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Abstract

We study two-player common-value all-pay auctions (contests) with asymmetric information under

the assumption that one of the players has an information advantage over his opponent and both players

are budget-constrained. We generalize the results for all-pay auctions with complete information, and

show that in all-pay auctions with asymmetric information, su¢ ciently high (but still binding) bid caps

do not change the players�expected total e¤ort compared to the benchmark auction without any bid cap.

Furthermore, we show that there are bid caps that increase the players�expected total e¤ort compared

to the benchmark. Finally, we demonstrate that there are bid caps which may have an unanticipated

e¤ect on the players�expected payo¤s �one player�s information advantage may turn into a disadvantage

as far as his equilibrium payo¤ is concerned.

Keywords: Common-value all-pay auctions, asymmetric information, information advantage, bid

caps.

JEL Classi�cation: C72, D44, D82.

�Ezra Einy, Ori Haimanko, Aner Sela: Department of Economics, Ben-Gurion University of the Negev, Beer-Sheva

84105, Israel; their respective e-mail addresses are: einy@bgu.ac.il, ori@bgu.ac.il, anersela@bgu.ac.il. Ram Orzach: Depart-

ment of Economics, Oakland University, Rochester, MI 48309, USA; orzach@oakland.edu

1



1 Introduction

In an all-pay auction each player submits a bid (e¤ort) and the player with the highest bid wins the contest,

but, independently of success, all players bear the cost of their bids. In the framework of all-pay auctions

with complete information, where each player�s type (value of winning the contest or ability) is common

knowledge,1 and in the incomplete information framework, where each player�s type is private and only the

distribution from which the players�types is drawn is common knowledge,2 it was shown that the behavior

of the players may change drastically when constraints are placed on their budget or, alternatively, when bid

caps are imposed by the contest designer.

Che and Gale (1998) calculated the bidding equilibrium of a complete information all-pay auction with

two bidders who have di¤erent valuations for the prize and linear cost functions, and demonstrated that a bid

cap can increase the players�total e¤ort. Furthermore, they showed that a su¢ ciently high (but still binding)

bid cap changes the players�strategies, but not their expected e¤orts nor their probabilities to win the contest.

The e¤ect of bid caps on the players�strategies may be di¤erent in other frameworks as Gavious, Moldovanu

and Sela (2003) demonstrated. They studied symmetric all-pay auctions with incomplete information and

showed that, regardless of the number of bidders, if agents have linear or concave cost functions then setting a

bid cap is not pro�table for a designer who wishes to maximize the average bid. On the other hand, if agents

have convex cost functions (i.e., increasing marginal costs), then e¤ectively capping the bids is pro�table for

a designer facing a su¢ ciently large number of bidders.

In this study we examine some e¤ects of bid caps in common-value all-pay auctions with asymmetric

information. We consider a two-player common-value all-pay auction where the value of winning is the

same for all the players in the same state of nature, but the information about which state of nature was

realized can be di¤erent.3 This model captures contests in which the value of winning is similar for di¤erent

contestants, but is not precisely known at the time of making a bid. In our framework, the information of a

player about the value of winning is described by a partition of the space of states of nature, which is assumed

1See, for example, Hillman and Samet (1987), Hillman and Riley (1989), Baye et al. (1993, 1996) and Siegel (2009).
2See, for example, Amann and Leininger (1996), Moldovanu and Sela (2001, 2006) and Moldovanu et al. (2010).
3Several researchers used the same framework as ours to analyze common-value second-price auctions and common-value

�rst price auctions (see Einy et al. 2001, 2002, Forges and Orzach 2011, Malueg and Orzach 2012 and Abraham et al. 2012).
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to be �nite. Jackson (1993) and Vohra (1999) showed that this partition representation is equivalent to the

more common Harsanyi-type formulation of Bayesian games.4

In our model of asymmetric information we assume that information sets of each player are connected

with respect to the value of winning the contest (see Einy et al. 2001, 2002 and Forges and Orzach 2011).

This means that if a player�s information partition does not enable him to distinguish between two possible

values of winning, then he also cannot distinguish between these and all intermediate values. This assumption

seems plausible in environments where the information of a player only allows him to put an upper and lower

bound on the actual value of winning, without being able to rule out any outcome within the bounds. We

also assume that one player has an information advantage over the other, which is re�ected by having a �ner

information partition. Then, without loss of generality, it can be postulated that one player has the trivial

information partition (he will be referred to as the uninformed player), and that the information partition

of the other player is the �nest one possible, enabling him to distinguish between all states of nature (he will

be referred as the informed player). We �nally assume that there is a cap constraining the players�bids �

players can submit bids that are smaller than or equal to the bid cap.

We generalize the result of Che and Gale (1998) on bid caps in all-pay auction with complete information,

and show that if the bid cap is su¢ ciently high (but still binding) then its imposition changes the players�

strategies compared to the no-cap benchmark, but does not a¤ect the players�expected e¤orts or their ex-

ante chances to win the contest. For su¢ ciently low bid caps we show that when both players make a bid

that is equal to the bid cap in every state of nature, then their expected total e¤ort decreases compared

to the no-cap benchmark. However, in common with the all-pay auction under the complete information

assumption, a bid cap may still increase the players� expected e¤ort. This happens in an equilibrium in

which the uninformed player submits a bid that is equal to the bid cap, but the informed player submits it

only in some states of nature while in the other states he stays out.

According to Siegel (2014), in the common-value all-pay auction with asymmetric information without bid

caps the expected payo¤ of the informed player is always higher than that of the uninformed player.5 Here,

4Krishna and Morgan (1997) analyzed the equilibrium strategies of the all-pay auction with interdependent types in the

Harsanyi-type formulation of Bayesian games. They assumed that the players�types are a¢ liated and symmetrically distributed.
5See Section 2 of the online appendix to his work.
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however, we will show that imposing a bid cap may result in the informed player having a lower expected

payo¤. In other words, an information advantage may turn into a disadvantage as far as equilibrium payo¤s

are concerned.

Our work is related to the recent research of Siegel (2014) and Einy et al. (2014). Siegel (2014) studies

general asymmetric two-player all-pay auctions with interdependent valuations, where the private information

of each player is represented by a �nite set of possible types. It can be shown that his framework can

accommodate our common value all-pay auctions where one player has an information advantage over his

opponent. Einy et al. (2014) study two-player common-value all pay auctions, but assume that no player

has an information advantage over his opponent. Both works do not consider bid caps as we do here.

The rest of the paper is organized as follows. In Section 2 we present the model. In Section 3 we

characterize the equilibrium in common-value all-pay auctions with high but binding bid caps. In Section

4 we show how an information advantage may turn into a payo¤ disadvantage when there are bid caps. In

Section 5 we demonstrate that bid caps may positively a¤ect the players�total bid. Section 6 concludes.

