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1 Introduction

Segregation and its measurement has been an object of interest for sociologists since at

least the late nineteen forties. More recently, economists as well have become interested

in segregation and its effects on the wage gender gap, the educational attainment of mi-

norities and on other socio-economic variables. The concept of segregation, nevertheless,

has proved to be quite elusive. Indeed, since the seminal paper of Duncan and Duncan

[7], the literature on segregation has generated a plethora of indices. To make some

order, Massey and Denton [21] identified five different aspects that could be captured

by the concept of segregation, namely, evenness, exposure, concentration, centralization

and clustering. Evenness refers to the extent to which the members of the different

groups are similarly distributed across units; exposure, to the extent to which members

of the minority groups are exposed to members of other groups; concentration, to the

∗This is a Chapter prepared for the Handbook of Research on Economic and Social Well-Being,

edited by Conchita D’Ambrosio. We thank Casilda Lasso de la Vega for her useful comments. Our

discussions much improved this survey.
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proportion of space occupied by the members of the minority in the city; centralization,

to the degree to which the members of the minority group are located near the center

of the city; and finally, clustering refers to the closeness of the units occupied by the

members of the minority. They have also classified twenty indices into five categories

corresponding to the above aspects. One of the differences among the various indices

is that they require qualitatively different data. Thus, while indices of evenness and

exposure typically take as an input the raw number of members of each group in each

unit, indices of concentration and clustering additionally require geographical data such

as the areas of different units and their distances from the center. Similarly, indices of

clustering require data on the proximity between the different units. More formally, the

domains on which the various indices are defined are not the same which makes any

comparison between them absurd.

In this chapter we survey the segregation literature with a focus on axiomatic models.

We particularly mention James and Tauber [18], who propose a short list of properties

for the evaluation of evenness and exposure indices for the case of two groups, and

Reardon and Firebaugh [26] who evaluate several such indices, for the multigroup case.

Full characterizations of indices or of families of indices, however, did not appear until

Philipson [25]. We will concentrate on indices defined within the traditional model of seg-

regation in which members of different groups, e.g. men and women, or blacks, whites

and Hispanics, are located in different locations. These locations could be neighbor-

hoods, schools, or occupations. Recently, however, a number of recent papers, however,

have opted for a different model in which members of different groups are located on a

network. Two notable exponents of this novel approach are Echenique and Fryer [8], and

Ballester and Vorsatz [3]. In Echenique and Fryer [8] the model is given by a weighted

directed graph where the nodes represent individuals, the arcs represent the existence

of an interaction between the corresponding individuals, and the weight measures the

intensity of the interaction. In addition, each individual belongs to a particular eth-

nic group. The segregation index they propose, called the spectral segregation index,
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can be thought of as a measure of isolation because it tries to capture the degree to

which individuals tend to interact with members of their own group.1 Ballester and

Vorsatz [3] also model a city as a graph, but in their case the nodes represent locations

which can contain several individuals belonging to various groups. They complement the

graph with a Markov matrix with an absorbing state that describes the probabilities of

transitions from one location to another. The segregation index they propose captures

the probabilities that in the long run members of the same group end up in the same

location.

This chapter is organized as follows. After the basic notation is introduced in Sec-

tion 2, Section 3 defines the Lorenz segregation ordering on two-group cities and enumer-

ates several properties that it satisfies. Section 4 introduces some well known examples

of segregation indices. Section 5 enumerates additional axioms that a segregation in-

dex may satisfy and Section 6 states three characterization results. Finally, Section 7

focuses on the case in which the number of groups is variable and formulates another

characterization theorem.

2 Notation

Throughout the chapter we use the language of urban ethnic segregation. The definitions

and results, however, apply in other contexts as well, including occupational gender

segregation, religious segregation in schools, etc.

The initial, and perhaps the most important modeling choice concerns the domain

on which the segregation measures are to be defined. Some axioms may characterize

a particular ordering over a particular domain, but not over some alternative one. In

this part of the chapter we will restrict attention to a domain with a fixed number of

racial groups. Furthermore, for ease of exposition we will further restrict attention to

two groups only, which will be referred to as blacks and whites. This entails little loss

1Isolation is to be understood as the opposite of exposure.
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of generality since most of the results generalize (some in a straightforward way) to the

many groups case. In Section 7 we will focus on a domain with a variable number of

groups.

