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Abstract 

It is surprising that although four decades passed since the publication of Merton (1974) model, and 

despite the development and publications of various extensions and alternative models, the original 

model is still used extensively by practitioners, and even academics, to assess credit risk. We 

empirically examine specification alternatives for Merton model and a selection of its variants, 

concluding that prediction goodness is mainly sensitive to the choice of assets expected return and 

volatility. A Down-and–Out Option pricing model and a simple naïve model outperform the most 

common variants of the Merton model, therefore we recommend using the simple model for its easy 

implementation. 
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1. Introduction 

Merton (1974) and Black and Scholes (1973) presented the basic approach for the valuation of stocks 

and corporate bonds as derivatives on the firm’s assets. Merton (1974) is a structural model used for 

default prediction, viewing the firm’s equity as a call option on its assets, because equity holders are 

entitled to the residual value of the firm after all its obligations are paid. Many theoretical studies 

suggested models that relax some of the Merton model restrictive assumptions.1 However, empirical 

literature mainly focused on the application of the original model.  A major benchmark in these studies 

is the KMV model. KMV was founded in 1989 offering a commercial extension of Merton’s model 

using market-based data. In 2002 it was acquired by Moody’s and became Moody’s-KMV. KMV 

published a number of papers which reveal some of its methods (see Keenan and Sobehart, 1999; 

Keenan, Sobehart and Stein, 2000; Crosbie and Bohn, 2003). Some of the specifications made by KMV 

were adopted by the academic literature. Vassalou and Xing (2004), Campbell, Hilscher, and Szilagyi 

(2008), Aretz and Pope (2013) are examples for such studies. 

Only a few studies attempted to evaluate the accuracy of Merton’s model under these specifications. 

Hillegeist et al (2004) compared the predictive power of the Merton model to Altman (1968) and 

Ohlson (1980) models (Z-score and O-score) and came to the conclusion that the Merton model 

outperforms these models. Duffie et al (2007) showed that macroeconomic variables such as interest 

rate, historical stock return and historical market return have default prediction ability even after 

controlling for Merton model’s distance to default. Campbell, Hilscher, and Szilagyi (2008), using a 

hazard model, combined Merton model default probability with other variables relevant to default 

prediction. They also found that Merton model probabilities have relatively little contribution to the 

predictive power. Bharath and Shumway (2008) presented a “naïve” application of Merton model that 

outperformed the iterative application of Merton model (based on presumably Moody’s-KMV 

                                                           

1 See for example Black and Cox (1976), Geske (1977), Longstaff and Schwartz (1995), Collin-Dufresne and 
Goldstein (2001), Hsu Requejo and Santa-Clara (2004), Leland (1994), Leland and Toft (1996), Acharya and 
Carpenter (2002). 
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specifications).2 Another line of literature examined structural models ability to explain credit spreads 

and concluded that Merton model predictions underestimate market spreads.3 

In this paper we examine the sensitivity of Merton model default prediction performance to its 

parameter specifications.  We assess the causes for this sensitivity and evaluate the performance of a 

wide range of model alternatives, including those suggested by other recent studies. We conclude by 

providing a few prescriptions to enhance the model accuracy and suggesting a very simple model, 

which provides excellent discriminatory power for a low computation effort. Model wise we evaluate 

the textbook two-equation Merton model, its down and out (DaO) barrier alternative, the iterative model 

which is widely believed to be that of KMV, and single equation models and shortcuts including 

Bharath and Shumway (BhSh) naïve model, Charitou et al. (CDLT), and our simple naïve model 

(SNM).4 In each model we focus on its three main components: the default barrier, the expected return 

on firm assets and the firm assets return volatility (hereafter, asset volatility). For this purpose we 

construct a sample with annual observations of firms from the merged CRSP/Compustat database 

during the period 1989 to 2012. We also gather information on default events during 1990 to 2013 from 

Standard and Poor’s (S&P) and Moody’s rating agencies reports. After filtering our sample includes 

26,579 annual observations of 2,534 firms, of which 306 observations defaulted in the following year.  

For each specification of each assessed model, we construct a Receiver Operating Characteristic (ROC) 

curve. This method is relatively common for the comparison of prediction models since it does not 

require setting a priori the desired cutoff point between cost of type I error and cost of type II error. 

Another advantage of using ROC curves, compared to methods used in some prior studies, is that it 

                                                           

2 Chava and Purnanandam (2010) used the naïve model as a proxy for credit risk. 

3  See for example, Jones, Mason and Rosenfeld (1984), Huang and Hunag (2003), Eom, Helwege and Huang 
(2008). 

4 Charitou et al. (2013) is a comprehensive study, similar to this work, aiming to compare various specifications 
of Merton model. The potential spectrum of methods and specification is too broad to be included in a single 
paper, hence we regard their work (denoted hereafter by CDLT) and our research as complementary with 
some essential overlap. This overlap is required to ensure that method comparison is based on identical 
database. A similar overlap exists also between CDLT, Bharath and Shumway (2008), and other preceding 
papers, each repeats some of the methods incorporated in its respective prior literature. In the same vein, we 
include CDLT proposed methodology to estimate asset volatility (σ_CDLT) and asset drift (μ_CDLT) in our 
study. 
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enables statistical inference with the non-parametric test suggested by DeLong, DeLong and Clarke-

Pearson (2008), testing the statistical significance of the differences between the ROC curves (of two 

models). For robustness, we also include partial area under the curve (pAUC) calculations and test for 

pAUC differences, often at a few false positive rate levels. Prior studies, such as Bharath and Shumway 

(2008), focused mainly on the rate of defaulters within the first deciles of firms (highest predicted 

default probabilities) and did not offer a robust statistical test for differences between models.  

Another approach we use to understand the adequacy of various specifications is the study of firms’ 

characteristics changes on a path to default. For this purpose, we focus on 101 defaulting firms with 

data available for the five years preceding the default event and compare their level of debt, stock 

returns, equity volatility and assets volatility to those of a group of 101 non-defaulting firms. 

We find that Merton model accuracy is only slightly sensitive to the specification of the default barrier. 

We explain that this is a result of the calculated assets value and volatility dependence on the default 

barrier. On one hand, ceteris paribus, a low setting of default barrier for risky firms reduces their 

probability of default. On the other hand, such misspecification also causes overestimation of assets 

volatility and underestimation of assets value, thus increasing the default probability. Therefore, a 

deviation of the default barrier from the common practices has a relatively small effect on the model 

accuracy. 

We also show that using historical equity return as a proxy for expected assets return is questionable.5 

In particular, realized returns for risky firms are low and sometimes negative. While negative stock 

returns may be a predictive indicator for default, it cannot be a good proxy for forward-looking expected 

returns. Such a specification simply reduces the precision of the model. There are several ways to 

minimize the effect of negative returns. Aiming to estimate forward looking expected returns, we 

present a CAPM based procedure and results. However, we show that setting expected assets return 

                                                           
5  This specification was used by Bharath and Shumway (2008), in their naïve model.  We have similar doubts 

regarding the use of historical equity returns in the iterative method used by Vassalou and Xing (2004), Bharath 

and Shumway (2008), and others. 
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equal to the highest of realized stock return and the risk-free interest rate seems preferable among the 

alternatives examined in this study, especially for the simplest and powerful naïve model. 

Our calculations demonstrate that assets volatility extracted from Black and Scholes (1973) using the 

historical volatility of equity is under-biased, especially for defaulting firms. This is mainly because 

the value of equity used for this purpose is up-to-date and forward looking while the backward looking 

historical volatility of equity is estimated on stock returns that might exhibit mild volatility prior to the 

deterioration in the financial state of the firm. We show that on average the difference between implied 

volatility (of stock options) and historical volatility is positive. This difference is larger for defaulting 

firms than for non-defaulting firms. Hence, model accuracy seems higher using equity volatility than 

using the theoretical asset volatility calculated by simultaneously solving Black and Scholes (1973) and 

the volatility relation of Jones, Mason and Rosenfeld (1984).  

The rest of the paper is organized as follows. Section 2 describes the Merton model and Section 3 

discusses its application. Section 4 presents alternative models. In Section 5 we present the 

methodology and Section 6 describes the data. In section 7 we present and discuss the results. Section 

8 concludes. 

2. Merton model  

Merton model uses the firm equity value, its debt face value, and the volatility of equity returns to 

evaluate the firm assets and debt.  The model assumes that the firm has issued one zero-coupon bond. 

The firm defaults at the bond maturity (in time T) when the value of its assets (A) falls below the amount 

of debt it has to repay (D). Otherwise the firm pays its debt in full and the remaining value is its equity 

ET = max(AT-D,0).  The model assumes that A follows a geometric Brownian motion (GBM): 

(1) 𝑑𝐴 = 𝜇𝐴 ∙ 𝐴 ∙ 𝑑𝑡 + 𝜎𝐴 ∙ 𝐴 ∙ 𝑑𝑊 
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where 𝜇𝐴 is the expected continuous-compounded return on A, 𝜎𝐴 is the volatility of assets returns and 

dW is the standard Wiener process.6  

The model applies the Black and Scholes (1973) formula to calculate the value of the firm equity as a 

call option on its assets with expiration time T and an exercise price equal to the amount of debt (D): 

(2) 𝐸 = 𝑁(𝑑)𝐴 − 𝐷𝑒−𝑟𝑇 𝑁(𝑑 − 𝜎𝐴√𝑇) 

(3) 𝑑 =
ln(𝐴 𝐷⁄ )+[𝑟+0.5𝜎𝐴

2]𝑇

𝜎𝐴√𝑇
 

where 𝐸 is the value of the firm equity, r is the risk free interest rate, and N(•) is the cumulative standard 

normal distribution function.7 Jones, Mason, and Rosenfeld (1984) show that under the model 

assumptions the relation between the equity volatility (𝜎𝐸) and the assets volatility (𝜎𝐴) is 𝜎𝐸 =
𝐴

𝐸
∙

𝜕𝐸

𝜕𝐴
∙

𝜎𝐴 . Under the Black and Scholes formula it can be shown that  
𝜕𝐸

𝜕𝐴
= 𝑁(𝑑), so the relation between the 

volatilities is:  

(4)    𝜎𝐸 =
𝐴

𝐸
𝑁(𝑑)𝜎𝐴  

Solving equations (2) and (4) simultaneously results in the values of A and 𝜎𝐴 which can be used to 

calculate a Distance to Default (DD) of the firm, defined by: 

(5)    𝐷𝐷 =
ln(

𝐴

𝐷
)+[𝜇𝐴−0.5𝜎𝐴

2]𝑇

𝜎𝐴√𝑇
  

                                                           
6 We omit the subscript t from A and W for convenience.  Obviously these vary with time.  The drift 𝜇𝐴 and the 
volatility 𝜎𝐴  are assumed constant in this basic (classical) model. 
 
7 E and A in (2) and (3) are the values of equity and assets at time t = 0.  The risk-free rate r is assumed 
constant. 
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DD may be regarded as the normalized distance between the firm assets value (A) and the face value 

of its debt (D). As the log asset value is normally distributed under the GBM, PD – the probability of 

default (the probability that the call option is not exercised) is: 8 

(6)   𝑃𝐷 = 𝑁(−𝐷𝐷) 

3. Application of the Merton model 

The application of the model in practice requires several refinements. T is usually assumed to be 1 year. 

The annualized historical volatility of the equity is frequently the choice for 𝜎𝐸.9  It is often estimated 

over the preceding one year period and we denote it by 𝜎𝐸,−1. We compare this choice with a mean 

absolute deviation (MAD) and JP Morgan (RiskMetrics) volatility estimates that we denote by 𝜎𝑀𝐴𝐷 

and 𝜎𝐽𝑃, respectively. Another issue is the amount of debt that is relevant to a potential default during 

a one year period. Total debt is inadequate when not all of it is due in one year, as the firm may remain 

solvent even when the value of its assets falls below its total liabilities. Using the short term debt (debt 

maturing in one year) for the default barrier D would be often wrong, for example, when there are 

covenants that force the firm to serve other debts when its financial situation deteriorates. Prior studies 

generally follow KMV (Crosbie and Bohn, 2003) and chose short-term debt plus half of the long term 

debt for the default barrier.10  In this work we use 𝐷 = 𝑆𝑇𝐷 + 𝑘 ∙ 𝐿𝑇𝐷 for the default barrier, where 

𝑆𝑇𝐷 is the short term debt, 𝐿𝑇𝐷 is the long term debt and 𝑘 is the 𝐿𝑇𝐷 multiplier. We test the 

predictability power of the model for various values of k and check whether the KMV choice of 𝑘 =

0.5 outperforms the alternatives. 

The values of a firm's assets (A) and their volatility (𝜎𝐴) are not observed and need to be implied from 

a model. The textbook method is to simultaneously solve equations (2) and (4).  This was originally 

                                                           

8 Using the expected returns on the assets (𝜇𝐴) in DD, Instead of the risk free rate (r) used in calculating d2 in 
the Black & Scholes model, results in “real” PD instead of the risk neutral measure, under the model 
assumption. 

9 A forward looking implied volatility is probably a better choice. However it is not available for many firms and 
in its extraction from market data is complicated by liquidity and volatility smiles. 

10 For example: Bharath and Shumway (2008), Vassalou and Xing (2004), Duffie, Saita, and Wang (2007), 
Campbell, Hilscher, and Szilagyi (2008), and Aretz and Pope (2013). 
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proposed by Merton (1974) and refined by Jones et al (1984), it is also implemented in Hillegeist et al 

(2004) and Campbell et al (2008). In the next section we present some alternative methods for the 

estimation of these unobserved variables.  

The expected asset return 𝜇𝐴, has to be estimated separately.11 Campbell et al. (2008), for example, 

used a constant market premium and calculated it as 𝜇𝐴 = 𝑟 + 0.06. In this work we examine several 

alternatives for 𝜇𝐴. Under the first two alternatives we apply the CAPM model 𝜇𝐴 = 𝑟 + 𝛽𝐴 ∙ 𝑀𝑃, 

where 𝑀𝑃 is the market premium and 𝛽𝐴 is the assets beta.  First we use daily observations from the 

previous year on daily stock returns and the CRSP value weighted NYSE-NASDAQ-AMEX index to 

estimate the equity beta 𝛽𝐸.12 Then we use the relation   𝛽𝐴 = 𝛽𝐸 ∙
𝜎𝐴

𝜎𝐸
  and the values of 𝛽𝐸 , 𝜎𝐴, 𝜎𝐸 to 

calculate 𝛽𝐴.13  We use two alternative values for MP. The first is a constant rate of 6%, which results 

in 𝜇𝐴 = 𝜇𝑀𝑃=0.06 = 𝑟 + 𝛽𝐴 ∙ 0.06. The second assumes a variable market premium which equals the 

historical excess return of the market index in the previous year. The later results in  𝜇𝐴 = 𝜇𝑀𝑃=𝑀𝐾𝑇 =

𝑟 + 𝛽𝐴 ∙ (𝑀𝐾𝑇−1 − 𝑟), where 𝑀𝐾𝑇−1 is the annual rate of return of the market index in the previous 

year. For our third alternative we simply assume that the expected asset return equals the historical 

equity return of the preceding year, 𝑟𝐸,−1. We use this alternative as a benchmark for the other two 

methods and in accordance to the naïve model of Bharath and Shumway (2008). Historical equity return 

(𝑟𝐸,−1) is sometimes negative. Hence we also examine the possibility that a floor for the assets expected 

return is 𝑟 and thus examine the results of 𝜇𝐴 = max (𝑟, 𝑟𝐸,−1). Another alternative is to assume that 

the assets expected return equals the risk-free rate, 𝜇𝐴 = 𝑟.  In this case the probability measure that 

governs the asset and default processes is the risk-neutral measure. We also examine the alternative of 

a constant asset return 𝜇𝐴 = 0.09. 