2 The model

Consider the set N = f1; 2g of two players who compete in an all-pay auction, where the player with the

highest bid (�e¤ort) wins the contest but all the players bear the cost of their bid. We assume that each

player can submit any non-negative bid that is lower than or equal to a given budget constraint d > 0. The

uncertainty in our model is described by a �nite set 
 of states of nature, and a probability distribution

p over 
 that represents the common prior belief about the realized state of nature (w.l.o.g. p(!) > 0 for

every ! 2 
): The uncertain common value of winning the contest is given by a function v : 
! R+, i.e., if

! 2 
 is realized then the value of winning is v(!) for every player. The private information of each player

i 2 N is described by a partition �i of 
:

A common-value all-pay auction starts by a move of nature that chooses a state ! form 
 according

to the distribution p: Each player i is informed of the element �i(!) of �i which contains ! (thus, �i(!)

constitutes the information set of player i at !), and then he chooses an e¤ort xi 2 [0; d]: Note that when

the players have di¤erent information partitions they are ex-ante asymmetric.
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The utility (payo¤) of player i 2 N is given by the function ui : 
� R2+ ! R de�ned as follows:

ui(!; x) =

8>><>>:
1

m(x)v(!)� xi; if xi = maxfx1; x2g;

�xi; if xi < maxfx1; x2g;

wherem(x) denotes the number of players who exert the highest e¤ort, namely,m(x) = ji 2 N : xi = maxfx1; x2gj.

A two-player common-value all-pay auction with incomplete information is fully described by and identi�ed

with the collection G = ((
; p); u1; u2;�1;�2; d):

In all-pay auctions without a bid cap there is usually no equilibrium in pure strategies, and thus our

attention will be given �rst to mixed strategy equilibria. A (mixed) strategy of player i is a function

Fi : 
� [0; d] ! [0; 1]; such that for every ! 2 
; Fi (; �) is a cumulative distribution function (c.d.f.) of i�s

e¤ort on [0; d] ; and for all x 2 R+, Fi (�; x) is a �i-measurable function (that is, Fi (�; x) is constant on every

element of �i): Slightly abusing notation, for any �i 2 �i we will denote the constant value of Fi (�; x) on �i

by Fi (�i; x) ; whenever convenient.

If player i�s e¤ort choice given �i is deterministic (pure); i.e., if the distribution represented by Fi (�i; �)

is supported on some y 2 [0; d] ; we will identify between Fi (�i; �) and y wherever appropriate. Furthermore,

if i�s strategy Fi is pure, i.e., if i�s e¤ort choice is deterministic in every ! 2 
; we will identify between Fi

and a function xi : 
! [0; d] that represents i�s state-dependent (and �i-measurable) e¤ort choice.

Given a strategy pro�le F = (F1; F2), denote by Ei(F ) the expected payo¤ of player i when players use

that strategy pro�le, i.e.,

Ei(F ) � E(
Z d

0

Z d

0

ui(�; (x1; x2))dF1(�; x1)dF2(�; x2)):

For �i 2 �i; Ei(�i; F ) will denote the conditional expected payo¤ of player i given his information set �i;

i.e.,

Ei(�i; F ) � E(
"Z d

0

Z d

0

ui(�; (x1; x2))dF1(�; x1)dF2(�; x2)
#
j �i):

A pro�le F � = (F �1 ; F
�
2 ) of mixed strategies constitutes a (Bayesian Nash) equilibrium in the common-

value all-pay auction G if for every player i, and every mixed strategy Fi of that player, the following

inequality holds:

Ei(F
�) � Ei(Fi; F ��i);
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where �i denotes i�s rival.

We will assume throughout that player 2 has an information advantage over player 1. In our framework,

where the players�private information is represented by information partitions, the information advantage

of player 2 over player 1 is tantamount to 2�s partition �2 being �ner than 1�s partition �1: Let us write 


as an indexed sequence,


 = f!1; :::; !ng: (1)

It can be easily shown (see Remark 1 in the Appendix) that as far as equilibrium analysis is concerned, the

information advantage assumption can be reduced to the postulate that

�1 = f
g and �2 = ff!1g; f!1g; :::; f!ngg; (2)

i.e., that player 1 has no information on the realized state of nature (other than the common prior distribution

p, and thus he has the trivial information partition), while player 2 knows the realized state precisely (and

thus his information partition is the �nest one possible, that consists of singletons).

In addition to (1) and (2), the following notation will be used throughout:

vi = v(!i) and pi = p(!i) > 0

for every i = 1; :::; n: We will assume that the possible values of winning are distinct, and thus, w.l.o.g.,

strictly ranked as follows:

0 < v1 < v2 < ::: < vn:

3 The e¤ect of high (but binding) bid caps

In this section we will consider the e¤ects on equilibrium e¤orts of a high but still binding bid cap, compared

to the no-cap benchmark. Throughout the section we will assume that the bid cap d satis�es the following:

n�1X
j=1

pjvj +
1

2
pnvn < d �

nX
j=1

pjvj : (3)

Without the bid cap (d = 1) the contest has a unique equilibrium in mixed strategies6 , each of which

is supported on
h
0;
Pn

j=1 pjvj

i
; we will refer to this contest as the no-cap benchmark. Thus, the upper

6See Section 2 in the online appendix to Siegel (2014).
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boundary of the range of d in (3) is the minimal non-binding bid cap, under which the equilibrium strategies

in the no-cap benchmark remain such when the e¤orts are capped. All lower caps, d <
Pn

j=1 pjvj ; would lead

to equilibrium strategies that are di¤erent from those of the no-cap benchmark. Accordingly, the right-hand

inequality in (3) means that d is binding (unless it holds as equality), while the left-hand inequality means

that d is nonetheless high.

In what follows, we describe a mixed strategy pro�le (F �1 ; F
�
2 ) of the all-pay auction with a bid cap d

satisfying (3) that will turn out to be an equilibrium.

Let x0 � 0; and for each i = 1; :::; n; set

xi �
iX

j=1

pjvj : (4)

Thus, x0 < x1 < ::: < xn: In addition, let

ex = 2d� nX
j=1

pjvj : (5)

Condition (3) on the cap d implies that

xn�1 < ex � d � xn
(with all inequalities being strict if and only if d <

Pn
j=1 pjvj).