A neighborhood n is characterized by a pair (Bn,Wn) of non-negative real numbers,

at least one of which is positive. The pair (Bn,Wn) is the neighborhoods ethnic compo-

sition. Namely, the first and second components are the numbers of blacks and whites,

respectively, in n. A city is a finite collection of neighborhoods, at least one of which

has a positive number of blacks and at least one of which has a positive number of

whites. Formally, a city is a system 〈N, (Bn,Wn)n∈N〉 such that
∑

n∈N Bn > 0 and
∑

n∈N Wn > 0, where N is the set of neighborhoods and for each n ∈ N , (Bn,Wn) is n’s

racial composition.

Given a city 〈N, (Bn,Wn)n∈N〉, we denote by B and W the total numbers of blacks

and whites, respectively: B =
∑

n∈N Bn and W =
∑

n∈N Wn. Also, the following

notation will be useful.

P =
B

B +W
: the proportion of blacks in the city

pn =
Bn

Bn +Wn

: the proportion of blacks in neighborhood n

T = B +W : the total population of the city

Tn = Bn +Wn: the total population of neighborhood n

bn =
Bn

B
: the proportion of the city’s blacks that live in neighborhood n

wn =
Wn

W
: the proportion of the city’s whites that live in neighborhood n.

For any city X = 〈N, (Bn,Wn)n∈N〉 and any positive constant α, αX denotes the city

that results from multiplying the number of blacks and whites in each neighborhood ofX

by α, namely, αX = 〈N, (αBn, αWn)n∈N〉. For any two cities X = 〈NX , (Bn,Wn)n∈NX
〉

and Y = 〈NY , (Bn,Wn)n∈NY
〉, with disjoint sets of neighborhoods, X ◦ Y denotes the

concatenation of the two. Formally, X ◦Y = 〈NX ∪NY , (Bn,Wn)n∈NX∪NY
〉. For conve-

nience, we will sometimes denote a city X = 〈N, (Bn,Wn)n∈N〉 simply by (Bn,Wn)n∈N .
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The city’s ethnic distribution is given by (P, 1− P ) and neighborhood n’s ethnic

distribution is given by (pn, 1− pn). Neighborhood n is representative of the city if the

proportions of the city’s blacks and of the city’s whites who live in the neighborhood are

equal; that is, if bn = wn.

3 Lorenz ordering

We are interested in ordering cities according to their level of segregation. This task is not

an easy one, as is evident from the large number of existing segregation indices. However,

there are some instances in which the comparison of cities according to their segregation

seems to be straightforward. These instances are identified by axioms. Before we present

some of the axioms, we motivate them by means of a particular partial order defined on

the class of two-group cities, namely the Lorenz order.

Let X = 〈N, (Bn,Wn)n∈N〉 be a city, and let φ : {1, 2, . . . , |N |} → N be an ordering

of the neighborhoods such that i ≤ j ⇒ pφ(i) ≥ pφ(j). Namely, φ orders neighborhoods

in a non-increasing manner according to their proportion of blacks. Also let β0 =

ω0 = 0, and for i = 1, 2, . . . , |N |, let βi = βi−1 + bφ(i) and ωi = ωi−1 + wφ(i). That

is, βi is the proportion of blacks that reside in the i neighborhoods with the highest

proportions of blacks. Similarly, ωi is the proportion of whites that reside in these same

neighborhoods. The Lorenz curve of X is the graph that is obtained by plotting the

points (βi, ωi) and connecting the dots.2 Note that the line segment that connects

the points
(

βi−1, ωi−1

)

and (βi, ωi) has a slope of wφ(i)/bφ(i). It can be checked that

bi/(bi + wi) ≥ bj/(bj + wj) ⇐⇒ pi ≥ pj. Therefore, the Lorenz curve is invariant to the

choice of ordering φ as long as it satisfies i ≤ j ⇒ pφ(i) ≥ pφ(j). Figure 1 illustrates the

Lorenz curve of a city with three neighborhoods.

2The cities’ Lorenz curves are usually referred to as segregation curves. Note that the segregation

curve of X is the standard Lorenz curve of an income distribution in which blacks play the role of

individuals and whites play the role of income.
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Figure 1: The Lorenz curve of a three-neighborhood city.

Based on the Lorenz curves described above we can now define the Lorenz partial

order.