                                                           

11 Except for the above iterative (KMV) method and CDLT described below. 

12 We refer to the CRSP value weighted NYSE-NASDAQ-AMEX index as the market and designate it by MKT. 

13 The relation between the assets and equity betas is derived from the expression of a Black-Scholes call beta  

𝛽𝐸 =  
𝐴

𝐸
∙ 𝑁(𝑑) ∙ 𝛽𝐴  where we replace the call option and the underlying by the equity and the assets 

respectively (see for example Coval and Shumway 2001).  We then use equation (4) to replace 
𝐴

𝐸
𝑁(𝑑) by the 

volatilities ratio  
𝜎𝐸

𝜎𝐴
. 
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4. Alternative models 

In this section we briefly present a few alternative models to those presented in the prior section, and 

conclude with volatility estimation methods used in this research. 

4.1 Iterative estimation (KMV) 

An approach, allegedly developed and used by KMV, was also used by Bharath and Shumway (2008), 

Vassalou and Xing (2004), Duffie, Saita, and Wang (2007), and Aretz and Pope (2013), is a calculation 

intensive iterative procedure.  In this process an initial guess value of 𝜎𝐴 is used in equation (2) in order 

to infer the market value of the assets (𝐴) for the firm on a daily basis in the prior year. This generates 

a time series whose volatility is an updated guess of 𝜎𝐴, which is used to compute a new time series of 

the firm's assets. The procedure is repeated until the volatility used to calculate the time series converges 

to the volatility of the calculated values. Then, the last time series is used to infer the values of 𝜎𝐴
𝐾𝑀𝑉 

and 𝜇𝐴
𝐾𝑀𝑉 which are used in equation (5) of the model.  Bharath and Shumway (2008) showed that this 

approach results are in fact similar or even slightly inferior to the results of the simultaneous solution 

of equations (2) and (4). 

4.2 Bharath and Shumway naïve model (BhSh 2008) 

Bharath and Shumway (2008) proposed a naïve alternative to Merton model assuming that the asset 

value is the sum of the default barrier (D) and equity (E) values: 𝐴 = 𝐷 + 𝐸, where the default barrier 

is  𝐷 = 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷. The expected return of assets is set equal to the historical return on the firm 

stock price in the previous year, 𝜇𝐴 = 𝑟𝐸,−1. Assets volatility 𝜎𝐴
𝑁𝑎𝑖𝑣𝑒 is assumed to be a value-weighted 

average of historical equity volatility (𝜎𝐸,−1) and a “special” value of the debt volatility: 14 

(7)     𝜎𝐷 = 0.05 + 0.25 ∙ 𝜎𝐸,−1  

                                                           
14 We are not familiar with the foundations and origin of this assumed relation between the debt and equity 
volatilities. 
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(8)     𝜎𝐴
𝑁𝑎𝑖𝑣𝑒 =

𝐸

𝐸+𝐷
𝜎𝐸,−1 +

𝐷

𝐸+𝐷
(0.05 + 0.25 ∙ 𝜎𝐸,−1). 

The naive Distance to Default is (for T=1 year): 

(9)     𝐷𝐷𝑁𝑎𝑖𝑣𝑒 =
ln [(𝐸+𝐷)/𝐷)]+𝑟𝐸,−1−0.5∙(𝜎𝐴

𝑁𝑎𝑖𝑣𝑒)2

𝜎𝐴
𝑁𝑎𝑖𝑣𝑒  

and the default probability is: 𝑃𝐷𝑁𝑎𝑖𝑣𝑒 = 𝑁(−𝐷𝐷𝑁𝑎𝑖𝑣𝑒). 

4.3 Charitou et al (CDLT 2013) 

CDLT proposed to generate a time series of “observable” asset values, each is defined as the sum of 

market value of equity E and the face value of debt B. For purposes of asset value estimation B is the 

face value of total liabilities according to CDLT (it calls it “the original default boundary”). The returns 

of such a time series of asset values are used to calculate the drift (𝜇𝐴
𝐶𝐷𝐿𝑇) and their annualized standard 

deviation is 𝜎𝐴
𝐶𝐷𝐿𝑇. These are then used to calculate the related distance to default (𝐷𝐷𝐶𝐷𝐿𝑇) and default 

probability using the usual formulation of equations (5) and (6). 

CDLT used monthly data over a period of 60 months. We apply the model using daily data over a 

period of one year prior to the point estimation (year-end) date. We acknowledge the benefit of using 

monthly data for noise considerations, however there is empirical evidence that, on average, volatilities 

change significantly during the five year prior to default. Furthermore, one year  seems the right choice 

for our work as the other methods and specifications that we use in this study use the same one year 

period. 
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4.4 Down and Out call (DaO) 

Some prior research, such as Dionne and Laajimi (2012), relaxed the assumption of default only on the 

year-end date by using a European down and out call option (DaO). The value of such a barrier option, 

under the GBM process assumption is given by equation (10).15 

(10)   𝐸𝐷𝑎𝑂 = 𝐴𝑁(𝑎) − 𝐷𝑒−𝑟𝑇𝑁(𝑎 − 𝜎𝐴√𝑇) − 𝐴(𝐻 𝐴⁄ )2𝜂𝑁(𝑏) + 𝐷𝑒−𝑟𝑇(𝐻 𝐴⁄ )2𝜂−2𝑁(𝑏 − 𝜎𝐴√𝑇) 

where A, D, N(), 𝜎𝐴, and T are defined above. When the asset value reaches the barrier H the option 

expires worthless (E = 0, a default). The variables a, b, and  are defined below. 

(11)     𝑎 =
𝑙𝑛(𝐴 𝐻⁄ )

𝜎𝐴√𝑇
+ 𝜂𝜎𝐴√𝑇,      𝑏 =

𝑙𝑛(𝐻2 𝐴𝐷⁄ )

𝜎𝐴√𝑇
+ 𝜂𝜎𝐴√𝑇,      𝜂 =  𝑟 𝜎𝐴

2⁄ + 0.5. 

Similar to the Merton model requiring the simultaneous two-equation solution, equation (10) needs also 

to satisfy the following relations between the equity and asset volatilities:16 

(12)    𝜎𝐸 =
𝐴

𝐸

𝜕𝐸𝐷𝑎𝑂

𝜕𝐴
𝜎𝐴 . 

The default probability is given by: 

(13)     𝑃𝐷𝐷𝑎𝑂 = 𝑁 (
−𝑙𝑛(𝐴 𝐻⁄ )−(𝜇𝐴−0.5𝜎𝐴

2)𝑇

𝜎𝐴√𝑇
) + 𝑒𝑥𝑝 [

−2𝜇𝐴∙𝑙𝑛(𝐴 𝐻⁄ )

𝜎𝐴
2 ] ∙  𝑁 (

−𝑙𝑛(𝐴 𝐻⁄ )+(𝜇𝐴−0.5𝜎𝐴
2)𝑇

𝜎𝐴√𝑇
). 

For comparability with the other models we analyze in this paper we set H=D. 

4.5 Single equation models 

Bharath and Shumway (2008) found that their naïve model (BhSh) outperforms equations (2) and (4) 

simultaneous solution (hereafter called two-equation Merton) and KMV iterative process. We 

                                                           

15 Generally a down and out call explicit expression depends on the relation between the barrier H, the 
exercise price D, and on its rebate. For the case of the risky debt application we assume a zero rebate model 

and since we explore only the case of D=H the model we present is applicable when D  H. For details see for 
example Dionne and Laajimi (2012) appendix or any textbook on derivatives such as Hull (2012). 

16 We do not expect 𝜎𝐴 of equation (12) to equal that of equation (4). We omit here superscripts to simplify 
the presentation.  



12 

conjecture that the main contributor to the power of BhSh model is their choice of asset volatility 

(𝜎𝑁𝑎𝑖𝑣𝑒) which depends on the historical equity volatility (𝜎𝐸,−1) and the inverse of the book leverage 

ratio (𝐸 (𝐷 + 𝐸)⁄ ). As explained in the next section, like prior literature on Merton and similar models, 

we test the model’s power. Assuming that the source for the discrimination performance of BhSh model 

is 𝜎𝐸,−1, we examine alternative methods in which we solve a single equation, (2) for Merton model 

and (10) for the DaO alternative, using equity volatility estimates (either 𝜎𝐸,−1, 𝜎𝐽𝑃, or 𝜎𝑀𝐴𝐷, presented 

below) for the asset volatility without the formulation of BhSh 𝜎𝐴
𝑁𝑎𝑖𝑣𝑒. We call this model single-

equation Merton and single-equation DaO respectively. 

4.6 Our simple naïve model (SNM) 

Inspired by BhSh model we assess the performance of a very simple model, identical to BhSh, except 

for the choice of the asset volatility. We simply insert equity volatility instead of 𝜎𝐴
𝑁𝑎𝑖𝑣𝑒 in equation (9) 

as follows: 

(14)     𝐷𝐷𝑆𝑁𝑀 =
𝑙𝑛 [(𝐸+𝐷)/𝐷)]+𝜇𝐴−0.5∙(𝜎𝐸,−1)2

𝜎𝐸,−1
     

where we allow choosing a proper asset drift 𝜇𝐴 for flexibility. Our choice is 𝜇𝐴 = max (𝑟
𝐸,−1

, 𝑟).17 

4.7 Equity volatility estimation 

Like most prior research we use annualized standard deviation of log daily equity gross returns as the 

basic estimate for historical volatility. We use a whole year daily data of the year preceding each annual 

observation and denote the volatility estimate 𝜎𝐸,−1. This common estimate has some drawbacks, two 

obvious issues are: (i) it is an average of a full year and ignores possible changes during the estimation 

period; and (ii) standard deviation is sensitive to large deviations that might be caused by outliers. 

                                                           
17 We find that it provides better results than BhSh choice of 𝜇

𝐴
= 𝑟𝐸,−1 which could be negative while having 

a risky asset expected return lower than the risk free rate is counter intuitive and not in line with economic 

reasoning. 
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We address the annual averaging matter by using RiskMetrics (1996) exponentially weighted moving 

average recursive volatility estimate: 

(15)    𝜎1,𝑡+1
2 = 𝜆𝜎1,𝑡−1

2 + (1 − 𝜆)𝑟1,𝑡
2   

where 𝜎1,𝑡
2  is the day t estimated daily volatility, 𝑟1,𝑡

2  is the daily return (logarithm of the price on t to 

the price on t-1 ratio) squared, and 𝜆 is a parameter, often set at 0.94. We denote the annualized yearend 

estimate by 𝜎𝐽𝑃.18 

The large outlier effect can be moderated by using absolute deviations instead of squared deviation. A 

common measure is mean of absolute deviations (MAD): 

(16)    𝑀𝐴𝐷(𝑛)𝑡 = 1

𝑛
∑ |𝑟𝑡−𝑗|𝑛−1

𝑗=0   

where n is the number of observations of daily returns (r) until time t, a year in our case. We annualize 

the MAD and adjust it to normal distribution and denote the estimate 𝜎𝑀𝐴𝐷:19  

(17)  𝜎𝑀𝐴𝐷  = √
252𝜋

2
  ∙  𝑀𝐴𝐷  

 

5. Methodology  

There are two major challenges in such a study. One is related to the goodness of a model compared to 

other models and specifications, this is discussed below. The other is the complexity caused by the 

multidimensionality of the models and their parameters, where comparing all models with all their 

parameter choices, pair wise or all simultaneously, seems impractical and too fuzzy. Instead, we move 

                                                           
18 More details about the selection of 𝜆 can be found in RiskMetrics (1996) and other risk management 

literature. We simply use the squared return of the first day of the year as the first value in the recursive 
equation (13). Since there are more than 250 observations per year the initial value does not affect the year 
end estimate practically. 
19 see for example Ederington and Guan (2006), we omit here t and n for convenience. 
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our focus sequentially from one issue to the other and finally compare 10 alternatives in a horse race, 

including the winners of prior steps, the original Merton model, KMV, and CDLT. 

Examination of a default model goodness may be of two types. The first is Model’s Power, the 

separation capability of the model between observations of default and observations of solvency. The 

power relates to the goodness of the order in which the model ranks the observations. The second type, 

Model's Calibration, refers to the default probability values produced by the model and how they fit 

real probabilities. For example, consider a model that results in the following default probabilities (PD) 

for three companies (A, B, C): 𝑃𝐷𝐴 = 0.1, 𝑃𝐷𝐵 = 0.05, 𝑃𝐷𝐶 = 0.01. The model’s power relates to 

the goodness of the model outcome in ranking the probabilities of default in the right order: 𝑃𝐷𝐴 >

𝑃𝐷𝐵 > 𝑃𝐷𝐶.  However, the goodness of the model’s calibration relates to the accuracy of the 

probability values generated by the model. Stein (2002) argues that calibration improves when model 

power increases. Any calibration method should maintain the ranking order of the model. Hence, we 

follow prior studies and focus on model power. For this purpose we regard the probabilities (PD) 

calculated by a model as scores.20 

Critical values of PD may be used by investors, lenders, or regulators to classify firms to high-risk or 

low-risk categories. The classification might be inaccurate. A false positive (FP) error relates to a 

solvent firm classified to the high-risk category, whereas a false negative (FN) error relates to a 

defaulting firm classified to the low-risk category. These are often referred to, by statisticians, as type 

I and type II errors, and are often estimated by empirical data of false positive and true positive rates 

(FPR and TPR respectively), for each critical value of PD, using a database of calculated PD 

observations and their related default/solvency realizations. Consider a critical value α. TPR, also called 

hit rate, is the number of defaulting firms classified as high-risk (𝑃𝐷 ≥ 𝛼) divided by the total number 

of defaulting firms. FPR, also called false alarm rate, is the number of non-defaulting firms classified 

as high-risk (𝑃𝐷 ≥ 𝛼) divided by the total number of solvent firms. There is an obvious tradeoff 

                                                           

20 This is the common practice in the bulk of prior literature and research, yet often the distinction between 
model power and calibration is not explicitly mentioned. 
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between these two rates. As one lowers the critical value, he gains in hit rate (TPR) at the cost of higher 

false alarm rate (FPR).21 

The Receiver Operating Characteristic (ROC) curve, a graph of TPR versus FPR, is a tool for 

comparing powers of alternative default models. Figure 1 shows ROC curves demonstrating the 

tradeoff between hit rates and false alarm rates for all possible critical values. A random model (with 

no predictability power) is simply the 45 degrees line. Model A is superior to model B when the ROC 

curve of A is always above the ROC curve of B. When the curves cross, one may compare the Area 

Under the Curve (AUC) relative to the alternative models. An AUC value is in the range [0, 1] and the 

AUC of a random model equals 0.5. We use the nonparametric approach of DeLong et al (1988) to test 

the statistical significance of differences between the AUC of alternative models. This test, which also 

controls for correlation between examined curves, is considered the most advanced statistics for ROC 

curves comparison. AUC tests look at the entire sample, which includes mostly non-defaulting firms 

that are assigned low PD’s. Therefore, to enhance the robustness of the test we also focus on the interval 

of low FPR, where a small increase in FPR causes a large increase in TPR, i.e. 𝐹𝑃𝑅 ∈ (0, 𝑥). Such 

interval, for x = 0.25 for example, also seems more valuable for investors, lenders, or regulators then 

the entire curve (x = 1). This test is known as the Partial AUC (pAUC). In our final comparison of 

models and specifications (Table 17) we use pAUC with x = 0.5, 0.25, and 0.1 in addition to the entire 

AUC.  