Consider now a function F �1 on [0; d] which is given by

F �1 (x) =

8>>>>>>>>>><>>>>>>>>>>:

x
vi
+
Pi�1

j=1 pj

h
1� vj

vi

i
; if x 2 [xi�1; xi) for i = 1; :::; n� 1;

x
vn
+
Pn�1

j=1 pj

h
1� vj

vn

i
; if x 2 [xn�1; ex);

ex
vn
+
Pn�1

j=1 pj

h
1� vj

vn

i
; if x 2 [ex; d);

1; if x = d:

It is easy to see that F �1 is well de�ned, strictly increasing on [0; ex), continuous on [0; d); and constant on
[ex; d). Moreover, F �1 (0) = 0 and F �1 (d) = 1. Thus, F �1 is a c.d.f. of a probability distribution with full

support on [0; ex] [ fdg (and a unique atom at d) if d <
Pn

j=1 pjvj ; and a continuous distribution with full

support on [0; ex] if d =Pn
j=1 pjvj (= ex = xn). As the function F �1 is state-independent, it can be viewed as

a mixed strategy of the uninformed player 1.
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Next, for each i = 1; :::; n� 1; consider a function F �2 (!i; �) on [0; d] which is given by

F �2 (!i; x) =

8>>>>>><>>>>>>:
0; if x < xi�1;

x�
Pi�1

j=1 pjvj

pivi
; if x 2 [xi�1; xi);

1; if x � xi;

and for i = n; a function F �2 (!n; �) given by

F �2 (!n; x) =

8>>>>>>>>>><>>>>>>>>>>:

0; if x < xn�1;

x�
Pn�1

j=1 pjvj

pnvn
; if x 2 [xn�1; ex);

ex�Pn�1
j=1 pjvj

pnvn
; if x 2 [ex; d);

1; if x = d:

Note that for i = 1; :::; n�1; F �2 (!i; �) is well de�ned, strictly increasing and continuous on [xi�1; xi], and

F �2 (!i; xi�1) = 0 and F
�
2 (!i; xi) = 1. Thus, F

�
2 (!i; �) is a c.d.f. of a continuous probability distribution with

full support on [xi�1; xi]. In addition, the function F �2 (!n; �) is well de�ned, strictly increasing on [xn�1; ex),
continuous on [0; d); and constant on [ex; d). Moreover, F �2 (!n; xn�1) = 0 and F �2 (!n; d) = 1. Thus, F �2 (!n; �)
is a c.d.f. of a probability distribution with full support on [xn�1; ex] [ fdg (and a unique atom at d) if

d <
Pn

j=1 pjvj ; and a continuous distribution with full support on [xn�1; ex] if d = Pn
j=1 pjvj (= ex = xn).

In particular, F �2 constitutes a mixed strategy of player 2.

Proposition 1 The strategy pro�le (F �1 ; F
�
2 ) is a mixed strategy Bayesian Nash equilibrium in a common

value all-pay auction with a bid cap satisfying (3).

Proof. Note that

E2(f!ig; F �1 ; x) = viF �1 (x)� x = viF �1 (xi�1)� xi�1 = E2(f!ig; F �1 ; xi�1)

for every i = 1; :::; n� 1 and x 2 [xi�1; xi); or i = n and x 2 [xn�1; ex): Thus, given that !i was realized, the
informed player 2 is indi¤erent between all e¤orts in the interval [xi�1; xi) if i = 1; :::; n�1; and is indi¤erent

between all e¤orts in the interval [xn�1; ex) if i = n; provided that his rival acts according to F �1 :
Since the slopes of the function viF �1 (x) � x = E2(f!ig; F �1 ; x) are positive when 0 � x < xi�1 and

negative when min(xi; ex) < x < d; the set of player 2�s pure best responses (given !i) when the bids are

constrained to be less then d contains the interval [xi�1; xi) if i = 1; :::; n� 1; and contains [xn�1; ex) if i = n:
8



Now note that the following holds for x = d :

E2(f!ig; F �1 ; d) = vi(F
�
1 (ex) + 1� F �1 (ex)2

)� d = vi(
1 + F �1 (ex)

2
)� d (6)

=
vi
vn
(
1

2
vn +

2d�
Pn

j=1 pjvj +
Pn�1

j=1 pj [vn � vj ]
2

)� d

=
d(vi � vn)

vn
� vi
vn
(
n�1X
j=1

pjvj �
1

2
vn(1� pn +

n�1X
j=1

pj))

= d
(vi � vn)
vn

+
vi
vn

n�1X
j=1

pj [vn � vj ] :

Thus, if i < n; by using (6) and (3) we obtain

E2(f!ig; F �1 ; d) � 1

vn
(
n�1X
j=1

pjvj +
1

2
pnvn)(vi � vn) +

vi
vn

n�1X
j=1

pj [vn � vj ]

= (vi � vn)
1

2
pn +

n�1X
j=1

pj(vi � vj):

On the other hand,

E2(f!ig; F �1 ; xi�1) = viF
�
1 (xi�1)� xi�1 (7)

= vi(
xi�1
vi

+
i�1X
j=1

pj
(vi � vj)
vi

)� xi�1

=
i�1X
j=1

pj(vi � vj);

and hence

E2(f!ig; F �1 ; d)� E2(f!ig; F �1 ; xi)

� (vi � vn)
1

2
pn +

n�1X
j=i+1

pj(vi � vj) < 0:

It follows that the set of player 2�s pure best responses (given !i) contains the interval [xi�1; xi) if i =

1; :::; n� 1: Furthermore, if i = n; then it follows from (6) and (7) (the latter does not require i < n) that

E2(f!ng; F �1 ; d) =
n�1X
j=1

pj [vn � vj ] = E2(f!ng; F �1 ; xn�1);

hence the set of player 2�s pure best responses (given !n) contains the set [xn�1; ex) [ fdg.
Therefore, the mixed strategy F �2 of player 2 is his best response against player 1�s strategy F

�
1 ; since it

has been shown that for each i = 1; :::; n; the distribution corresponding to F �2 (!i; �) is supported on a set of

2�s pure best responses to F �1 conditional on !i:
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Next, observe that

E1(x; F
�
2 ) =

i�1X
j=1

pjvj + piviF
�
2 (!i; x)� x = 0 (8)

for every i = 1; :::; n� 1 and x 2 [xi�1; xi); or i = n and x 2 [xn�1; ex): Note also that
E1(d; F

�
2 ) =

n�1X
i=1

pivi + pnvn(F
�
2 (!n; ex) + 1� F �2 (!n; ex)2

)� d (9)

=
n�1X
i=1

pivi + pnvn(
ex�Pn�1

j=1 pjvj

2pnvn
+
1

2
)� d = 0:

It follows from (8) and (9) that player 1 is (in expectation) indi¤erent between all e¤orts in [0; ex)[fdg (and
is obviously worse o¤ when e¤orts are outside [0; ex) [ fdg) provided his rival 2 acts according to F �2 : Thus
the mixed strategy F �1 of player 1 is his best response against player 2�s strategy F

�
2 ; since it has been shown

that the distribution corresponding to F �1 is supported on a set of 1�s pure best responses to F
�
2 :

We conclude that (F �1 ; F
�
2 ) is indeed a mixed strategy equilibrium.

