Vertexes 37� 48 of Figures 4� 5
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Vertex 49:

E1 =
5
6 � F33(x) +

1
24 � (1� F33(x))� x =

1
24

E3 =
5
6 � F13(x) +

1
24 � (1� F13(x))� x =

1
24

p13 =
1
2

Vertex 50:

E1 =
2
3 � F33(x)� x =

7
12

E3 =
1
12 � F13(x)� x = 0

p13 =
15
16

Vertex 51:

E1 =
1
12 � F33(x)� x = 0

E3 =
2
3 � F13(x)� x =

7
12

p13 =
1
16

Vertex 52:

E1 = 0 � F33(x)� x = 0

E3 = 0 � F13(x)� x = 0

p13 =
1
2

Vertex 53:

E3 =
1
24 � F42(x)� x = 0

E4 =
1
24 � F32(x)� x = 0

p34 =
1
2

Vertex 54:

E3 =
7
12 � F42(x)� x =

95
192

E4 =
1
6 � F32(x) +

5
64 � (1� F32(x))� x =

5
64

p34 =
207
224

Vertex 55:

E1 =
5
16 � F21(x)� x =

1615
5376

E2 =
275
5376 � F11(x) +

5
128 (1� F11(x))� x =

5
128

p12 =
659
672

Table 2 : Players0 expected payo�s and winning probabilities in Vertexes 49� 55 of Figures 4� 5
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