Prior studies such as Bharath and Shumway (2008) measured the accuracy of default models using the 

defaulting firms’ fraction in the lowest-quality deciles among all defaulting firms in the sample. This 

method is in fact based on particular points on a power curve and does not encompass the information 

in the entire curve.  A power curve shows the cumulative percentage of defaulting firms among all 

defaulting firms for each percentile of the predicting score.  In other words, it shows the percentage of 

defaulting firms that are detected for each threshold value of the score (𝛼 in the above PD example). 

                                                           

21  Two additional terms that are often used are sensitivity for hit rate and 1-specificity for false alarm rate. 
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The Accuracy Ratio (AR) is twice the area between the 45⁰ line and the power curve and it is equivalent 

to ROC curve comparison, in fact 𝐴𝑅 = 2 ∙ 𝐴𝑈𝐶 − 1.22 Hence the deciles comparison method is also a 

limited snapshot of particular points on the ROC curve. A major advantage of using ROC curves is the 

availability of statistical inference methods and tests such as that of DeLong et al. (1988). 

In addition to ROC curve analysis we also examine changes of selected variables prior to default. Our 

sample includes 101 defaulting firms with adequate input data for the examined models in each of the 

five years before the default event. We designate the reported year-end day prior to the year of the 

default event as time -1. (e.g., for a firm, having its year-end on December 31, that defaulted during the 

year 2005, time -1 refers to the estimation of 31 December 2004; time -2 denotes the estimation of 31 

December 2003 and so on.) We compare the defaulting firms to a control group of 101 non-defaulting 

firms of the same period.23 

 

6. Data 

The initial sample for this study includes all firms in the merged CRSP-COMPUSTAT database of the 

period 1989 to 2012 and default events of 1990 to 2013. Daily stock returns and stock prices are taken 

from CRSP; book value of assets, short-term debt, long-term debt and the numbers of shares 

outstanding are from COMPUSTAT. For the risk-free interest rate 𝑟 we use the 1-year Treasury bill 

rate obtained from the Federal Reserve Board Statistics. 

Our sources for default events are the annual default reports of Moody's and S&P for the years 1990-

2013. Since these reports exclude unrated firms, we filter out all annual observations of unrated firms. 

Without such filtering, the sample would have had a large number of observations for which default 

information is not available, causing an obvious selection bias. Similar to Bharath and Shumway (2008) 

                                                           

22 See Engelman, Hayden and Tasche (2003) 

23 For a firm which defaulted during the year 2005, we select a non-defaulting firm which operated in the 
years 2000-2005 in the same industry (2-3 SIC digits). Using the same principle we use for defaulting firm, we 
mark 31 December 2004 as time -1, 31 December 2003 as time -2 and so forth. 
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and others we exclude financial firms (SIC Codes 6000-6799). This filtering is needed since financial 

firms are characterized by high leverage and strict regulations. We also filter out defaulting firms for 

three years subsequent to a default event.24 Our final sample contains 26,579 annual observations of 

2,534 firms with 306 cases of defaults. 

Table 1 shows the distribution of the sample over the years. The number of annual observations starts 

at 919 in 1990, increases to 1,300 in 1998 and then starts decreasing down to 861 in 2013. The annual 

number of defaults varies from one (in 2013) to 39 (in 2001).  As expected, default rate vary over time, 

peaking in 1998-2003 and in 2009. The overall number of defaults (306) seems sufficient for our 

analysis. 

We use stock price data to compute the annual return 𝑟𝐸,−1, and the three volatilities presented in sub-

section 4.7 above, 
 
for each year preceding an annual observation of a company. The beta of stock 

returns (𝛽𝐸) is estimated in a standard technique using the CRSP value-weighted return of 

NYSE/NASDAQ/AMEX index as the market index. The market value of equity 𝐸 for each annual 

observation equals the stock prices times the number of outstanding shares. Table 2 provides some 

descriptive statistics of the sample. The average market value in our sample is 6,744 million U.S. 

dollars, which is greater than 808.8 of Bharath and Shumway (2008). We relate this difference to the 

exclusion of unrated firms from our sample. The annual stock returns is widely dispersed.25 The average 

𝛽𝐸 in our filtered sample is 0.975, very close to one, as expected from a diverse sample of firms over 

more than two decades. 

  

                                                           

24 For example, if a firm defaults in 2000, we estimate its probability to default on 31 December 1999 and then 
drop this firm from our sample for the years 2000, 2001 and 2002. 

  

25 It may seem odd that the minimum value of annual stock return is below -100%. Notice however that 𝑟𝐸,−1 

stands for the continuously-compounded annual return.  e.g. in a rare case, when a stock drops by 80% in a 
year, its continuous rate of return is ln(0.2) = -161% per annum.  Bharath and Shumway (2008) winsorized 
their sample and hence their minimum value of annual stock return was -85.45%. However, their minimum 
value for annual asset return was also extremely low: -253.58%. 
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7. Results 

We begin by an evaluation of the effects of changes to the default barrier, the expected asset returns, 

and the asset return volatility, using ROC curves and AUC methods (as discussed above), first on two 

and single equation Merton models and then on two and single equation DaO models. We then evaluate 

the performance of 10 models, including the high AUC specifications of two and single equation 

Merton and DaO models, together with KMV, CDLT, BhSh naïve model, and an alternative 

specification of even a simpler naïve model (SNM). Along this process, we discuss potential reasons 

and deductions from the observed results including the examination of volatility and return patterns 

prior to default of defaulting and non-defaulting firms and their respective leverage ratios. 

7.1 The default barrier 

We estimate the model using seven long-term debt (LTD) multipliers (k) values. For that purpose we 

calculate 𝐴 and 𝜎𝐴 by solving equations (2) and (4) simultaneously (two-equation Merton) and assume 

that the assets drift 𝜇𝐴 = 𝜇𝑀𝑃=0.06 = 𝑟𝑓 + 𝛽𝐴 ∙ 0.06. Panel a in Table 3 shows the AUC values for the 

respective ROC curves, they are almost similar (except for k =0) and the largest AUC is for k=0.1. It 

seems that the pervasive choice of k=0.5 might not be the optimal one. Using DeLong et al. (1988) test 

shows that the relatively small differences in the AUC values from that of k=0.5 are nevertheless 

statistically significant. The AUC grows as k becomes smaller, which points to a conclusion that short 

term debt (STD) is much more critical for predicting a default in one year time frame than the LTD. 

However, the reduction of AUC when k is reduced from 0.1 to 0 shows that the LTD should not be 

totally ignored in the estimation of PD. The analysis using pAUC for FPR≤0.25FPR interval results in 

similar outcomes, though obviously with much lower areas under the curve. 

The AUC for the various k specifications is around 0.93, which is equivalent to an Accuracy Ratio of 

0.86. Duffie et al. (2007), for example, achieved an AR of 0.87 using a much more complex model. 

One cannot compare models by comparing their AUC or AR based on different samples, however, this 

comparison provides some support for the adequacy of our sample and comparability of our findings 

with prior studies.  
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We repeat the same assessment for the choice of k in a single-equation Merton model. The results are 

reported in Panel b of Table 3. In this case k=0.5 provides the highest AUC, though this is not 

significantly different from that of k = 0.3, 0.7, 0.9, and 1. The pAUC (of 0.25) shows that k = 0.3 is 

slightly higher than that of 0.5, though the difference is not statistically significant, and k = 0.5 pAUC 

is higher than that of the others and the difference is statistically significant. This is an interesting result, 

as the use of k=0.5 origin, to our knowledge, is KMV and its model is essentially based on a single 

equation Merton, where the asset volatility is estimated using the iterative process. This choice, of  

k=0.5, which seems optimal for the single equation Merton, is widely adopted by researchers and 

practitioners for other models, often utilizing two-equation Merton (e.g. Campbell et al., 2008). 

In light of the above findings regarding k, it is interesting to further focus on the LTD and its evolution 

in the years prior to default, for defaulting firms and a control group of non-defaulting firms. Table 4 

shows the evolution of 𝐿𝑇𝐷/𝐴 prior to default, where 𝐴 is obtained from the two-equation Merton 

model with 𝑘 = 0.5 for the default barrier. Using t tests and Wilcoxon rank-sum (Mann-Whitney) tests 

we find statistically significant differences between 𝐿𝑇𝐷/𝐴 ratio of defaulting and non-defaulting 

firms. Furthermore, the gap between the two groups increases as firms come nearer to the default event. 

The average value for the defaulting firms, five years before default is 0.541 in comparison to 0.387 

for the non-defaulting firms. As time passes, the 𝐿𝑇𝐷/𝐴 ratio of the non-defaulting firms increases by 

less than 40% whereas the ratio for the defaulting firms doubles, on average.26 A year before default 

the average ratio for the defaulting firms reaches 1.085 while the average ratio for the non-defaulting 

firms is 0.533 only. 

While it appears that 𝐿𝑇𝐷 by itself exhibits predictive power, the model power is only slightly sensitive 

to the 𝐿𝑇𝐷 multiplier (except for the extreme k=0).  This somewhat puzzling behavior is a result of the 

calculation method of 𝐴 and 𝜎𝐴. The firm equity is regarded as a call option on the firm assets. Hence, 

an under-specification of the strike price (default barrier) results in an underestimation of the underlying 

                                                           
26 The increase in the ratio for non-defaulting firms may be associated with systematic risk. This is caused by 
matching the firms in the control sample to the defaulting firm calendar year of default. Hence, if default risk 
has a systematic component we may, on average, expect financial deterioration also among the control group 
firms in the years prior to the defaulting firm default. 
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assets value (𝐴) and overestimation of the assets volatility (𝜎𝐴) in a simultaneous solution of equations 

(2) and (4).  Underestimation of 𝐴 or overestimation of 𝜎𝐴 results in a reduction in the distance to 

default and thus an increase in the probability of default, hence reducing the sensitivity of PD to changes 

in k.  The underestimation of the probability of default caused directly from under-specification of the 

default barrier is compensated indirectly by underestimation of 𝐴 and overestimation of 𝜎𝐴. This seems 

to explain the model low sensitivity to the default barrier specification.27 Table 5 shows the average 

and median dependence of 𝐴 and 𝜎𝐴 on k for the two and single equation Merton models.  As expected, 

for lower values of the default barrier (small k) we find lower mean and median 𝐴 and higher mean and 

median 𝜎𝐴. Furthermore, we find that the mean and median asset values for the two-equation model are 

higher than those of the single-equation model, for all k values in the table (compare panels a and c) 

and these results are statistically significant (see panel c). This supports the above explanation regarding 

the puzzling effect of k on the two-equation model power. Using t tests and Wilcoxon sign-ranked tests 

we find that the differences of values resulted from various specifications of k compared to the values 

calculated using k=0.5 are statistically significant. 

Table 6 shows that PD is highly skewed, as expected.  Its mean and median are widely apart under each 

of the seven specification of the LTD multiplier, e.g. for 𝑘 = 0.5 the mean PD is 0.017 and the median 

is 4.02 ∙ 10−9. As defaults are rare events (often about one percent of the sample), basing model 

comparison on deciles (as done in some prior studies) might be misleading. In our sample PD values 

start to vary substantially only within the highest five percent group.   

The seven LTD multipliers (k) we use yield substantially different probabilities of default. For example, 

using a high LTD multiplier of 0.9 the mean PD is 80% larger than the mean PD using a low LTD 

multiplier of 0.1.  t tests and Wilcoxon sign-ranked tests reveal that the mean (median) probabilities of 

default for k=0, 0.1, 0.3 are lower than those of k=0.5, and for k=0.7, 0.9, 1 are higher than those of 

k=0.5.  This suggests that the calibration of the model is substantially different for each specification.  

                                                           
27  This somewhat counter intuitive result is caused by the model which maintains the equity value and the 
equity volatility constant.  In “real life” changing the debt level of a firm, or its default barrier, would affect its 
equity value and probably its equity volatility too. 
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However, as discussed above, the model’s power (the ability to distinguish a defaulting firm from a 

non-defaulting firm) is relatively less sensitive to k. 

 

7.2 The expected return on the firm's assets (𝝁𝑨) 

We examine several alternatives to assess the two and single equation Merton model sensitivity to asset 

expected returns. In all cases we use k=0.5 for the default barrier and 𝜎𝐸,−1 for the equity volatility. 

Recall our definitions: 𝜇𝑀𝑃=0.06 = 𝑟 + 𝛽𝐴 ∙ 0.06 and 𝜇𝑀𝑃=𝑀𝐾𝑇 = 𝑟 + 𝛽𝐴 ∙ (𝑀𝐾𝑇−1 − 𝑟), where 

𝑀𝐾𝑇−1 is the annual rate of return of the market index in the previous year and 𝛽𝐴 = 𝛽𝐸 ∙
𝜎𝐴

𝜎𝐸
.   

Panel a of Table 7 lists the summary statistics of 𝜇𝐴 under various specifications. The averages of 

𝜇𝑀𝑃=0.06 and 𝜇𝑀𝑃=𝑀𝐾𝑇 are similar. Naturally, the variance of 𝜇𝑀𝑃=𝑀𝐾𝑇 is greater than that of 𝜇𝑀𝑃=0.06. 

Overall, one would expect average 𝑟𝐸,−1 to be higher than 𝜇𝐴 because equity is a leveraged long position 

on assets, and indeed 𝑟𝐸,−1 is larger than 𝜇𝑀𝑃=0.06 and 𝜇𝑀𝑃=𝑀𝐾𝑇. Thus, as expected, the mean of 

𝑚𝑎𝑥 (𝑟, 𝑟𝐸,−1) is very high 0.390, compared, for example, with 0.082 of 𝑚𝑎𝑥 (𝑟, 𝜇𝑀𝑃=0.06).  

For the two-equation Merton, panel b in Table 7 shows that using the risk-free rate 𝜇𝐴 = 𝑟 results in 

the largest AUC, though it is only slightly larger than that of 𝜇𝑀𝑃=0.06 and of 𝑚𝑎𝑥 (𝑟, 𝜇𝑀𝑃=0.06). The 

risk-free rate AUC difference from the other alternatives is statistically significant, except for the almost 

similar performance of the two alternatives related to 𝜇𝑀𝑃=0.06. These relations are supported by the 

pAUC analysis for FPR≤0.25. The choice of 𝜇𝐴 = 𝑟 results in risk-neutral probability of defaults, under 

the model assumptions. This is obviously not a better calibrated scale than that of the two alternatives 

related to 𝜇𝑀𝑃=0.06, yet we see that model power can be achieved without PD calibration, and in this 

case, with the trivial choice of the risk-free rate. 