Proposition 1 can be strengthened. Call mixed strategy F2 of player 2 monotone if, for every i = 1; :::; n;

there is a set Ai � [0; d] such that the distribution corresponding to F �2 (!i; �) is supported on Ai; and the

sets A1; :::; An are "ordered" on [0; d] according to their index: if 1 � i < j � n and x 2 Ai; y 2 Aj ; then

x � y: This means that the bids of player 2 are (weakly) increasing in the value vi of winning (which he

knows by assumption). Note that the strategy F �2 of player 2 is monotone.

Proposition 2 The mixed strategy equilibrium (F �1 ; F
�
2 ) of Proposition 1 is the unique Bayesian Nash equi-

librium in a common value all-pay auction with a bid cap satisfying (3) in which the strategy of the informed

player 2 is monotone.

Proof. See the Appendix.

The inclusion of the no-cap benchmark contest (corresponding to the case of d =
Pn

j=1 pjvj ; that was

studied in Siegel (2014)) in our framework allows direct comparisons of expected equilibrium e¤orts and of

ex-ante probabilities of winning in equilibrium in the scenario with and without caps. According to the next

proposition, su¢ ciently high but binding caps make no di¤erence as far as the expected e¤ort is concerned:

Proposition 3 The expected e¤ort that each player exerts in the unique equilibrium of a common-value

all-pay auctions with a bid cap d satisfying (3) is independent of d; and in particular is equal to the e¤ort

exerted in the no-cap benchmark auction.
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Proof. Player 1�s expected e¤ort when he uses F �1 is

TE1 =

Z
[x0;xn�1)

xdF �1 (x) +

Z
[xn�1;ex) xdF

�
1 (x) + d � (1� F �1 (ex)) (10)

=
n�1X
i=1

Z xi

xi�1

x

vi
dx+

Z ex
xn�1

x

vn
dx+ d � (1� ex

vn
�
n�1X
j=1

pj

�
1� vj

vn

�
)

=
n�1X
i=1

x2i � x2i�1
2vi

+
(2d�

Pn
j=1 pjvj)

2 � x2n�1
2vn

+ d � (1�
2d�

Pn
j=1 pjvj

vn
�
n�1X
j=1

pj

�
1� vj

vn

�
)(11)

=
nX
i=1

x2i � x2i�1
2vi

=
nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A ;
and player 2�s expected e¤ort when he uses F �2 is

TE2 =
n�1X
i=1

pi

Z
[xi�1;xi)

xdF �2 (!i; x) + pn � (
Z
[xn�1;ex) xdF

�
2 (!n; x) + d � (1� F �2 (!n; ex)) (12)

=
n�1X
i=1

pi

Z xi

xi�1

x

pivi
dx+ pn � (

Z ex
xn�1

x

pnvn
dx+ d � (1�

ex�Pn�1
j=1 pjvj

pnvn
)

=
n�1X
i=1

Z xi

xi�1

x

vi
dx+

Z ex
xn�1

x

vn
dx+ d � (pn �

2d�
Pn

j=1 pjvj �
Pn�1

j=1 pjvj

vn
) (13)

=

nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A
(the last equality is obtained just as in the computation of TE1 above; since expression (13) is identical to

expression (11)). Thus, both TE1 and TE2 are independent of d.

The proof of Proposition 3 reveals that the players�ex-ante expected e¤orts are the same. The expected

total e¤ort is therefore

TE = 2
nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A ; (14)

and, just as the individual�s expected e¤ort, it is independent of the bid cap d (provided (3) holds). This

generalizes the result of Che and Gale (1998) on the e¤ect of high but binding caps in all-pay auctions with

complete information (which, in our framework, is captured by the information structure where the set 


consists of just one state of nature).

The fact that the expected e¤orts of both players are identical (though not their equality across d) can

also be obtained as a corollary of the following observation, which has already been noted by Siegel (2014)

for the no-cap benchmark auction. It turns out that the ex-ante distribution of equilibrium e¤ort is identical

for both players:

11



Proposition 4 In the unique equilibrium (F �1 ; F
�
2 ) of a common-value all-pay auctions with a bid cap d

satisfying (3), the ex ante distribution of equilibrium e¤ort of player 2 is identical to F �1 : In particular, each

player wins with (ex-ante) probability 1
2 .

Proof. Denote by F2(x) the ex-ante probability that player 2 exerts an e¤ort that is smaller than or

equal to x when acting according to his strategy F �2 : For every i = 1; :::; n � 1 and x 2 [xi�1; xi] ; or i = n

and x 2 [xn�1; ex);
F2(x) =

i�1X
j=1

pj + piF
�
2 (!i; x) =

i�1X
j=1

pj + pi �
x�

Pi�1
j=1 pjvj

pivi

=
x

vi
+

i�1X
j=1

pj

�
1� vj

vi

�
= F �1 (x) :

When x 2 [ex; d);
F2(x) =

n�1X
j=1

pj + pnF
�
2 (!i; ex) = n�1X

j=1

pj + pn �
ex�Pn�1

j=1 pjvj

pnvn

=
ex
vn
+

n�1X
j=1

pj

�
1� vj

vn

�
= F �1 (x) ;

and clearly F2(d) = F �1 (d) : Thus, the ex-ante distribution of equilibrium e¤ort of player 2 is identical to the

distribution of equilibrium e¤ort of player 1.

Since player 1�s strategy F �1 is state-independent, his chance to win only depends on the ex-ante distribu-

tion of his rival e¤orts, i.e., on F2: But it has been shown that F2 = F �1 ; and hence the (ex-ante) probability

to win is 1
2 for each player.

4 Possible disadvantage of information advantage

With su¢ ciently high but still binding bid caps (described in the previous section) the expected payo¤ of the

uninformed player is zero in equilibrium, while his informed rival�s expected payo¤ is positive. The following

example demonstrates the e¤ect of lower bid caps on the players�equilibrium strategies, and, in particular,

shows that for certain bid caps the expected payo¤ to the uninformed player 1 is higher than for the informed

player 2.
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Example 1 Assume that n = 3; and that in state !i the value of winning is v(!i) = i with probability of

pi =
1
3 ; i = 1; 2; 3: Assume also that the players have the same bid cap d =

5
6 : Then the following constitutes

a pure strategy Bayesian equilibrium: player 1�s bid is independent of the state of nature, x�1 � 5
6 ; and player

2�s state-dependent bid is given by

x�2(!) =

8>><>>:
0; if ! = !1;

5
6 ; if ! 6= !1

:

The expected payo¤ of player 1 is then

E1 =
1

3
� 1 + 1

3
� 1
2
� 2 + 1

3
� 1
2
� 3� 5

6
=
1

3
;

and the expected payo¤ of player 2 is

E2 =
1

3
� (1
2
� 2� 5

6
) +

1

3
� (1
2
� 3� 5

6
) =

5

18
:

Thus, the expected payo¤ of the uninformed player 1 is higher than that of the informed player 2.

In the next proposition we describe some su¢ cient conditions (extending Example 1) under which this

unusual result of a higher expected payo¤ to the uninformed player can be obtained.

Proposition 5 Consider a common-value all-pay auction with a bid cap d. Suppose that there exists 1 �

j � n� 1 such that

(i)

1

2

nX
m=j+1

pmvm � d; (15)

(ii)

vj
2
� d � vj+1

2
; (16)

and

(iii)
jX

m=1

pm(vm � d) � 0: (17)

Then there exists a pure strategy Bayesian Nash equilibrium in which the expected payo¤ of the uninformed

player (player 1) is higher than that of the informed player (player 2).

13



Proof. Consider a pure strategy pro�le (x�1;x
�
2) in which

x�1 � d; (18)

and

x�2(!k) =

8>><>>:
0, for k = 1; :::; j;

d, for k = j + 1; :::; n
: (19)

The expected payo¤ of player 2 when (x�1;x
�
2) is played is

E2 (x
�
1;x

�
2) =

nX
m=j+1

pm(
1

2
vm � d); (20)

and the expected payo¤ of player 1 is

E1 (x
�
1;x

�
2) =

jX
m=1

pm(vm � d) +
nX

m=j+1

pm(
1

2
vm � d): (21)

We will now check that (x�1;x
�
2) is an equilibrium. If player 1 submits a bid of 0 � x1 < d; then by (15)

E1 (x1;x
�
2) �

jX
m=1

pmvm � x1 � E1 (x�1;x�2) :

Thus x�1 is player 1�s best response to x
�
2:

If player 2 unilaterally deviates from x�2 to a strategy x2 with 0 < x2 (!k) = " � d for some 1 � k � j;

then

E2 (f!kg ;x�1;x2) � max
�
�"; vk

2
� d

�
� 0 = E2 (f!kg ;x�1;x�2) ;

where the second inequality is implied by (16). But, also by (16), if player 2 unilaterally deviates from x�2

to a strategy x2 with 0 � x2 (!k) = " < d for some j + 1 � k � n; then

E2 (f!kg ;x�1;x2) = �"

� 0 � vk
2
� d = E2 (f!kg ;x�1;x�2) :

By taking expectation over !k; it follows that

E2 (x
�
1;x2) � E2 (x�1;x�2)

14



for any pure strategy x2 of player 2 that obeys his bid cap, and thus x�2 is player 2�s best response to x
�
1:

We conclude that (x�1;x
�
2) is an equilibrium. By comparing the players�expected payo¤s given by (20)

and (21), we obtain by (17) that the expected payo¤ of player 1 is higher than that of player 2. Q:E:D:

5 The advantage of bid caps

Che and Gale (1998) have shown that low bid caps may lead to higher e¤orts by players. This occurs in an

equilibrium where both players make bids that are equal to the bid cap. We will �rst examine whether this

can also happen in our common-value all-pay auctions with incomplete information.

Assume that both players make a bid that is equal to the bid cap in all the states of nature:

x�1 � d;

x�2(!j) = d, j = 1; :::; n:

The players�expected payo¤s when (x�1;x
�
2) is played are:

E1 (x
�
1;x

�
2) =

nX
j=1

pjvj
2

� d;

and, for j = 1; 2; :::; n;

E2 (f!jg ;x�1;x�2) =
vj
2
� d:

The necessary and su¢ cient condition for (x�1;x
�
2) to be an equilibrium is d � v1

2 ; since then both players

have non-negative expected payo¤s in all states of nature, and therefore none of them has an incentive to

deviate from the above strategies. The total e¤ort in this equilibrium is equal to 2d (� v1): On the other

hand, in the common-value all-pay auction without a bid cap of Siegel (2014) (which is equivalent to the

assumption that d =
Pn

j=1 pjvj ; considered among other cases in Section 3), the players� expected total

e¤ort is given by (14), and hence

TE = 2
nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A > 2
nX
i=1

pi

0@i�1X
j=1

pjv1 +
1

2
piv1

1A = v1:
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Thus, a simple adaptation of the bid that is equal to the bid cap from the complete information case does not

increase the expected total e¤ort. The following result, however, demonstrates that a bid cap may increase

the players�expected e¤ort compared to the no-cap benchmark in some equilibria.

Proposition 6 The players�expected total e¤ort in a common-value all-pay auction with a bid cap may be

higher than in the same auction without a bid cap:

Proof. Consider a common-value all-pay auction with a bid cap d. Suppose that there are two states of

nature (i.e., n = 2) that occur with probabilities (p1; p2); and that

v1
2
� d � p2v2

2
:

As in Proposition 5 there is a pure strategy Bayesian Nash equilibrium (x�1;x
�
2) ; in which

x�1 � d;

and

x�2(!i) =

8>><>>:
0, for i = 1;

d, for i = 2
:

The players�expected total e¤ort is then

dTE = (1 + p2)d:
On the other hand, by (14), in the common-value all-pay auction without a bid cap the player�expected

total e¤ort is given by

TE = v1(p
2
1 + 2p1p2) + p

2
2v2:

Since (1+p2)p2
2 > p22 for all p2 <

1
2 ; we obtain that for such p2; d that is close to

p2v2
2 , and a su¢ ciently low

value of v1,dTE > TE: Q:E:D:

6 Concluding remarks

In this paper we generalize some of the results of Che and Gale (1998), who studied all-pay auctions with

bid caps under the complete information assumption. We consider common-value all-pay auctions with

asymmetric information and show that high (but still binding) levels of bid caps do not change the players�
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expected e¤orts, but other levels of bid caps may drastically a¤ect them, and in particular increase the

total expected e¤ort compared to the no-cap benchmark. We also show that if players face bid caps, the

information advantage might become a disadvantage as far as equilibrium payo¤s are concerned in that the

player with the information advantage may have a lower expected payo¤ than his opponent. This unusual

result implies that by imposing bid caps, the contest designer can control the relation between the players�

expected payo¤s.

We provide a partial characterization of the equilibrium strategies for high (but binding) levels of bid

caps. It is not clear, however, whether equilibrium exists, or is unique, for other levels of bid caps. The

study of all-pay auctions under asymmetric information with and without bid caps remains an important

endeavor, and much more work is needed for a complete analysis.

7 Appendix

Remark 1

As far as equilibrium analysis is concerned, the assumption that player 2 has an information advantage

over player 1 can be reduced to (2). Indeed, in the general case of �2 being �ner than �1 note the following.