Panel c in Table 7 shows that for the single-equation Merton, using 𝜇𝐴 = 𝑚𝑎𝑥 (𝑟, 𝑟𝐸,−1) results in the 

largest AUC, which is only slightly larger than that of 𝑟𝐸,−1.  A few points are worth mentioning here. 

First, all the AUCs in panel c are higher than those of panel b, suggesting that to enhance the power of 

the model, a single-equation Merton could be preferable to the “classic” (textbook) two-equation 
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Merton model. Second, in a single-equation Merton, where we substitute 𝜎𝐸,−1 for the asset volatility, 

a corresponding match of equity returns increases the AUC.  Third, that the choice of 𝜇𝐴 has relatively 

a weak effect on the single-equation Merton model power, with the lowest AUC for 𝜇𝑀𝑃=𝑀𝐾𝑇, which 

is statistically significant lower than that of 𝑚𝑎𝑥 (𝑟, 𝑟𝐸,−1) and 𝜇𝑀𝑃=0.06. We believe there are two 

effects causing this result. First, the asset volatility seems to be a prime factor affecting PD and equity 

volatility (𝜎𝐸,−1) seems more reliable than the 𝜎𝐴 extracted by the two-equation Merton model (for 

model discrimination ability). This explains the overall higher AUC of the single-equation Merton 

model presented in panel c, relative to that of panel b. Second, it seems that the prior year equity returns 

(𝑟𝐸,−1) performs well as a proxy for the firm next year performance and provides almost identical results 

to that of a CAPM estimator of the asset expected returns, using a fixed 0.06 market premium. Using 

the prior year market premium (𝜇𝑀𝑃=𝑀𝐾𝑇) results in the lowest AUC in panel c, because last year 

market returns are often a poor predictor of next year returns.28 Yet last year beta seems to perform 

quite well with a fixed market premium in both panels b and c. 

Panel a of Table 8 shows the evolution of the previous year equity return (𝑟𝐸,−1) of defaulting firms 

during the five years preceding the default event. For comparison, the table includes also the data of a 

control group of 101 non-defaulting firms.  During the period, up until two years prior to default, the 

two groups average and median equity returns are not statistically different. Both average and median 

returns of defaulting firms decline a year prior to default and their difference from the values of the 

non-defaulting control group are statistically significant. To calculate real (physical) default 

probabilities instead of the risk-neutral measure, using equation (6), 𝜇𝐴 replaces 𝑟 for the drift in DD 

(equation 5). Panel b of Table 8 presents the evolution of 𝜇𝐴 prior to default of defaulting versus the 

non-defaulting control group and shows that their difference becomes statistically significant in the last 

two years preceding the default. 

                                                           
28  For example, a quick test of S&P500 annual returns in the period 1950-2013 shows no significant 
autocorrelations for lags 1-20 years. Ljung-Box Q-test for autocorrelation cannot reject the null hypothesis of 
white noise (p-value = 0.8538). 
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Figure 2a (2b) presents the evolution of the median  𝑟𝐸,−1 (𝜇𝐴) for both groups. It is logical to expect 

that investors demand higher returns from a riskier firm compared to a safer one. However, 𝑟𝐸,−1 is the 

realized historical return (not the forward looking expected return) and its negative value may indicate 

financial deterioration prior to default. As Table 8 and figure 2 show, defaulting and non-defaulting 

firms generally have similar returns five years before default. However, when firms approach default, 

their median equity return falls below that of non-defaulting firms and even becomes negative one year 

prior to default. This result is consistent with prior papers such as Vassalou and Xing (2004) that 

discovered a negative equity excess return for credit risk. 

On the one hand 𝑟𝐸,−1 exhibits predictive power, lower 𝑟𝐸,−1 are observed with higher probabilities of 

default. On the other hand, historical equity returns of firms approaching default may yield biased 

estimates for 𝜇𝐴 and hence harm the precision of the model. It appears that using 𝜇𝐴 = max (𝑟, 𝑟𝐸,−1) 

mitigates some of the inaccuracy caused by using historical returns, instead of forward-looking returns, 

by reducing the effect of negative realized returns.29 This is of practical importance for the single-

equation Merton model, where 𝜇𝐴 = max (𝑟, 𝑟𝐸,−1) results in the highest AUC. 

7.3 The volatility of the assets (𝝈𝑨) 

As a firm approaches a default event often, both equity volatility and leverage increase. These two 

processes affect the calculation of asset volatility in opposite directions. We examine changes in equity 

and asset volatilities as the firms approach their default event. We use a sample including the 101 

defaulting firms and a comparison group of 101 non-defaulting firms in parallel years, as explained 

earlier.  Table 9 panel a shows that the mean of historical equity volatility of defaulting firms increases 

from 0.504 five years before default to 0.959 a year before default. In the same period, the average 

volatility of equity for the non-defaulting group increases slightly from 0.395 to 0.556. t tests and 

Wilcoxon rank-sum tests reveal that in all these years, equity volatility is statistically significant higher 

                                                           
29 This work is not the first to use risk free rate for the lower bound of expected asset returns, though in 
somewhat other specifications. Prior papers generally use a single specification in each paper, examples 
include Hillegeist et al (2004) and Charitou et al. (2013). However, we believe this is the first study of a wide 
range of alternative asset returns specifications. 
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for defaulting firms than for non-defaulting firms. Figure 3a shows graphically the evolution of median 

equity volatility for the two groups. 

This development in historical equity volatility is expected.  However, this is not the case for the 

historical assets volatility.30 Panel b in Table 9 demonstrates that contrary to the non-defaulting firms, 

historical assets volatility of defaulting firms, calculated by Merton Model, decreases, on average, as 

the time to the default event becomes shorter. Five years prior to default the mean of historical assets 

volatility is 0.349 while a year before default it is 0.295. In the same period, the mean of historical 

assets volatility of non-defaulting firms increases from 0.299 to 0.360. Whereas the historical assets 

volatility difference between defaulting firms and non-defaulting firms five years prior to default is 

statistically insignificant, it becomes negative and statistically significant in the year before default. 

The evolution of median historical asset volatilities (see Figure 3b) and Wilcoxon rank-sum tests 

portray a similar picture and hence it seems that this pattern is not caused by outliers. 

We suspect that our findings regarding assets volatility are related to our use of historical equity 

volatility rather than expected volatility. Historical volatility of equity is computed using prior year data 

whereas the equity value is current.  As a firm approaches default, its equity value decreases and its 

equity volatility increases. Hence using up-to-date equity value jointly with out-of-date equity volatility 

value causes an underestimation of assets volatility. To assess this hypothesis, we examine assets 

volatility calculated by the model, using equity volatility implied by stock options market prices as 

input, instead of historical equity volatility.  Implied volatility is forward-looking by nature. Bharath 

and Shumway (2008) showed that using implied volatility substantially improves Merton model results. 

We now examine the source of this improvement. It should also be noted that using implied volatility 

substantially reduces model’s applicability since stock options are not available for all the firms. 

Therefore, this examination is merely intended to assess the goodness of current practices in Merton 

model application. 

                                                           
30  By historical assets volatility we refer to the 𝜎𝐴 estimated by the two-equation Merton, using historical 
equity volatility as the input to the model.  We later discuss implied assets volatility, calculated similarly, using 
implied equity volatility as the input. 
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Following Bharath and Shumway (2008), for each firm we select the implied volatility of at-the-money 

30-day call option on its stocks (𝜎𝑖𝑚𝑝). We use Optionmetrics data which is available since 1996. Thus, 

for observations of 1995 year-end we use the data of the first trading day in 1996 (a single trading day 

shift) and for other observations we simply use data for the year-end date. Due to the limited availability 

of implied volatility data, our sample decreases from 26,579 annual observations to 14,490 and the 

number of defaults diminishes from 306 to 88.  

Figure 4 shows the average implied volatility in our sample alongside the average historical volatility 

(𝜎𝐸,−1) throughout the period 1995-2012. Though one should be careful drawing conclusions from a 

chart of averages, there are a few observations that seem worth mentioning. First, the two curves look 

similar in pattern and value. Second, most of the time it seems that the historical volatility lags the 

implied volatility. The lag in 2009 is most prominent. The deep drop in implied volatility is 

accompanied by a much milder drop in historical volatility and the gap closes in the following year. 

Third, it seems that since 2010 the historical volatility lag vanishes, though no conclusions can be drawn 

from this short period. The relation between the two charts that Figure 4 demonstrate, support prior 

research (such as Bharath and Shumway 2008) preference for the use of implied volatilities.  

Table 10 panel a shows the historical volatility and implied volatility of equity and assets for 14,490 

annual observations for the years 1995-2012.  Implied and historical volatilities of equity are 𝜎𝑖𝑚𝑝 and 

𝜎𝐸−1 respectively. Assets volatility is calculated by solving the two-equation Merton model, assuming 

the default barrier is 𝐷 = 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷. Implied and historical assets volatilities are calculated 

using  𝜎𝑖𝑚𝑝 and 𝜎𝐸−1, respectively, as the input to the model. P values are for differences between 

historical volatility and implied volatility. It appears that implied volatility is greater, on average, than 

historical volatility for defaulting firms, for both equity and assets; the differences are statistically 

significant using t-tests or Wilcoxon rank-sum tests. However, these differences are miniscule for non-

defaulting firms (and generally may statistically be rejected).  

We conjecture that the comparison between historical and empirical volatilities is significantly affected 

by the great and irregular difference between these values in 2009. Panel b shows similar information 
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and results using data that excludes 2009 observations (end of 2009 data and 2010 defaults). Here the 

differences between implied and historical equity and asset volatilities are statistically significant for 

both defaulting and non-defaulting firms. Although only a few percent of the observations are excluded 

from panel b compared to a, the single omitted year changes the statistical significance of non-

defaulting firms. We also observe that one year before default equity volatility is larger for defaulting 

firms than for non-defaulting firms, as expected. However, surprisingly, assets volatility is larger for 

non-defaulting firms than for defaulting firms. 

These results suggest that the use of historical volatility (rather than expected volatility) might harm 

Merton model applications. This practice apparently causes an underestimation of assets volatility. We 

explore below the use of a dynamic volatility estimation model (JP) as a practical substitution for the 

implied volatility. 

Table 11 compares the AUC (and pAUC at the 0.25 FPR level) for eight specifications of assets 

volatility. The first is our benchmark model, in which assets volatility (𝜎𝐴
2𝑒𝑞𝑀

) is calculated using the 

two-equation Merton model, assuming the equity volatility equals the historical volatility (𝜎𝐸 = 𝜎𝐸,−1). 

The specifications 𝜎
𝐴

2𝑒𝑞𝑀
(𝜎𝐸 = 𝜎𝐽𝑃) and 𝜎

𝐴

2𝑒𝑞𝑀
(𝜎𝐸 = 𝜎𝑀𝐴𝐷) are also calculated using the two-equation 

Merton model but assume that the equity volatility equals the JP-Morgan volatility (𝜎𝐽𝑃) and MAD 

volatility (𝜎𝑀𝐴𝐷) respectively. The three subsequent models are of a single-equation Merton type, where 

assets volatility is set equal to either the equity volatility (𝜎𝐸,−1), the JP-Morgan volatility (𝜎𝐽𝑃), or the 

MAD volatility (𝜎𝑀𝐴𝐷) respectively. In these six models the default barrier is 𝐷 = 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 and 

the expected returns on the firm’s assets is set to 𝜇𝐴 = 𝜇𝑀𝑃=0.06 (based on the 𝛽𝐴 of the assets calculated 

from historical 𝛽𝐸 of equity and assuming the market premium equals 0.06). Model 7 𝜎𝐴
𝐾𝑀𝑉 is based on 

the iterative method presented in subsection 4.1 and model 8 𝜎𝐴
𝐶𝐷𝐿𝑇 is based on the Charitou et al. (2013) 

model presented in subsection 4.3. P values are of DeLong, et al. (1988) test for the difference between 

the AUC of the alternative specifications and the partial AUC (at the 0.25 FPR level) respectively. 

Model 5, the single-equation Merton model using JP-Morgan volatility (𝜎𝐽𝑃) for the asset volatility, 

results in the highest AUC. This result is statistically significant compared to all other models, except 
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for the two other single-equation models using 𝜎𝐸,−1 and 𝜎𝑀𝐴𝐷 (models 4 and 6 respectively). The 

pAUC tests results lead to compatible conclusions. It should be noted that equity volatility is always 

larger than assets volatility calculated using a two-equation model, for all firms either defaulting or 

non-defaulting. This is a cross-firm effect that may be adjusted in the calibration process of the model. 

However, the calculated assets volatility (𝜎𝐴
2𝑒𝑞𝑀.

), using historical equity volatility in equation (2) and 

(4) underestimates assets volatility mainly for defaulting firms and hence reduces model’s power. 

Model 7 using KMV iterative model results in intermediate AUC between those of the two-equation 

and single-equation models. Model 8, based on CDLT as we describe it in subsection 4.3, results in the 

lowest AUC, presumably because its volatility does not capture the riskiness of defaulting firms, in 

contrast with 𝜎𝐽𝑃 which responses fast to recent changes in equity volatility.  

7.4 Down and out (DaO) call alternatives 

From the above it appears that simpler models result in a better explanatory power than more complex 

calculations, we explore here the more complex DaO model, which relaxes the assumption that default 

may occur only at the end of the examined horizon, at time T. Instead, DaO allows a default to occur 

at any time 𝑡 ∈ [0, 𝑇]. The details of the model are presented in subsection 4.4.31  

Table 12 shows AUC and pAUC (at the 0.25 FPR level) for several specifications of the two-equation 

Down and Out (DaO) model. The LTD multipliers (𝑘) in the default barrier specification (𝐷 = 𝑆𝑇𝐷 +

𝑘 ∙ 𝐿𝑇𝐷) varies in panel a and is set to 𝑘 = 0.5 in the other panels. The expected return on the firm’s 

assets varies in panel b and is set to 𝜇𝐴 = 𝜇𝑀𝑃=0.06 in the other panels (see 𝜇𝐴 specification details in 

subsection 7.2 and Table 7). Equity volatility specification varies in panel c and is set to 𝜎𝐸,−1 in the 

other panels, see alternative equity volatility details in subsection 4.7. Asset volatility and asset value 

                                                           
31 Some prior research, such as Dionne & Laajimi (2012) and Brockman, & Turtle (2003), use DaO to find an 
implied barrier (H), adjusting the book asset value by the market equity, yet ignoring credit risk effect on the 
assets. This assumption allowed them to find an implied barrier as a proportion of their assumed asset value 
and to analyze H≠D. In this paper, on the other hand, we assume that the barrier equals D = STD + K*LTD, 
consistent with the other models evaluated in this work, and thus we calculate the asset value which is 
implied by the model.  
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are the solution of the two-equation DaO model presented in subsection 4.4. P-values are of DeLong, 

et al. (1988) test for the difference between the AUC of the various specifications. 