Given �1 2 �1; the event �1 is common knowledge at any ! 2 �1. Thus, the equilibrium analysis can

be carried out separately for each �1 2 �1; as conditional on the occurrence of �1 the auction G can be

viewed as a distinct common-value all-pay auction G0, where the set of states of nature is 
0 = �1 and the

conditional distribution p(� j �1) serves as the common prior distribution p0. In G0, player 1 has the trivial

information partition, �01 = f
0g :

Thus, we may w.l.o.g. assume that �1 = f
g in the original auction G. Now consider another common-

value all-pay auction G00 in which the set of states of nature 
00 � �2 consists of information sets of player

2 in G; the common value function v00 is given by v00 (�2) = E(v j �2) for every �2 2 
00; player 2 has

the full information partition, consisting of all singleton subsets of 
00; i.e., �002 = ff�2g j �2 2 
00g ; and

player 1 has the trivial information partition �001 = f
00g : Naturally, every mixed strategy F2 (�; �) of player

2 in G corresponds to a unique mixed strategy F 002 (�; �) of 2 in G00 that is given by F 002 (�2; �) = F2 (!; �)
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for every �2 2 
00 and every ! 2 �2 (which is well-de�ned because of �2-measurability of F2 in its �rst

coordinate), and the mixed strategies of player 1 in G and G00 are identical as they are state-independent.

The correspondence (F1; F2) $ (F1; F
00
2 ) between mixed strategy-pro�les in G and G00 obviously preserves

both players� expected payo¤s. Thus, G and G00 are payo¤-equivalent, and hence identical in terms of

equilibrium analysis. However, G00 has the property that player 1 has no information on the realized state of

nature while player 2 is completely informed of it. Thus, in studying equilibria in two-player common-value

all-pay auctions, attention can be con�ned w.l.o.g. to auctions with the latter property.

Proof of Proposition 2

Fix an equilibrium (F1; F2) in the auction G, in which F2 is monotone. We will prove that (F1; F2) =

(F �1 ; F
�
2 ):

In what follows, for k = 1; 2 and ! 2 
; Fk (!; �) will be treated either as a probability measure on [0; d] ;

or as the corresponding c.d.f., sometimes in the same context. Accordingly, for A � [0; d], Fk (!;A) will

stand for the probability that the equilibrium e¤ort of player k; conditional on !; belongs of the set A; and

for x 2 [0; d]; Fk (!; x) will stand for the probability that the equilibrium e¤ort of player k; conditional on

!; is less or equal to x. Also, as F1 is state-independent, F1 (!; �) will be shortened to F1 (�) ; whenever

convenient.

Notice that Fk (�; fcg) � 0 for any e¤ort c 2 (0; d) and k = 1; 2: Indeed, if Fk (!; fcg) > 0 for some

c 2 (0; d); k and !; then F�k (!0; (c� "; c]) = 0 for the other player �k and every !0 2 
; and some

su¢ ciently small " > 0: But then k would be strictly better o¤ by shifting the probability from c to c� "
2 , a

contradiction to Fk being an equilibrium strategy. Thus, F1 (�) ; F2 (!; �) are non-atomic on (0; d) for every

! 2 
: Notice also that there is no interval (a; b) � (0; d) on which in some state of nature only one player

places a positive probability according to his equilibrium strategy. Indeed, otherwise there would exist a0 > 0

such that only one player places a positive probability on (a0; b), and it would then be pro�table for that

player to deviate (in at least one state of nature, if this is the informed player 2) by shifting a positive

probability from (a0; b) to a0.

Suppose now that there is a (non-degenerate) interval (a; b) � (0; d) such that F1 ((a; b)) = 0 (and

thus F2 (!; (a; b)) = 0 for every ! 2 
; by the previous paragraph), but F1 ([b; d)) > 0. By increasing
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b < d if necessary, it can also be assumed that (a; b) is maximal with respect to this property, i.e., that

F1 ([b; b+ ")) > 0 for every small enough " > 0: However, the expected payo¤ of player 1 at a+b
2 is strictly

bigger than his payo¤ for any e¤ort in [b; b + "), if " > 0 is small enough: This contradicts the assumption

that F1 is an equilibrium strategy, and shows that there exists no interval (a; b) as above. Non-existence of

such (a; b) together with non-atomicity of F1 (�) on (0; d) imply that there exist 0 � � � d such that F1 (�) is

supported on [0; �]� [ fdg (where [0; �]� denotes the interval [0; �) if � > 0 and [0; 0]� = f0g); and either

the restriction of F1 (�) to [0; �]� has full support on it, or F1 (�) is concentrated on d (i.e., F1 (fdg) = 1).

Note also that for every ! 2 
; F2 (!; �) must also be supported on [0; �]� [ fdg (though there need not

be full support on [0; �]�) if F1 (fdg) < 1, and on f0g [ fdg if F1 (fdg) = 1; since otherwise there would be

an open subinterval of (0; d) where only player 2 places positive probability, and this was ruled out.

Observe next that F1(�) cannot be concentrated on d: For otherwise each F2 (!i; �) would be supported

on f0g [ fdg: It cannot be that all F2 (!i; �) are concentrated 0; or all F2 (!i; �) are concentrated on d (in

the �rst case, player 1 would have a pro�table deviation to a positive e¤ort near 0; and in the second case

player 1 would have a pro�table deviation to 0 since his expected payo¤ under F1 would be negative, as

follow from assumption (3)). Thus, since the strategy F2 is, by assumption, monotonic, there exists i0 such

that F2 (!i0 ; �) is supported on f0g [ fdg; whereas F2 (!i; �) is concentrated on 0 for i < i0and F2 (!i; �) is

concentrated on d for i > i0: If i0 6= n; however, F1 (which is concentrated on d) gives 1 a negative expected

payo¤ by assumption (3) on d; and thus cannot be a best response. We conclude that i0 = n: But then,

by lowering his e¤ort from d to a positive e¤ort near zero; player 1 will save almost the entire cost of e¤ort

d, while his loss of utility from winning will not exceed 1
2pnvn: By assumption (3), this will be a pro�table

deviation, in contradiction to F1 being an equilibrium strategy. Thus, F1 cannot be concentrated on d; and

consequently the restriction of F1 (�) to [0; �]� has full support on it.

Note further that the interval [0; �]� is non-degenerate, i.e., that 0 < �: Indeed, if � = 0 then both

equilibrium strategies prescribe mixtures of e¤ort 0 and e¤ort d: It was shown that F1 (�) is not concentrated

on d; and thus it is supported on f0g [ fdg with F1(f0g) > 0. Then the only strategy F2 of 2 that may

constitute a best response to F1 would prescribe d with probability 1 at every ! 2 
; and then F1 must be

concentrated on 0 (since choosing d will give 1 a negative expected payo¤ by assumption (3) on d). However,
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no strategy of 2 can be a best response to such F1, a contradiction. We conclude that, indeed, � > 0; and

the interval [0; �]� = [0; �) is non-degenerate.

In keeping with our earlier notation, for 0 � a � b � d denote by [a; b]� the interval [a; b) if b > 0 and

the set f0g if a = b = 0: Given i = 1; :::; n, we will now show that there is a (possibly empty or degenerate)

subinterval [ai; bi]� of [0; �) such that F2 (!i; �) is supported on [ai; bi]� [ fdg; and, if F2 (!i; fdg) < 1; the

restriction of F2 (!i; �) to [0; �) has full support on [ai; bi]�. If F2 (!i; �) is supported on f0g [ fdg; the

claim obviously holds for 0 < ai = bi (an empty [ai; bi]�), or ai = bi = 0: Assume now that F2 (!i; �)

is not supported on f0g [ fdg, but the claim does not hold. Then there are 0 < a < b < � such that

F2 (!i; (a; b)) = 0, but F2 (!i; [0; a]) > 0 and F2 (!i; [b; �)) > 0: Since F1 ((a; b)) > 0, there must be j 6= i

such that F2 (!j ; (a; b)) > 0: Assume that i < j (the opposite case is treated similarly). Then there are

x 2 [b; �) and y 2 (a; b) such that

viF
1(x)� x = E2

�
f!ig ; F 1; x

�
(22)

� E2
�
f!ig ; F 1; y

�
= viF

1(y)� y (23)

and

vjF
1(x)� x = E2

�
f!jg ; F 1; x

�
(24)

� E2
�
f!jg ; F 1; y

�
= vjF

1(y)� y: (25)

But x > y; and therefore

(vj � vi)F 1(x) > (vj � vi)F 1(y) (26)

since vi < vj and the c.d.f. F 1 is strictly increasing on [0; �) (as the restriction of this distribution to [0; �)

has full support). Adding (26) to the inequality in (22)-(23) contradicts the inequality obtained in (24)-(25),

and therefore no such (a; b) exists. Consequently, the restriction of each F2 (!i; �) to [0; �) has full support

on some [ai; bi]� :

If there is 1 � i � n such that F2 (!i; fdg) > 0, denote by i0 the smallest index with this property. Since

F2 is a monotone strategy, F2 (!i; �) is concentrated on d for every i > i0; and hence, if i0 < n; F2 (!n; �) is

concentrated on d: Thus

E1(d
0; F2) �

n�1X
j=1

pjvj +
1

2
pnvn � d0 < 0
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by assumption (3) for all e¤orts d0 � d that are su¢ ciently close to d. Consequently, the equilibrium

strategy F 1 of player 1 will not have support in some left-hand neighborhood of d. Thus player 2 will

not exert e¤ort d at !n with positive probability, a contradiction to F2 (!n; �) being concentrated on d.

Thus, even if i0 is de�ned, it must be equal to n; implying that F2 (!i; fdg) = 0 for every i = 1; :::; n � 1:

Thus, the distribution F2 (!i; �) has full support on [ai; bi]� � [0; �) for i = 1; :::; n�1 (and in particular each

[ai; bi]� is non-empty). As F2 (!n; �) cannot be concentrated on d; [an; bn]� is also non-empty. It furthermore

follows from monotonicity of F2 that, if i < j; then [ai; bi]_ lies below [aj ; bj ]_ (or coincides with [aj ; bj ]_ ;

if [aj ; bj ]_ = f0g).

Thus, the intervals
�
[ai; bi]_

	n
i=1

are disjoint (barring the set f0g), and "ordered" according to the index

i on the interval [0; �): Moreover, [ni=1 [ai; bi]� = [0; �); since otherwise there would be a "gap" (a; b) on

which only player 1 places positive probability, which is impossible as we have seen earlier. It follows that

there are points 0 = y0 � y1 � ::: < yn � � such that [ai; bi]_ = [yi�1; yi]_ for every i = 1; 2; :::; n; i.e., for

i = 1; :::; n� 1; F2 (!i; �) has full support on [yi�1; yi]_ ; and the restrictions of F 1 (�) and F2 (!n; �) to [0; �)

have full support on [0; yn) and [yn�1; yn), respectively. We denote by i0 the smallest integer with yi0 > 0:
7

Since F 1 (�) has full support on [0; yn) (when restricted to [0; yn)) and F2 (!; �) has no atoms in (0; yn);

player 1 is indi¤erent between any two e¤orts in (0; yn). Thus, the following equality must hold for every

i = i0; :::; n and every positive x 2 [yi�1; yi) :

i�1X
j=1

pjvj + piviF2(!i; x)� x = E1(x; F2) = lim
y&0

E1(y; F2) � e1 � 0:

In particular,

F2(!i; x) =
x�

Pi�1
j=1 pjvj + e1

pivi
(27)

for every i = i0; :::; n and every x 2 [yi�1; yi): Since, for i = i0 + 1; :::; n; F2 (!i; �) has full support (after

restriction to [0; �) for i = n) on [yi�1; yi) � (0; �); we have F2(!i; yi�1) = 0; and thus

yi =
iX

j=1

pjvj � e1 (28)

for every i = i0; :::; n� 1:
7Since each interval [yi�1; yi]_ is either non-degenerate or f0g, 0 = y0 = ::: = yi0�1 < yi0 < ::: < yn:
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Since, for i = i0; :::; n; F2 (!i; �) has full support (after restriction to [0; �) for i = n) on [yi�1; yi) and

F1 (�) has no atoms (except, possibly, at 0) on [0; �); player 2 is indi¤erent between all positive e¤orts in

[yi�1; yi). Thus, the following equality must hold for every positive x 2 [yi�1; yi) :

viF1 (x)� x = E2(f!ig; F1; x)

= lim
y&yi�1

E2(f!ig; F1; y) = viF1 (yi�1)� yi�1;

and in particular

F1 (x) =
x

vi
+ F1 (yi�1)�

yi�1
vi
: (29)

The rest of the proof will separately consider the following cases.

Case 1: Assume that e1 > 0 or i0 > 1:

The assumption of Case 1 implies that either F2 (!i0�1; �) is concentrated on 0 (if i0 > 1) or F2 (!1; f0g) >

0 by (27) (if i0 = 1 but e1 > 0). Thus F1 (�) has no atom at 0 (otherwise shifting mass from 0 to a sightly

higher e¤ort would constitute a pro�table deviation), and hence F1 (0) = 0: Using this, (28) and (29); we

obtain

F1 (x) =
x+ e1 �

Pi
j=1 pjvj

vi
+

iX
j=i0+1

pj +

Pi0
j=1 pjvj � e1

vi0
(30)

for every i = i0; :::; n; and every positive x 2 [yi�1; yi):

Case 1.1: Assume that F1 (fdg) > 0:

It is a corollary of this assumption that F2 (!n; fdg) > 0 (since otherwise for some small " > 0 and every

i we would have F2 (!i; (d� "; d]) = 0; and then player 1 could pro�tably shift probability from d to a lower

e¤ort). Note further that having an atom at d by both F1 (�) and F2 (!n; �) implies that these distributions

place no probability on an open interval (d� "; d) for some small " > 0; and hence