Panel a of Table 12 shows similar results to that of panel a in Table 3, i.e., the highest AUC is for k=0.1 

and  relatively a low sensitivity to k except for a decline when k=0. Thus, in two-equation DaO, similar 

to two-equation Merton model, the exact coefficient of LTD is not crucial for model power; however, 

LTD should not be entirely ignored in the model. Panel b of Table 12 displays similar results to that of 

panel b in Table 7. The two-equation DaO highest AUC is for 𝜇𝐴 = 𝑟 and it is only slightly larger than 

that of 𝜇𝑀𝑃=0.06 and of 𝑚𝑎𝑥 (𝑟, 𝜇𝑀𝑃=0.06). The risk-free rate AUC difference from the other alternatives 

is statistically significant, except for the almost similar performance of the two alternatives related to 

𝜇𝑀𝑃=0.06. These relations are supported by the pAUC analysis for FPR≤0.25. Panel c of Table 12 

presents similar results to models 1-3 of Table 11, with the highest AUC using 𝜎𝐽𝑃, followed by 𝜎𝑀𝐴𝐷, 

and lastly 𝜎𝐸,−1, however, the differences are not statistically significant. 

To conclude the DaO analysis we repeat the above evaluation for the single-equation DaO model, 

summarizing the results in Table 13. Panel a shows, that very similar to single-equation Merton (Table 

3 panel b), k=0.5 provides the highest AUC, though this is not significantly different from that of k = 

0.3, 0.7, 0.9, and 1. The pAUC (of 0.25) shows that k = 0.3 is slightly higher than that of 0.5, though 

the difference is not statistically significant, and k = 0.5 pAUC is higher than that of the others and the 

difference is statistically significant, except for k = 0.7. Table 13 panel b shows similar results to those 

of the single-equation Merton (panel c in Table 7), i.e. that for the single-equation DaO, using 𝜇𝐴 =

𝑟𝐸,−1 results in the largest AUC and the result is statistically significant, except for the AUC of 

𝑚𝑎𝑥 (𝑟, 𝑟𝐸,−1) which is only slightly lower than that of 𝑟𝐸,−1.32 Similar results hold for the pAUC, 

though the p-values are lower than those of the AUC. Lastly, Table 13 panel c shows similar results to 

those of the single-equation Merton (Table 11 models 4-6), the single-equation DaO model using JP-

                                                           
32 For the single-equation Merton, the choice of 𝜇𝐴 = 𝑚𝑎𝑥 (𝑟, 𝑟𝐸,−1) results in a slightly higher AUC than that 

of 𝑟𝐸,−1. 
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Morgan volatility (𝜎𝐽𝑃) for the asset volatility, results in the highest AUC compared to the two other 

single-equation models using 𝜎𝐸,−1 and 𝜎𝑀𝐴𝐷. The pAUC tests results supports those of the AUC. 

 

7.5 Model alternative comparison 

At this final stage of the analysis we compare 10 representative models. Model 1 is the textbook Merton 

model. Models 2-5 are two and single equation Merton and DaO models, using volatility and asset 

expected returns specifications, which result the highest AUC above. BhSh naïve model is model 6 (see 

details in subsection 4.2). This model inspires our simple naïve model (SNM) for which we present 

results for two choices of volatility, 𝜎𝐸,−1 and 𝜎𝐽𝑃, which we call model 7 and 8 respectively (see details 

in subsection 4.6). KMV and CDLT results (models 9 and 10 respectively) are included for comparison. 

We start by comparing the 10 models’ AUCs for the entire sample. Then we compare AUCs dividing 

the sample to two periods, until 2000 and after it. Next we look at industry samples and finally, for 

robustness check, we look at the pAUC of the entire sample for three levels of FPR, 0.5, 0.25, and 0.1. 

In the tables we present DeLong et al (1988) p-values for AUC differences from models 1, 5, and 7 

because model 1 is widely used as a reference model and models 5 and 7 are leading in model power 

in this work. 

Panel a in Table 14 summarizes the 10 models’ results for the entire sample. It shows that model 5, the 

single-equation DaO, using 𝜎𝐽𝑃 for asset volatility and 𝑟𝐸,−1 for asset expected returns, results in the 

highest AUC and this result is statistically significant, over all other models, except for model 7, which 

is ranked second by its AUC. Model 7 is probably the simplest possible application of a Merton type 

model, simpler than BhSh naïve and CDLT models. Yet, using 𝜎𝐸,−1 for asset volatility and 

𝑚𝑎𝑥 (𝑟, 𝑟𝐸,−1) for asset expected returns, model 7 results in the highest AUC (except for model 5) and 

this result is statistically significant, over all other models, except for model 5 and 3. Panels b and c 

support these results, showing that models 5 and 7 AUC surpasses the others when we look at each 

period, 1990-2000 and 2001-2013, and in the later period model 5 and 7 result in equal AUCs. 
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Table 15 follows panel a in Table 14, looking at three industry related sub-samples: manufacturing 

(panel a); transportation, communications, electric, gas, and sanitary services (panel b); and others 

(panel c).33 In the manufacturing division, model 7 (SNM), the simplest model, has the highest AUC, 

larger even that that of model 5 which comes second, and its AUC is statistically significant (p-value ≤ 

5%) higher than that of models 1, 6, 8 and 10 only. In the other two industry groups model 5 has the 

highest AUC, model 3 is second and model 7 is third. The statistical significance of model 5 includes 

models 2, 4, 6, 9, and 10 (and model 8 for other industries). Overall, the superiority of model 5 (DaO 

using 𝜎𝐽𝑃) and model 7 (SNM) appears to be industry independent. 

Table 16 shows pAUC results for FPR levels of 0.5, 0.25, and 0.1 in panels a, b, and c, respectively. 

Model 5 leads with the highest pAUC in 0.25 and 0.1 levels where model 7 has the second highest 

pAUC and the positions of leader and follower reverse for the 0.5 FPR level. In all three levels the 

pAUC differences between these two models are not statistically significant. In all three levels model 

5 pAUC differences from all other models (except model 7) is statistically significant.  

We summarize the “horse race” of the 10 models in Table 17, showing the ranking in 1-10 in the 

comparisons of Tables 14-16, 1 is assigned to the highest AUC (pAUC). For visual clarity we use dark 

shading for the first place and light for the second larger AUC, both with larger and bold font. From 

the above analysis there is no surprise that model 5 is the highest ranked, on average, followed by model 

7. Except for the manufacturing subsample where it is ranked eighth, model 10 is ranked last in all the 

tables. Probably our greatest surprise is model 6 which almost always takes the ninth position, with two 

exceptions (until 2000 and other industries) in the eighth and once (manufacturing) in the tenth position. 

The other surprise is model 9, the laborious KMV iterative model, which most often occupies the 

seventh position, except for the fifth place in manufacturing and other industries, and the subsample 

prior to 2000, whereas after 2000 it occupies the eighth place. Lastly, we assume equal weight to all 

ordinal ranking in Table 17 and find an average ordinal ranking over the nine columns. The result is 

                                                           

33 The manufacturing division includes all firms with SIC code 2000-3999. The transportation, communications, 
electric, gas, and sanitary services division includes all firms with SIC codes 4000-4999. The other divisions 
included each a small number of default observations and therefore had to be merged into a single division 
which we named ‘others’. 
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identical to that of the entire sample AUC of Table 14 panel a, except for a swap in the fifth (two-

equation Merton, model 2) and sixth (SNM, model 8) positions. 

Table 17 shows that KMV, model 9, performs better than BhSh naïve model 6 in all 9 columns. We 

thus conclude that the superiority of the BhSh naïve model (presented in their paper) over the KMV 

model is not robust. Looking at DeLong et al (1988) test p-values, the differences between model 1 and 

6 are not statistically significant, except for the period after 2000 where model 1 is ranked fifth and 

model 6 is ranked ninth. This result is puzzling, especially given the better performance of model 7 

(SNM) which is almost identical to that of BhSh except for the choice of asset volatility and expected 

returns. Whereas BhSh assumes that the assets volatility is a weighted average of the equity volatility 

and an enigmatic debt volatility (see equations 7 and 8), model 7 simply uses the equity volatility (𝜎𝐴 =

𝜎𝐸,−1). While BhSh uses the equity returns over the prior year for the expected asset returns (𝜇𝐴 =

𝑟𝐸,−1), model 7 ensures the value of the expected returns is not lower than the risk free rate (𝜇𝐴 =

𝑚𝑎𝑥 (𝑟, 𝑟𝐸,−1)). The power of the simple naïve model 7 is higher than that of BhSh naïve model in all 

nine columns of Table 17 and the results are statistically significant. Furthermore, a slight change in 

SNM, using JP volatility for the asset volatility (𝜎𝐴 = 𝜎𝐽𝑃) in model 8, results in superior AUC 

compared to BhSh in all nine columns. However, this change results in inferior performance compared 

to model 7 and the results are statistically significant in most tables. This ranking of very similar 

models: 6 ≺ 8 ≺ 7, is robust in all our tests in this work including subsamples of period and industry 

for AUC and pAUC. 

The most powerful model is the single-equation DaO, model 5. However, the close second place SNM, 

model 7, is the simplest to calculate. Since their AUCs are not statistically different and model 7 is 

much simpler than model 5, model 7, the simple naïve model, is our practical recommended choice, 

when model discriminatory power is the goal. 
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8. Conclusions 

This paper is motivated by the fact that Merton (1974) model is (surprisingly) still used extensively by 

practitioners, and even academics, to assess credit risk. Although four decades passed since its official 

introduction, and despite the development and publications of various extensions and alternative 

models, the original model is still very useful.  In this paper we examine the sensitivity of Merton model 

default prediction performance to its parameter specifications.  We assess the causes for this sensitivity 

and evaluate the performance of a wide range of model alternatives, including those suggested by other 

recent studies.  We conclude by providing a few prescriptions to enhance the model accuracy and 

suggesting a very simple model, which provides excellent discriminatory power for a low computation 

effort.  

This work compares various alternatives for the application of the Merton model in default prediction. 

For this purpose, we compare the Area Under the Curve (AUC) of Receiver Operating Characteristic 

(ROC) curves and use the DeLong et al. (1988) nonparametric test to measure the statistical differences 

between the ROC curves. For robustness, we also include partial AUC (pAUC) calculations and test 

for pAUC differences, often at a few levels. We also examine how key inputs evolve over time prior to 

default, of defaulting and non-defaulting firms. The alternatives we consider are of model type and of 

specification details. Model types include the textbook two-equation Merton model, its down and out 

(DaO) barrier alternative, the iterative model which is widely believed to be that of KMV, and single 

equation models and shortcuts including Bharath and Shumway (BhSh) naïve model, Charitou et al. 

(CDLT), and our simple naïve model (SNM). We focus on three main specification details: the default 

barrier expressed by the long-term debt (LTD) multiplier k, asset expected return (𝜇) specification, and 

volatility specification and estimation method. 

Our results conform to those by Jessen and Lando (2014) who provided an interesting perspective on 

Merton model. They focused on the functional robustness of the distance to default (DD, presented in 

section 2) to model misspecifications. . Using simulations they showed that, in general, DD is 

successful in ranking firms’ default probabilities, even if the underlying model assumptions are altered. 
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Our paper, on the other hand, uses empirical data to analyze which underlying model assumptions can 

be altered to enhance the model power and even simplify the model application. 

Overall we find that simplified applications of the model have superior model power compared to more 

complex and computational intensive methods. The setting of the default barrier appears to have a small 

impact on the separation ability of the model. However, the specification of assets expected return and 

assets volatility is important. We use DaO in a comparable method to that of the textbook Merton model 

and find that its single-equation alternative, using k=0.5, prior year return on equity for its drift (𝜇 =

𝑟𝐸,−1), and JP equity volatility (𝜎𝐽𝑃), provides the highest AUC and pAUC which are statistically 

significant, compared to all models, except for the simple naïve model that we propose, which comes 

a close second to the best, however it is much simpler to apply than the DaO. We find that these two 

models outperform model suggested in previous studies.34  
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Tables 

Table 1:  sample distribution over time 

This table reports the observations’ distribution in the sample period. The table presents the number of 

firms observed, the number of default events during the year and the ratio between them for each year 

in the sample.  

Ratio of default 
events to the 
observations    

Number of default 
events (during the 

Year)  

Number of 
observations 

Year 

1.20% 11 919 1990 

1.17% 11 943 1991 

0.73% 7 958 1992 

0.39% 4 1,016 1993 

0.46% 5 1,085 1994 

0.68% 8 1,178 1995 

0.49% 6 1,231 1996 

0.72% 9 1,250 1997 

1.08% 14 1,300 1998 

1.70% 21 1,237 1999 

1.90% 23 1,210 2000 

3.17% 39 1,229 2001 

2.96% 35 1,183 2002 

1.66% 20 1,204 2003 

0.93% 11 1,186 2004 

1.04% 12 1,158 2005 

0.35% 4 1,138 2006 

0.18% 2 1,113 2007 

0.73% 8 1,099 2008 

2.93% 32 1,091 2009 

0.87% 9 1,029 2010 

0.71% 7 991 2011 

0.72% 7 970 2012 

0.12% 1 861 2013 

1.15% 306 26,579 Total 
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Table 2:  Model variables - summary statistics 

This table reports summary statistics for all the variables used in the Merton model. BA (Book Assets) 

is the book value of Total Assets; LTD is the Long Term Debt ; STD is the Short Term Debt; E is the 

firm's market value of equity (the product of the price per share times the number of outstanding shares); 

𝒓𝑬,−𝟏 is the annual firm’s equity return (the average daily equity return times the number of trading 

days); 𝜎𝐸,−1 is the annual firm’s stock return volatility (the standard deviation of daily stock returns 

times the square root of the trading days in a year); 𝛽𝐸 is the beta computed from daily return and the 

value-weighted CRSP index (NYSE/NASDAQ/ AMEX).  BA, LTD, STD and E are measured in 

millions of US dollars. The other variables are presented in decimal fractions. The data is as of the end 

of each fiscal year for the period 1989-2012 for default prediction (and observations) in the period 

1990-2013 

Variable Mean Std. dev. Min Max 

BA Book value of assets 6460 18984 2 371933 
LTD Long term debt 1440 3866 0 77927 
STD Short term debt 333 2363 0 134136 
E Market value of equity 6744 20792 2 504240 
𝒓𝑬,−𝟏  Stock return 0.326 0.571 -2.272 18.796 

𝝈𝑬,−𝟏 Stock return volatility 0.463 0.257 0.060 4.274 

𝜷𝑬  Beta of stock return 0.975 0.570 -2.174 4.567 
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Table 3:  Area under ROC curves for various specifications of the default barrier 

This table shows AUC (area under the ROC curve) and pAUC (partial area under the ROC curve at the 

0.25 level of type I error) for different values of the LTD multipliers (k) in the default barrier 

specification (𝐷 = 𝑆𝑇𝐷 + 𝑘 ∙ 𝐿𝑇𝐷), where STD is short-term debt and LTD is the long-term debt. The 

expected return on the firm’s assets is set to be 𝜇𝐴 = 𝜇𝑀𝑃=0.06; i.e. based on the 𝛽𝐴 of the assets 

extracted from historical 𝛽𝐸 of equity and the assumption that the market premium equals 0.06.  P-

values are of DeLong, et al. (1988) test for the difference between the AUC of the particular k and the 

AUC of k=0.5.  

Panel a: two-equation Merton model 

K AUC 
P value for 

difference from 

AUC for k=0.5 
pAUC (0.25) 

P value for 

difference from 

pAUC for k=0.5 

0.0 0.8720 0.000 0.1754 0.000 
0.1 0.9317 0.001 0.1938 0.000 
0.3 0.9300 0.000 0.1920 0.000 
0.5 0.9277 - 0.1899 - 
0.7 0.9256 0.000 0.1881 0.000 
0.9 0.9241 0.000 0.1866 0.000 
1.0 0.9233 0.000 0.1859 0.000 

 
Panel b: single-equation Merton model 

K AUC 
P value for 

difference from 

AUC for k=0.5 
pAUC (0.25) 

P value for 

difference from 

pAUC for k=0.5 

0.0 0.8713 0.000 0.1760 0.000 
0.1 0.9388 0.010 0.2007 0.030 
0.3 0.9417 0.314 0.2032 0.870 
0.5 0.9422 - 0.2031 - 
0.7 0.9420 0.438 0.2027 0.047 
0.9 0.9416 0.254 0.2021 0.015 
1.0 0.9414 0.193 0.2018 0.009 
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Table 4:  Evolution of long-term debt to assets ratio prior to default  

This table shows the evolution of LTD/A for 101 firms on December 31 for each of the 5 years 

preceding the default year. A is the value of assets extracted from the two-equation Merton model 

assuming a default barrier of 𝐷 = 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 where STD is short-term debt and LTD is long-

term debt and using 𝜎𝐸,−1 in equation (4). A control group of 101 non-defaulting firms is added for 

comparison. P values are for differences between the group of defaulting firms and non-defaulting 

firms. 

Years 
before 
default 

Defaulting Non-Defaulting P value for difference 

Obs. Mean Median Obs. Mean Median t test 

Wilcoxon 
rank- sum 

(Mann-
Whitney) 

5 101 0.541 0.451 101 0.387 0.261 0.000 0.002 

4 101 0.641 0.593 101 0.437 0.319 0.000 0.000 

3 101 0.742 0.701 101 0.443 0.312 0.000 0.000 

2 101 0.892 0.882 101 0.482 0.373 0.000 0.000 

1 101 1.085 0.996 101 0.533 0.410 0.001 0.000 
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Table 5:  Model’s results for various specifications of the default barrier 

This table shows the summary statistics for assets value (𝐴) and assets volatility (𝜎𝐴) in Merton model 

under different specifications of the LTD multipliers (k) used for the default barrier value (𝐷 = 𝑆𝑇𝐷 +

𝑘 ∙ 𝐿𝑇𝐷), where STD is the short-term debt and LTD is the long-term debt. P values are listed for t tests 

and Wilcoxon sign-ranked tests. Panels a and b are for the case that assets volatility results from the 

two-equation Merton. Panel c is for the case that assets volatility is assumed to be equal to equity 

volatility in the previous year (𝜎𝐸,−1), using the single-equation Merton model. 

Panel a – Assets value (A) in two-equation Merton model 

K Obs. Mean Median 

P value for difference from 

result for k=0.5 

t test 
Sign-ranked 

test 

0.0 26579 7067 1233 0.000 0.000 
0.1 26579 7207 1287 0.000 0.000 
0.3 26579 7487 1390 0.000 0.000 
0.5 26579 7768 1492 - - 
0.7 26579 8048 1587 0.000 0.000 
0.9 26579 8328 1682 0.000 0.000 
1.0 26579 8468 1730 0.000 0.000 

 

Panel b – Assets volatility (𝝈𝑨) in two-equation Merton model 

K Obs. Mean Median 

P value for difference from 

result for k=0.5 

t test 
Sign-ranked 

test 

0.0 26579 0.429 0.372 0.000 0.000 
0.1 26579 0.404 0.353 0.000 0.000 
0.3 26579 0.371 0.323 0.000 0.000 
0.5 26579 0.348 0.300 - - 
0.7 26579 0.329 0.282 0.000 0.000 
0.9 26579 0.314 0.268 0.000 0.000 
1.0 26579 0.307 0.261 0.000 0.000 

 
Panel c – Assets value (A) in single-equation Merton model 

K Obs. Mean Median 

P value for difference 

from result for k=0.5 

P value for difference 

from two-equations model 

t test 
Sign-ranked 

test 
t test 

Sign-ranked 
test 

0.0 26579 7063 1227 0.000 0.000 0.000 0.000 
0.1 26579 7202 1281 0.000 0.000 0.000 0.000 
0.3 26579 7477 1379 0.000 0.000 0.000 0.000 
0.5 26579 7748 1474 - - 0.000 0.000 
0.7 26579 8018 1564 0.000 0.000 0.000 0.000 
0.9 26579 8285 1652 0.000 0.000 0.000 0.000 
1.0 26579 8418 1695 0.000 0.000 0.000 0.000 
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Table 6:  Estimated probabilities of default for various specifications of the default 

barrier for the two equation Merton model – summary of statistics 

This table presents descriptive statistics for the estimated probability of default, using two equation 

Merton model, under various specifications of k, the LTD multiplier used to calculate the default barrier, 

𝐷 = 𝑆𝑇𝐷 + 𝑘 ∙ 𝐿𝑇𝐷, where STD is the short-term debt and LTD is the long-term debt. The expected 

return on the firm’s assets is set to 𝜇𝐴 = 𝜇𝑀𝑃=0.06 (using 𝛽𝐴 of the assets based on historical 𝛽𝐸 of 

equity and the assumption that the market premium equals 0.06), and the equity volatility is 𝜎𝐸,−1. 

 

K Obs. Mean Median 
5% 

percentile 
95% 

percentile 

P value for difference 
from result of k=0.5 

t test 
Sign-ranked 

test 

0.0 26579 0.007 2.57 ∙ 10−28 0.000 0.008 0.000 0.00 
0.1 26579 0.011 1.96 ∙ 10−15 0.000 0.039 0.000 0.00 
0.3 26579 0.015 6.00 ∙ 10−11 0.000 0.073 0.000 0.00 
0.5 26579 0.017 4.02 ∙ 10−9 0.000 0.093 - - 

0.7 26579 0.019 4.57 ∙ 10−8 0.000 0.109 0.000 0.00 
0.9 26579 0.020 2.25 ∙ 10−7 0.000 0.120 0.000 0.00 
1.0 26579 0.021 4.15 ∙ 10−7 0.000 0.125 0.000 0.00 
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Table 7:  Area under the ROC curve  

for various specification of firm’s asset expected return (𝝁𝑨) 

This table shows the results of the model for 𝜇𝐴 alternatives - the expected return on the firm’s assets. 

𝜇𝑀𝑃=0.06 is calculated for each firm-year observation, using 𝜇𝑀𝑃=0.06 = 𝑟 + 𝛽𝐴 ∙ 0.06, where 𝑟 is the 

risk free interest rate (1-year treasury bills yield to maturity) and 𝛽𝐴 is the beta of the firm's assets.  

𝒓𝑬,−𝟏 is the annual equity return for the previous year. 𝜇𝑀𝑃=𝑀𝐾𝑇 is calculated using 𝜇𝑀𝑃=𝑆&𝑃 = 𝑟 +

𝛽𝐴 ∙ (𝑀𝐾𝑇−1 − 𝑟), where 𝑀𝐾𝑇−1 is the annual rate of return of the CRSP value-weighted return of 

NYSE/NASDAQ/AMEX index in the previous year.  For reference, we added a fixed (arbitrary) 

expected return of 0.09.  In this table use 𝜎𝐸,−1 (prior year standard deviation of daily returns) for equity 

volatility and 𝐷 = 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 for the default barrier, where STD is the short-term debt and LTD 

is the long-term debt. The sample includes 26,579 observations of which 306 are defaults. Panel a 

shows 𝜇𝐴 descriptive statistics, panels b and c present the results for two-equation and single-equation 

Merton models respectively. 

 

Panel a – Expected asset return 

 

Specification Obs. Mean Median Std. 
dev. 

Min Max 

𝝁𝑴𝑷=𝟎.𝟎𝟔 26579 0.081 0.077 0.034 -0.050 0.263 
𝒓𝑬,−𝟏 26579 0.326 0.176 0.571 -2.272 18.796 

𝝁𝑴𝑷=𝑴𝑲𝑻 26579 0.093 0.095 0.157 -0.968 1.144 

𝑟 26579 0.035 0.038 0.021 0.001 0.077 
𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝟎.𝟎𝟔) 26579 0.082 0.077 0.034 0.001 0.263 

𝒎𝒂𝒙(𝑟, 𝒓𝑬,−𝟏) 26579 0.390 0.176 0.503 0.001 18.796 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝑴𝑲𝑻) 26579 0.152 0.135 0.114 0.002 1.148 
𝟎. 𝟎𝟗 26579 0.090 0.090 0.000 0.090 0.090 
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Panel b – AUC (Area under the ROC curve)  for the two-equation Merton model 

 

Specification AUC 

P-Value for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value for 

difference 

from  
𝑟 

pAUC 

(0.25) 

P-Value for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value for 

difference 

from  
𝑟 

𝝁𝑴𝑷=𝟎.𝟎𝟔 0.9277 - 0.122 0.1899 - 0.130 

𝒓𝑬,−𝟏 0.9005 0.004 0.000 0.1796 0.043 0.000 

𝝁𝑴𝑷=𝑴𝑲𝑻 0.9223 0.000 0.000 0.1854 0.000 0.000 

𝑟 0.9280 0.122 - 0.1902 0.130 - 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝟎.𝟎𝟔) 0.9277 0.064 0.141 0.1899 0.110 0.150 

𝒎𝒂𝒙(𝑟, 𝒓𝑬,−𝟏) 0.9017 0.003 0.000 0.1805 0.022 0.000 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝑴𝑲𝑻) 0.9201 0.000 0.000 0.1835 0.000 0.000 

𝟎. 𝟎𝟗 0.9191 0.000 0.000 0.1813 0.000 0.760 

 

 

Panel c – AUC (Area under the ROC curve) for the single equation Merton model 

 

Specification AUC 

P-Value for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value for 

difference 

from  

𝒎𝒂𝒙(𝑟, 𝒓𝑬,−𝟏) 

pAUC 

(0.25) 

P-Value for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value for 

difference 

from  

𝒎𝒂𝒙(𝑟, 𝒓𝑬,−𝟏) 

𝝁𝑴𝑷=𝟎.𝟎𝟔 0.9422 - 0.051 0.2031 - 0.076 

𝒓𝑬,−𝟏 0.9450 0.279 0.496 0.2050 0.440 0.320 

𝝁𝑴𝑷=𝑀𝐾𝑇 0.9380 0.000 0.000 0.1991 0.000 0.000 

𝑟 0.9426 0.024 0.080 0.2036 0.003 0.140 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝟎.𝟎𝟔) 0.9422 0.002 0.053 0.2032 0.005 0.079 

𝒎𝒂𝒙(𝑟, 𝒓𝑬,−𝟏) 0.9458 0.051 - 0.2060 0.065 - 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝑴𝑲𝑻) 0.9403 0.007 0.004 0.2014 0.006 0.007 

𝟎. 𝟎𝟗 0.9427 0.011 0.090 0.2037 0.002 0.140 
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Table 8:  Evolution of equity and assets returns prior to default 

This table shows the evolution of the previous year equity return (𝑟𝐸,−1) and expected asset returns 

(𝜇𝐴 = 𝜇𝑀𝑃=0.06) for 101 firms on December 31 for each of the 5 years preceding the default year.  

𝜇𝑀𝑃=0.06 is based on the 𝛽𝐴 (assets beta) calculated from historical 𝛽𝐸 (equity beta) and assuming the 

market premium equals 0.06.  A control group of 101 non-defaulting firms is used for comparison.  P 

values are for differences between the group of defaulting firms and non-defaulting firms. 

Panel a - Annualized equity return for the previous year (𝒓𝑬,−𝟏) 

Years 
before 
default 

Defaulting Non-Defaulting P value for difference 

Obs. Mean Median Obs. Mean Median t test 

Wilcoxon 
rank- sum 

(Mann-
Whitney) 

-5 101 0.443 0.367 101 0.332 0.280 0.184 0.476 

-4 101 0.185 0.131 101 0.232 0.177 0.565 0.352 

-3 101 0.319 0.255 101 0.385 0.282 0.275 0.315 

-2 101 0.194 0.104 101 0.231 0.222 0.525 0.213 

-1 101 -0.029 -0.346 101 0.263 0.204 0.170 0.000 

 

Panel b – Expected asset return 𝝁𝑨 = 𝝁𝑴𝑷=𝟎.𝟎𝟔 

Years 
before 
default 

Defaulting Non-Defaulting P value for difference 

Obs. Mean Median Obs. Mean Median t test 

Wilcoxon 
rank- sum 

(Mann-
Whitney) 

-5 101 0.079 0.079 101 0.082 0.077 0.409 0.999 

-4 101 0.081 0.078 101 0.080 0.074 0.861 0.947 

-3 101 0.077 0.078 101 0.082 0.082 0.137 0.077 

-2 101 0.068 0.064 101 0.075 0.074 0.024 0.014 

-1 101 0.047 0.049 101 0.063 0.060 0.000 0.000 
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Table 9:  Evolution of volatility prior to default 

This table shows the evolution of equity’s volatility (𝜎𝐸,−1) and asset’s volatility (𝜎𝐴) for 101 firms for 

each of the 5 years preceding the default year. 𝜎𝐸,−1 is the annualized standard deviation of daily stock 

returns in the year before. 𝜎𝐴 is extracted from the two-equation Merton model, assuming the default 

barrier is 𝐷 = 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 (STD is short-term debt and LTD is the long-term debt), and expected 

assets return is 𝜇𝐴 = 𝜇𝑀𝑃=0.06 that is based on the 𝛽𝐴 (assets beta) calculated from historical 𝛽𝐸 (equity 

beta) using 0.06 for the market premium. A control group of 101 non-defaulting firms is used for 

comparison. P values are for differences between the group of defaulting firms and non-defaulting 

firms. 

Panel a – Equity volatility (𝜎𝐸,−1) 

Years 
before 
default 

Defaulting Non-Defaulting P value for difference 

Obs. Mean Median Obs. Mean Median t test 

Wilcoxon 
rank- sum 

(Mann-
Whitney) 

5 101 0.504 0.415 101 0.395 0.362 0.000 0.000 
4 101 0.538 0.470 101 0.441 0.367 0.000 0.000 
3 101 0.602 0.537 101 0.476 0.392 0.000 0.000 
2 101 0.639 0.579 101 0.466 0.432 0.000 0.000 
1 101 0.959 0.850 101 0.556 0.473 0.000 0.000 

 

Panel b – Assets volatility (𝝈𝑨) 

Years 
before 
default 

Defaulting Non-Defaulting P value for difference 

Obs. Mean Median Obs. Mean Median t test 

Wilcoxon 
rank- sum 

(Mann-
Whitney) 

5 101 0.349 0.277 101 0.299 0.283 0.075 0.093 

4 101 0.338 0.268 101 0.323 0.281 0.534 0.561 

3 101 0.334 0.300 101 0.342 0.296 0.724 0.646 

2 101 0.322 0.256 101 0.324 0.315 0.959 0.425 

1 101 0.295 0.199 101 0.360 0.323 0.163 0.000 
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Table 10:  Historical volatility vs. implied volatility 

This table shows the historical volatility and implied volatility of equity and assets for 14,490 annual 

observations for the years 1995-2012.  Implied volatility of equity is the annualized implied volatility 

of the 30-days at-the-money call option on the firms stocks. Historical volatility of equity is the 

annualized standard deviation of daily stock returns in the year preceding the annual observation. Assets 

volatility is calculated by solving the two-equation Merton model, assuming the default barrier is 𝐷 =

𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷, where STD is short-term debt and LTD is the long-term debt. Historical assets 

volatility is calculated using historical equity volatility as an input to the model, and implied assets 

volatility is calculated using implied equity volatility. P values are for differences between historical 

volatility and implied volatility. 