� < d; (31)

and F2 (!n; fdg) = 1� F2(!n; �):8 As F2(!n; �) has no atom at �; F2(!n; �) is given by (27) for x = � and

i = n: Since F1 (fdg) > 0; the expected payo¤ of player 1 from choosing d must be equal to the expected

8 In the LHS F2 is viewed as a probability measure, and in the RHS as a c.d.f.
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payo¤ from choosing e¤ort levels in (0; �); i.e.,

e1 = lim
y&0

E1(y; F2) = E1(d; F2)

=
n�1X
j=1

pjvj + pnvn

�
F2(!n; �) +

1

2
(1� F2(!n; �))

�
� d

=
n�1X
j=1

pjvj +
1

2
pnvn [F2(!n; �) + 1]� d

=
n�1X
j=1

pjvj +
1

2
pnvn

"
� �

Pn�1
j=1 pjvj + e1

pnvn
+ 1

#
� d

=
1

2

nX
j=1

pjvj +
1

2
� +

1

2
e1 � d:

Therefore

� = 2d�
nX
j=1

pjvj + e1: (32)

Since F2(!n; �) has full support on [yn�1; �)[fdg (as we have seen, d is chosen with positive probability),

the conditional expected payo¤ of player 2 at !n from choosing d must be equal to his conditional expected

payo¤ from choosing e¤ort levels close to (but smaller than) �; i.e.,

vnF1 (�)� � = lim
x%�

E2(f!ng; F1; x)

= E2(f!ng; F1; d) = vn
�
F1 (�) +

1

2
(1� F1 (�))

�
� d

=
vn
2
[1 + F1 (�)]� d:

It follows, by using (30) and (32) for x = � and i = n,9 that

0 =
vn
2
[1� F1 (�)] + � � d

=
vn
2

241�
�
2d�

Pn
j=1 pjvj + e1

�
+ e1 �

Pn
j=1 pjvj

vn
�

nX
j=i0+1

pj �
Pi0

j=1 pjvj � e1
vi0

35
+

0@2d� nX
j=1

pjvj + e1

1A� d
=

vn
2

241� nX
j=i0+1

pj �
Pi0

j=1 pjvj � e1
vi0

35
=

vn
2

24 i0X
j=1

pj

�
1� vj

vi0

�
+
e1
vi0

35 :
9Distribution F1 (�) does not have an atom at �; as follows from (31), and hence formula (30) can be used for x = � although

it is stated for x < yn = �:
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But the expression in brackets is positive under the assumptions of Case 1, a contradiction. Thus, the

properties assumed in Case 1 and Case 1.1 cannot hold jointly in equilibrium.

Case 1.2: Assume that F1 (fdg) = 0:

This assumptions implies that F2(!n; fdg) = 0 as well (since otherwise for some small " > 0 we would

have F1 ((d� "; d]) = 0; and then player 2 could pro�tably shift mass from d to a lower e¤ort at !n). Thus,

F1 (�) and F2 (!i; �) for each i = i0; :::; n are supported on [0; �), and non-atomic on (0; �): In particular,

formulas (27) and (30) hold for x = yn = � and i = n; and

F2(!n; �) = F1(�) = 1: (33)

It follows from (27) and (33) that

� = yn =
nX
j=1

pjvj � e1:

Thus

1 = F1(�) =
� + e1 �

Pn
j=1 pjvj

vi
+

nX
j=i0+1

pj +

Pi0
j=1 pjvj � e1

vi0

=

�Pn
j=1 pjvj � e1

�
+ e1 �

Pn
j=1 pjvj

vi
+

nX
j=i0+1

pj +

Pi0
j=1 pjvj � e1

vi0

=
nX

j=i0+1

pj +

Pi0
j=1 pjvj � e1

vi0

=
nX

j=i0+1

pj +

i0X
j=1

pj
vj
vi0

� e1
vi0
:

The last expression is smaller than 1, however, under the assumptions of Case 1, a contradiction.

We conclude that the assumptions of Case 1 cannot hold in equilibrium, and consider next the compli-

mentary Case 2:

Case 2: Assume that i0 = 1 and e1 = 0:

Given the assumptions, it follows that (27), (28), and (29) can be rewritten in the following way:

yi =
iX

j=1

pjvj (= xi) (34)
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for every i = 1; :::; n� 1 (where xi was de�ned in (4)), and

F2(!i; x) =
x�

Pi�1
j=1 pjvj

pivi
; (35)

F1 (x) =
x

vi
+ F1 (yi�1)�

yi�1
vi

(36)

for every i = 1; :::; n and every x 2 [yi�1; yi):

Denote e2 � F1 (y0) � 0: From (36) and (34) we obtain

F1 (x) =
x

vi
+

i�1X
j=1

pj

�
1� vj

vi

�
+ e2 (37)

for every i = 1; :::; n and every x 2 [yi�1; yi):

Case 2.1: Assume that F1 (fdg) > 0:

Arguing as in Case 1.1 (but substituting e1 = 0), we obtain

yn = � = 2d�
nX
j=1

pjvj (= ex); (38)

where ex was de�ned in (5), and
vnF1 (�)� � =

vn
2
[1 + F1 (�)]� d:

Using these equalities and (37), it follows that

0 =
vn
2
[1� F1 (�)] + � � d

=
vn
2

241� 2d�Pn
j=1 pjvj

vn
�
n�1X
j=1

pj

�
1� vj

vn

�
� e2

35
+

0@2d� nX
j=1

pjvj

1A� d = �vn
2
e2;

and we conclude that e2 = 0: This turns (37) into

F1 (x) =
x

vi
+

i�1X
j=1

pj

�
1� vj

vi

�
(39)

for every i = 1; :::; n and every x 2 [yi�1; yi):

Due to (34), (35), (38) and (39), the equilibrium strategy pro�le (F1; F2) is identical to (F �1 ; F
�
2 ) of

Proposition 1.
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Case 2.2: Assume that F1 (fdg) = 0:

Arguing as in Case 1.2 (but substituting e1 = 0 and i0 = 1), we obtain

F2(!n; �) = F1(�) = 1 (40)

and

� = yn =
nX
j=1

pjvj : (41)

(Since � � d �
Pn

j=1 pjvj ; (41) shows that Case 2.2 can only occur when d =
Pn

j=1 pjvj :) It follows from

(37), (40), and (41) that

1 =

Pn
j=1 pjvj

vn
+
n�1X
j=1

pj

�
1� vj

vn

�
+ e2 = 1 + e2;

and hence e2 = 0: Thus, (39) also holds in Case 2.2, for every i = 1; :::; n and every x 2 [yi�1; yi): It follows

from this, together with (34), (35), and (38), that the equilibrium strategy pro�le (F1; F2) is identical to

(F �1 ; F
�
2 ) of Proposition 1 in the case of d =

Pn
j=1 pjvj . �
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