Panel a: All years 

Group Obs. 

Historical 
volatility 

Implied 
volatility 

P value for difference Obs. 
Implied> 
Historical 

(%) 
Mean Median Mean Median t test 

Wilcoxon rank- 
sum (Mann-

Whitney) 

Non-defaulting         

Equity 14402 0.438 0.386 0.437 0.384 0.081 0.409 50.2 
Assets 14402 0.354 0.310 0.352 0.309 0.024 0.193 50.2 
Defaulting         
Equity 88 0.775 0.699 0.896 0.881 0.000 0.000 67.0 
Assets 88 0.314 0.255 0.384 0.346 0.001 0.000 67.0 

 

Panel b: Excluding 2009* 

Group Obs. 

Historical 
volatility 

Implied 
volatility 

P value for difference Obs. 
Implied> 
Historical 

(%) 
Mean Median Mean Median t test 

Wilcoxon rank- 
sum (Mann-

Whitney) 

Non-defaulting         

Equity 13528 0.429 0.378 0.437 0.382 0.000 0.000 52.7 
Assets 13528 0.347 0.304 0.353 0.309 0.000 0.000 52.7 
Defaulting         
Equity 85 0.761 0.686 0.895 0.886 0.000 0.000 68.2 
Assets 85 0.305 0.251 0.384 0.344 0.000 0.000 68.2 

* excluded are end of 2009 observations (regarding defaults of 2010)  
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Table 11:  Area under the ROC curve for various specifications of assets volatility (𝝈𝑨) 

This table shows AUC (area under the ROC curve) and pAUC (partial area under the ROC curve at the 

0.25 FPR level) for eight specifications of assets volatility. The first is the benchmark model in which 

assets volatility (𝜎𝐴
2𝑒𝑞𝑀

) is calculated using the two-equation Merton model, assuming the equity 

volatility equals the historical volatility (𝜎𝐸 = 𝜎𝐸,−1). The specifications 𝜎
𝐴

2𝑒𝑞𝑀
(𝜎𝐸 = 𝜎𝐽𝑃) and 𝜎

𝐴

2𝑒𝑞𝑀
(𝜎𝐸 =

𝜎𝑀𝐴𝐷) are also calculated using the two-equation Merton model but assuming the equity volatility equals 

the JP-Morgan volatility (𝜎𝐽𝑃) and MAD volatility (𝜎𝑀𝐴𝐷) respectively. The three subsequent models 

are of a single-equation Merton type, where assets volatility is set equal to either the equity volatility 

(𝜎𝐸,−1), the JP-Morgan volatility (𝜎𝐽𝑃), or the MAD volatility (𝜎𝑀𝐴𝐷) respectively. In these six models, 

the default barrier is 𝐷 = 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷, where STD is short-term debt and LTD is the long-term 

debt. The expected return on the firm’s assets is set to 𝜇𝐴 = 𝜇𝑀𝑃=0.06 (based on the 𝛽𝐴 of the assets 

calculated from historical 𝛽𝐸 of equity and assuming the market premium equals 0.06). Model 7 𝜎𝐴
𝐾𝑀𝑉 

is based on the iterative method presented in subsection 4.1 and model 8 𝜎𝐴
𝐶𝐷𝐿𝑇 is based on the Charitou 

et al. (2013) model presented in subsection 4.3. P values and pAUC are of DeLong, et al. (1988) test 

for the difference between the AUC of the alternative specifications and the partial AUC (at the 0.25 

FPR level) respectively. 

 

Model 𝝈
𝑨

  AUC 

P value for 

difference 

from AUC 

of model 1 

P value for 

difference 

from AUC 

of model 5 

pAUC 

(0.25) 

P value for 

difference 

from pAUC 

of model 1 

P value for 

difference 

from pAUC 

of model 5 

1 𝝈
𝑨

2𝑒𝑞𝑀
(𝝈𝑬 = 𝝈𝑬,−𝟏)  0.9277 - 0.000 0.1899 - 0.000 

2 𝝈
𝑨

2𝑒𝑞𝑀
(𝝈𝑬 = 𝝈𝑱𝑷) 0.9319 0.141 0.000 0.1923 0.310 0.000 

3 𝝈
𝑨

2𝑒𝑞𝑀
(𝝈𝑬 = 𝝈𝑴𝑨𝑫) 0.9287 0.000 0.000 0.1906 0.000 0.000 

4 𝝈
𝑬,−𝟏

  0.9422 0.000 0.162 0.2031 0.000 0.440 

5 𝝈𝑱𝑷 0.9449 0.000 - 0.2042 0.000 - 

6 𝝈𝑴𝑨𝑫 0.9424 0.000 0.208 0.2034 0.000 0.540 

7 𝝈𝑨
𝑲𝑴𝑽 0.9340 0.074 0.001 0.1956 0.056 0.000 

8 𝝈𝑨
𝑪𝑫𝑳𝑻 0.9032 0.000 0.000 0.1781 0.002 0.000 
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Table 12:  Two-equation down and out (DaO) model  

This table shows AUC and pAUC (partial area under the curve at the 0.25 level of FPR) for several 

specifications of the two-equation DaO model. The LTD multipliers (𝑘) in the default barrier 

specification (𝐷 = 𝑆𝑇𝐷 + 𝑘 ∙ 𝐿𝑇𝐷) varies in panel a and is set to 𝑘 = 0.5 in the other panels. The 

expected return on the firm’s assets varies in panel b and is set to 𝜇𝐴 = 𝜇𝑀𝑃=0.06 in the other panels 

(see 𝜇𝐴 specification details in subsection 7.2 and Table 7). Equity volatility specification varies in 

panel c and is set to 𝜎𝐸,−1 in the other panels, see alternative equity volatility details in subsection 4.7. 

Asset volatility and asset value are the solution of the two-equation DaO model presented in subsection 

4.4. P-values are of DeLong, et al. (1988) test for the difference between the AUC of the various 

specifications. 

 

Panel a: Various specification of the default barrier 

K AUC 
P value for 

difference from 

result for k=0.5 
pAUC (0.25) 

P value for 

difference from 

result for k=0.5 

0.0 0.8694 0.000 0.1745 0.005 
0.1 0.9281 0.008 0.1927 0.002 
0.3 0.9249 0.030 0.1899 0.040 
0.5 0.9161 - 0.1866 - 
0.7 0.9166 0.912 0.1854 0.540 
0.9 0.9142 0.758 0.1846 0.440 
1.0 0.9166 0.934 0.1853 0.570 

 
 

Panel b: Various specification of the assets expected return 

Specification AUC 

P-Value for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value for 

difference 

from  
𝑟 

pAUC 

(0.25) 

P-Value 

for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value 

for 

difference 

from  
𝑟 

𝝁𝑴𝑷=𝟎.𝟎𝟔 0.9179 - 0.707 0.1872 - 0.250 

𝒓𝑬,−𝟏 0.8941 0.004 0.004 0.1748 0.021 0.020 

𝝁𝑴𝑷=𝑴𝑲𝑻 0.9127 0.000 0.000 0.1820 0.000 0.000 

𝑟 0.9180 0.707 - 0.1868 0.270 - 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝟎.𝟎𝟔) 0.9180 0.119 0.764 0.1866 0.180 0.280 

𝒎𝒂𝒙(𝑟, 𝒓𝑬,−𝟏) 0.8934 0.001 0.001 0.1736 0.004 0.005 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝑴𝑲𝑻) 0.9082 0.000 0.000 0.1804 0.000 0.000 

𝟎. 𝟎𝟗 0.9026 0.000 0.000 0.1751 0.000 0.000 
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Panel c: Various specification of the equity volatility 

𝝈𝑬 AUC 

P-value for the 
difference 

from results 
for  

𝜎𝐸,−1 

P-value for the 
difference 

from results 
for  
𝜎𝐽𝑃 

pAUC 

P-value for 
the 

difference 
from 

results for  
𝜎𝐸,−1 

P-value for 
the 

difference 
from 

results for  
𝜎𝐽𝑃 

𝜎𝐸,−1 0.9161 - 0.280 0.1866 - 0.320 

𝜎𝐽𝑃 0.9242 0.280 - 0.1898 0.320 - 

𝜎𝑀𝐴𝐷 0.9233 0.200 0.866 0.1894 0.130 0.880 
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Table 13:  Single-equation down and out (DaO) model 

This table shows AUC and pAUC (partial area under the curve at the 0.25 level of FPR) for several 

specifications of the single-equation DaO model. The LTD multipliers (𝑘) in the default barrier 

specification (𝐷 = 𝑆𝑇𝐷 + 𝑘 ∙ 𝐿𝑇𝐷) varies in panel a and is set to 𝑘 = 0.5 in the other panels. The 

expected return on the firm’s assets varies in panel b and is set to 𝜇𝐴 = 𝜇𝑀𝑃=0.06 in the other panels 

(see 𝜇𝐴 specification details in subsection 7.2 and Table 7). Equity volatility specification varies in 

panel c and is set to 𝜎𝐸,−1 in the other panels, see alternative equity volatility details in subsection 4.7. 

Assets values are the solution of equations (10) substituting equity volatility for assets volatility. P-

values are of DeLong, et al. (1988) test for the difference between the AUC of the various 

specifications. 

  

Panel a: Various specifications of the default barrier 

K AUC 
P value for 

difference from 

result for k=0.5 
pAUC (0.25) 

P value for 

difference from 

result for k=0.5 

0.0 0.8712 0.000 0.1759 0.000 
0.1 0.9393 0.004 0.2011 0.015 
0.3 0.9425 0.220 0.2040 0.870 
0.5 0.9431 - 0.2041 - 
0.7 0.9429 0.529 0.2036 0.084 
0.9 0.9425 0.292 0.2030 0.026 
1.0 0.9423 0.224 0.2027 0.013 

 

Panel b: Various specification of the assets expected return 

 

Specification AUC 

P-Value for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value for 

difference 

from  
𝒓𝑬,−𝟏 

pAUC 

(0.25) 

P-Value for 

difference 

from  
𝝁𝑴𝑷=𝟎.𝟎𝟔 

P-Value for 

difference 

from  
𝒓𝑬,−𝟏 

𝝁𝑴𝑷=𝟎.𝟎𝟔 0.9431 - 0.029 0.2040 - 0.033 

𝒓𝑬,−𝟏 0.9478 0.029 - 0.2077 0.036 - 

𝝁𝑴𝑷=𝑺&𝑷𝟓𝟎𝟎 0.9401 0.000 0.000 0.2012 0.000 0.001 

𝑟 0.9434 0.065 0.038 0.2044 0.010 0.061 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝟎.𝟎𝟔) 0.9431 0.016 0.029 0.2040 0.027 0.048 

𝒎𝒂𝒙(𝑟, 𝒓𝑬,−𝟏) 0.9473 0.003 0.661 0.2075 0.001 0.870 

𝒎𝒂𝒙(𝑟, 𝝁𝑴𝑷=𝑺&𝑷𝟓𝟎𝟎) 0.9419 0.028 0.007 0.2029 0.028 0.008 

𝟎. 𝟎𝟗 0.9435 0.032 0.042 0.2045 0.003 0.067 
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Panel c: Various specification of the equity volatility 

𝝈𝑬 AUC 

P-value for the 
difference 

from results 
for  

𝜎𝐸,−1 

P-value for the 
difference 

from results 
for  
𝜎𝐽𝑃 

pAUC 

P-value for 
the 

difference 
from 

results for  
𝜎𝐸,−1 

P-value for 
the 

difference 
from 

results for  
𝜎𝐽𝑃 

𝜎𝐸,−1 0.9431 - 0.137 0.2040 - 0.380 

𝜎𝐽𝑃 0.9458 0.137 - 0.2051 0.380 - 

𝜎𝑀𝐴𝐷 0.9431 0.949 0.154 0.2041 0.033 0.420 

  



Table 14: Area Under Curve (AUC) for alternative model specifications 

This table shows AUC for 10 specifications of the model listed in subsection 7.7.  The default barrier is STD +kLTD where STD and LTD is the short and long-

term debt respectively, except for model 10 where it is STL +kLTL, and STL and LTL are short and long-term liabilities respectively. The assets expected 

returns alternatives include: 𝜇𝐴 = 𝜇𝑀𝑃=0.06 based on 𝛽𝐴 of the assets calculated using historical 𝛽𝐸 of equity, assuming the market premium equals 0.06; or 

𝑟𝐸,−1 the equity return in the previous year; or 𝑟 (the risk-free interest rate, 1-year treasury bills yield to maturity); or the larger of 𝑟𝐸,−1 and 𝑟. 𝜎𝐸,−1 is the 

annualized volatility of daily equity return in the previous year, 𝜎𝐽𝑃 is JP-Morgan annualized year end estimate of equity volatility and 𝜎𝐴
𝑁𝑎𝑖𝑣𝑒 is based on 

Bharath and Shumway specification of assets volatility. The CDLT model is based on Charitou et al. (2013). P-values are DeLong, et al. (1988) test results for 

the difference between the AUCs of the alternative specifications. Panel a shows the results for the entire sample period and panels b and c for 1990-2000 and 

2001-2013 respectively. 

Panel a: Area Under the Curve (AUC) for the entire sample 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility 

(𝜎𝐴) 

AUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 Merton (textbook) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06 𝜎𝐸,−1 Merton* 0.9277 - 0.000 0.000 
2 2-equation Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.9354 0.011 0.004 0.008 
3 1-equation Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9375 0.096 0.025 0.117 
4 2-equation DaO 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.9357 0.009 0.006 0.010 
5 1-equation DaO 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.9443 0.000 - 0.806 
6 BhSh (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1 𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.9201 0.251 0.000 0.000 
7 SNM (naïve) 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓) - 𝝈𝑬,−𝟏  0.9437 0.000 0.806 - 
8 SNM (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9348 0.233 0.002 0.026 
9 KMV 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** iterative - iterative 0.9340 0.074 0.001 0.000 

10 CDLT 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+L return of E+L - (E+L) 0.9032 0.000 0.000 0.000 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Panel b: Area Under the Curve (AUC) for 1990-2000  

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility 

(𝜎𝐴) 

AUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 Merton (textbook) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06 𝜎𝐸,−1 Merton* 0.9264 - 0.000 0.000 
2 2-equation Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.9381 0.006 0.006 0.011 
3 1-equation Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9486 0.002 0.067 0.711 
4 2-equation DaO 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.9387 0.004 0.008 0.015 
5 1-equation DaO 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.9526 0.000 - 0.455 
6 BhSh (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1 𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.9319 0.536 0.000 0.001 
7 SNM (naïve) 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓) - 𝝈𝑬,−𝟏  0.9502 0.000 0.455 - 
8 SNM (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9469 0.005 0.016 0.451 
9 KMV 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** iterative - Iterative 0.9452 0.000 0.054 0.068 
10 CDLT 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+L return of E+L - (E+L) 0.9060 0.035 0.000 0.000 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Panel c: Area Under the Curve (AUC) for 2001-2013 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility 

(𝜎𝐴) 

AUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 Merton (textbook) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06 𝜎𝐸,−1 Merton* 0.9289 - 0.163 0.041 
2 2-equation Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.9336 0.274 0.314 0.396 
3 1-equation Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9278 0.906 0.102 0.163 
4 2-equation DaO 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.9335 0.293 0.303 0.380 
5 1-equation DaO 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.9373 0.163 - 0.991 
6 BhSh (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1 𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.9083 0.031 0.000 0.000 
7 SNM (naïve) 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓) - 𝝈𝑬,−𝟏  0.9373 0.041 0.991 - 
8 SNM (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9242 0.612 0.025 0.054 
9 KMV 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** iterative - Iterative 0.9226 0.170 0.006 0.000 
10 CDLT 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+L return of E+L - (E+L) 0.9009 0.001 0.000 0.000 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Table 15: Model accuracy across industries 

This table shows AUC for 10 specifications of the model listed in subsection 7.7.  The default barrier is STD +kLTD where STD and LTD is the short and long-

term debt respectively, except for model 10 where it is STL +kLTL, and STL and LTL are short and long-term liabilities respectively. The assets expected 

returns alternatives include: 𝜇𝐴 = 𝜇𝑀𝑃=0.06 based on 𝛽𝐴 of the assets calculated using historical 𝛽𝐸 of equity, assuming the market premium equals 0.06; or 

𝑟𝐸,−1 the equity return in the previous year; or 𝑟 (the risk-free interest rate, 1-year treasury bills yield to maturity); or the larger of 𝑟𝐸,−1 and 𝑟. 𝜎𝐸,−1 is the 

annualized volatility of daily equity return in the previous year, 𝜎𝐽𝑃 is JP-Morgan annualized year end estimate of equity volatility and 𝜎𝐴
𝑁𝑎𝑖𝑣𝑒 is based on 

Bharath and Shumway specification of assets volatility. The CDLT model is based on Charitou et al. (2013). P values are based on DeLong, et al. (1988) test 

for the difference between the AUC of the alternative specifications. Panel a shows the manufacturing division (SIC code 2000-3999), panel b is for 

Transportation, Communications, Electric, Gas and Sanitary service (SIC codes 4000-4999) and panel c for all other industries. 

Panel a: Manufacturing (13,141 observations, 117 defaults) 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility 

(𝜎𝐴) 

AUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 Merton (textbook) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06 𝜎𝐸,−1 Merton* 0.9539 - 0.422 0.029 
2 2-equation Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.9592 0.188 0.938 0.286 
3 1-equation Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9465 0.544 0.087 0.058 
4 2-equation DaO 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.9589 0.230 0.883 0.251 
5 1-equation DaO 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.9597 0.422 - 0.288 
6 BhSh (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1 𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.9376 0.150 0.006 0.001 
7 SNM (naïve) 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓) - 𝝈𝑬,−𝟏  0.9636 0.029 0.288 - 
8 SNM (naïve) 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9442 0.432 0.046 0.033 
9 KMV 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** iterative - Iterative 0.9558 0.729 0.470 0.052 
10 CDLT 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+L return of E+L - (E+L) 0.9449 0.222 0.036 0.002 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 

 



57 

Panel b: Transportation, Communications, Electric, Gas, and Sanitary services (3723 observations, 74 defaults) 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility (𝜎𝐴) 
AUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 (original) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06  𝜎𝐸,−1 Merton* 0.8977 - 0.014 0.002 
2  Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.9074 0.186 0.021 0.214 
3  Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9189 0.012 0.936 0.745 
4 Down and Out 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.9084 0.147 0.030 0.258 
5 Down and Out 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.9191 0.014 - 0.735 
6 (Bh&Sh) Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1  𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.8849 0.334 0.002 0.000 
7 Naïve 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓)  - 𝝈𝑬,−𝟏  0.9171 0.002 0.735 - 
8 Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟)  - 𝜎𝐽𝑃 0.9155 0.041 0.138 0.793 
9 (Iterative) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** Iterative - Iterative 0.9024 0.524 0.025 0.014 
10 (CDLT) Merton 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+D Iterative - Iterative 0.8631 0.023 0.001 0.001 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Panel c: Other (9715 observations, 115 defaults) 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility (𝜎𝐴) 
AUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 (original) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06  𝜎𝐸,−1 Merton* 0.9094 - 0.000 0.000 
2  Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.9201 0.047 0.001 0.048 
3  Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.9320 0.002 0.003 0.959 
4 Down and Out 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.9209 0.035 0.002 0.060 
5 Down and Out 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.9374 0.000 - 0.126 
6 (Bh&Sh) Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1  𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.9158 0.548 0.001 0.008 
7 Naïve 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓)  - 𝝈𝑬,−𝟏  0.9318 0.000 0.126 - 
8 Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟)  - 𝜎𝐽𝑃 0.9292 0.008 0.000 0.478 
9 (Iterative) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** Iterative - Iterative 0.9244 0.019 0.002 0.020 
10 (CDLT) Merton 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+D Iterative - Iterative 0.8799 0.017 0.000 0.000 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Table 16: Partial Area Under the Curve (pAUC) for alternative model specifications 

This table shows pAUC for 10 specifications of the model listed in subsection 7.7.  The default barrier is STD +kLTD where STD and LTD is the short and 

long-term debt respectively, except for model 10 where it is STL +kLTL, and STL and LTL are short and long-term liabilities respectively. The assets expected 

returns alternatives include: 𝜇𝐴 = 𝜇𝑀𝑃=0.06 based on 𝛽𝐴 of the assets calculated using historical 𝛽𝐸 of equity, assuming the market premium equals 0.06; or 

𝑟𝐸,−1 the equity return in the previous year; or 𝑟 (the risk-free interest rate, 1-year treasury bills yield to maturity); or the larger of 𝑟𝐸,−1 and 𝑟. 𝜎𝐸,−1 is the 

annualized volatility of daily equity return in the previous year, 𝜎𝐽𝑃 is JP-Morgan annualized year end estimate of equity volatility and 𝜎𝐴
𝑁𝑎𝑖𝑣𝑒 is based on 

Bharath and Shumway specification of assets volatility. The CDLT model is based on Charitou et al. (2013). P values are based on DeLong, et al. (1988) test 

for the difference between the pAUCs of the alternative specifications. Each panel shows pAUC at a different type I error. Panel a at 0.5, panel b at 0.25 and 

panel c at 0.1. 

Panel a: Partial Area Under the Curve (pAUC) at 0.5 level of Type I error 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility (𝜎𝐴) 
pAUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 (original) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06  𝜎𝐸,−1 Merton* 0.4328 - 0.001 0.000 
2  Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.4388 0.028 0.006 0.003 
3  Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.4430 0.026 0.009 0.085 
4 Down and Out 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.4391 0.025 0.006 0.004 
5 Down and Out 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.4474 0.001 - 0.920 
6 (Bh&Sh) Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1  𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.4255 0.230 0.000 0.000 
7 Naïve 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓)  - 𝝈𝑬,−𝟏  0.4476 0.000 0.920 - 
8 Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟)  - 𝜎𝐽𝑃 0.4404 0.120 0.000 0.007 
9 (Iterative) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** Iterative - Iterative 0.4387 0.089 0.004 0.000 
10 (CDLT) Merton 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+D Iterative - Iterative 0.4114 0.000 0.000 0.000 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Panel b: Partial Area Under the Curve (pAUC) at 0.25 level of Type I error 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility (𝜎𝐴) 
pAUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 (original) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06  𝜎𝐸,−1 Merton* 0.1899 - 0.000 0.000 
2  Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.1960 0.005 0.001 0.001 
3  Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.2017 0.001 0.006 0.130 
4 Down and Out 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.1962 0.007 0.001 0.001 
5 Down and Out 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.2044 0.000 - 0.740 
6 (Bh&Sh) Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1  𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.1855 0.370 0.000 0.000 
7 Naïve 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓)  - 𝝈𝑬,−𝟏  0.2039 0.000 0.740 - 
8 Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟)  - 𝜎𝐽𝑃 0.1991 0.007 0.000 0.001 
9 (Iterative) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** Iterative - Iterative 0.1956 0.056 0.000 0.000 
10 (CDLT) Merton 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+D Iterative - Iterative 0.1781 0.002 0.000 0.000 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Panel c: Partial Area Under the Curve (pAUC) at 0.1 level of Type I error 

Model Type Default barrier (D) 
Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility (𝜎𝐴) 
pAUC 

P value for difference 

From 

model 1 

From 

model 5 

From 

model 7 

1 (original) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton* 𝜇𝑀𝑃=0.06  𝜎𝐸,−1 Merton* 0.0572 - 0.000 0.000 
2  Merton 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 Merton* 𝑟 𝜎𝐽𝑃 Merton* 0.0614 0.001 0.000 0.004 
3  Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 0.0655 0.000 0.021 0.770 
4 Down and Out 𝑆𝑇𝐷 + 0.1 ∙ 𝐿𝑇𝐷 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 0.0616 0.001 0.000 0.009 
5 Down and Out 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 0.0670 0.000 - 0.210 
6 (Bh&Sh) Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D 𝑟𝐸,−1  𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  0.0569 0.920 0.000 0.000 
7 Naïve 𝑺𝑻𝑫 + 𝟎. 𝟓 ∙ 𝑳𝑻𝑫 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓)  - 𝝈𝑬,−𝟏  0.0657 0.000 0.210 - 
8 Naïve 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 E+D max (𝑟𝐸,−1, 𝑟)  - 𝜎𝐽𝑃 0.0631 0.002 0.000 0.006 
9 (Iterative) Merton 𝑆𝑇𝐷 + 0.5 ∙ 𝐿𝑇𝐷 Merton** Iterative - Iterative 0.0604 0.087 0.000 0.000 
10 (CDLT) Merton 𝑆𝑇𝐿 + 𝐿𝑇𝐿 E+D Iterative - Iterative 0.0543 0.160 0.000 0.000 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
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Table 17: Model power competition results 

This table summarizes model ranking by AUC/pAUC of tables 14-16 for 10 specifications of the model listed in subsection 7.7.  The default barrier is STD 

+kLTD where STD and LTD is the short and long-term debt respectively, except for model 10 where it is STL +kLTL, and STL and LTL are short and long-

term liabilities respectively. The assets expected returns alternatives include: 𝜇𝐴 = 𝜇𝑀𝑃=0.06 based on 𝛽𝐴 of the assets calculated using historical 𝛽𝐸 of equity, 

assuming the market premium equals 0.06; or 𝑟𝐸,−1 the equity return in the previous year; or 𝑟 (the risk-free interest rate, 1-year treasury bills yield to maturity); 

or the larger of 𝑟𝐸,−1 and 𝑟. 𝜎𝐸,−1 is the annualized volatility of daily equity return in the previous year, 𝜎𝐽𝑃 is JP-Morgan annualized year end estimate of equity 

volatility and 𝜎𝐴
𝑁𝑎𝑖𝑣𝑒 is based on Bharath and Shumway specification of assets volatility. The CDLT model is based on Charitou et al. (2013). To help visualize 

the AUC ranking we use special font and shading for places 1 and 2 in each column. 

Model Type 

Default 

barrier 

k 

Value of 

assets (𝐴) 

Expected 

return on 

assets (𝜇𝐴) 

Equity 

Volatility 

(𝜎𝐸) 

Assets 

volatility 

(𝜎𝐴) 

AUC 

entire 

sample 

AUC 

until 

2000 

AUC 

after 

2000 

AUC 

manufa

cturing 

AUC 

trans. 

utility,.. 

AUC 

other 

indust. 

pAUC 

0.5 

level 

pAUC 

0.25 

level 

pAUC 

0.1 

level 

1 Merton (textbook) 0.5 Merton* 𝜇𝑀𝑃=0.06 𝜎𝐸,−1 Merton* 8 9 5 6 8 9 8 8 8 
2 2-equation Merton 0.1 Merton* 𝑟 𝜎𝐽𝑃 Merton* 5 7 3 3 6 7 6 6 6 
3 1-equation Merton 0.5 Merton** max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 3 3 6 7 2 2 3 3 3 
4 2-equation DaO 0.1 DaO*** 𝑟 𝜎𝐽𝑃 DaO*** 4 6 4 4 5 6 5 5 5 

5 1-equation DaO 0.5 DaO**** 𝒓𝑬,−𝟏 - 𝝈𝑱𝑷 1 1 1 2 1 1 2 1 1 
6 BhSh (naïve) 0.5 E+D 𝑟𝐸,−1 𝜎𝐸,−1 𝜎𝐴

𝑁𝑎𝑖𝑣𝑒  9 8 9 10 9 8 9 9 9 

7 SNM (naïve) 0.5 E+D 𝐦𝐚𝐱 (𝒓𝑬,−𝟏, 𝒓) - 𝝈𝑬,−𝟏  2 2 2 1 3 3 1 2 2 
8 SNM (naïve) 0.5 E+D max (𝑟𝐸,−1, 𝑟) - 𝜎𝐽𝑃 6 4 7 9 4 4 4 4 4 

9 KMV 0.5 Merton** iterative - iterative 7 5 8 5 7 5 7 7 7 
10 CDLT 1 E+L return of E+L - (E+L) 10 10 10 8 10 10 10 10 10 

Source (Table No. and panel):    14a 14b 14b 15a 15b 15c 16a 16b 16c 

*        refers to the simultaneous solution of equations (2) and (4) 

**     refers to the solution of equation (2) 

***   refers to the simultaneous solution of equations (10) and (12) 

**** refers to the solution of equation (10) 
       refers to liabilities (STL +1LTL)



Figures 
 

Figure 1: Illustration of ROC curves of true  positive rate (TPR) versus false positive rate (FPR) for two 

models and for a random order 
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Figure 2: The median annual returns on the firm’s equity in the previous year (𝑟𝐸,−1) and the median 

expected asset returns (𝜇𝐴) while the defaulting firms (101 firms) approach the default event.  𝜇𝐴 =

𝜇𝑀𝑃=0.06 (based on the 𝛽𝐴 of the assets calculated from historical 𝛽𝐸 of equity and assuming the market 

premium equals 0.06).  A control group of 101 non-defaulting firms is used for comparison.  

Figure 2a:  Median annualized stock return (𝑟𝐸,−1) 

 

Figure 2b:  Median expected assets return (𝜇𝐴 = 𝜇𝑀𝑃=0.06) 
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Figure 3: The median equity return volatility (𝜎𝐸−1) and median asset return volatility (𝜎𝐴) while the 

defaulting firms (101 firms) approach the default event. A control group of 101 non-defaulting firms is 

used for comparison.  For data and model specifications see Table 9. 

  

Figure 3a: Median Equity returns volatility (𝜎𝐸−1) 

 

Figure 3b: Median Assets returns volatility (𝜎𝐴) 
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Figure 4: The evolution of average equity return volatility (𝜎𝐸−1) and average implied volatility (𝜎𝐸
𝑖𝑚𝑝𝑙𝑖𝑒𝑑

) 

throughout the period 1995-2012. 

 

 

 

 

 
 
 