Definition 1 Let X and Y be two cities. We say that Y is more segregated than X

according to the Lorenz criterion, denoted by Y <L X, if the Lorenz curve of Y is

nowhere above the Lorenz curve of X.

Figure 2 depicts the Lorenz curves of two cities, X and Y , the latter being more

segregated than the former according to the Lorenz criterion. The relation “being more

segregated than, according to the Lorenz criterion” is an example of a segregation order.

A segregation order is a binary relation that is used to compare cities according to their

respective levels of segregation. More formally, if we denote the set of all cities with two

ethnic groups by C2, a segregation order, <, is a reflexive and transitive binary relation

on C2. We interpret X < Y to mean that “city X is at least as segregated as city Y

according to <.” The relations ∼ and ≻ are derived from < in the usual way.3 Much

3That is, X ∼ Y if both X < Y and Y < X; X ≻ Y if X < Y but not Y < X.
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Figure 2: Y is more segregated than X according to the Lorenz criterion.

of the segregation literature is interested in identifying segregation orders that satisfy

desirable properties. In order to motivate them, we next analyze some of the properties

that the Lorenz order satisfies.

3.1 Properties of the Lorenz partial order

We say that two cities, X = 〈N, (Bn,Wn)n∈N〉 and X ′ = 〈N ′, (B′

m,W
′

m)m∈N ′〉, are

neighborhood-equivalent if there is a one-to-one mapping ϕ : N → N ′ such that for all

n ∈ N , (Bn,Wn) = (B′

ϕ(n),W
′

ϕ(n)). That is, two neighborhood-equivalent cities are, up

to renaming of neighborhoods, identical. Table 1 provides an example of two equivalent

cities.

X Y

A B C D E F

Blacks 30 50 120 120 30 50

Whites 120 50 30 30 120 50

Table 1: Equivalent cities.
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It is clear that two neighborhood-equivalent cities have the same Lorenz curves.

Therefore, the Lorenz order satisfies the following axiom.

Neighborhood-Anonymity (N-ANON) An order < on C2 satisfies neighborhood-

anonymity if for any two neighborhood-equivalent cities X and Y we have that

X ∼ Y .

Neighborhood-anonymity allows us to represent any city 〈N, (Bn,Wn)n∈N〉 graphi-

cally by drawing the collection of points (Bn,Wn)n∈N . Figure 3 depicts a city with three

neighborhoods. The rectangle represents the city’s total population of blacks and whites,

(B,W ). The slope of the dotted line is the city’s ratio of whites over blacks. It can be

seen that blacks are over-represented in one of the neighborhoods and under-represented

in the other two.

1 2 3 6
Blacks

22

1

5

Whites

Figure 3: A city with three neighborhoods:〈(3, 1), (2, 2), (1, 2)〉.

Consider now the cities X = 〈N, (Bn,Wn)n∈N〉 and Y =
〈

N, (αBn, βWn)n∈N
〉

, the

latter being obtained from X by multiplying the number of X’s blacks by α > 0 and

the number of X’s whites by β > 0. Table 2 depicts an example of two such cities.
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X Y

A B C D E F

Blacks 3 5 12 30 50 120

Whites 120 50 30 60 25 15

Table 2: Doubly scaled cities.

Since for all n, neighborhood n in both cities contain the same proportions bn and wn

of the total number of blacks and whites, respectively, X and Y have the same Lorenz

curve. Therefore, the Lorenz order satisfies the following axiom.

Composition Invariance (CI) Let X = 〈N, (Bn,Wn)n∈N〉 be a city and let Y =
〈

N (αBn, βWn)n∈N
〉

be the city that is obtained fromX by multiplying the number

of agents of a given group by the same nonzero factor in all neighborhoods. An

order < on C2 satisfies composition invariance if for any such cities we have X ∼ Y .

1 2 3 6
Blacks

44

22

Whites

Figure 4: Two cities. One is obtained from the other by scaling down the number of blacks.

Figure 4 depicts two cities, one of which has, for each of its neighborhoods, the

same number of whites and half the number of blacks as the other one. According to

Composition Invariance, these two cities are equally segregated.
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X Y

A B C A1 A2 B C

Blacks 30 50 120 20 10 50 120

Whites 120 50 30 80 40 50 30

Table 3: Splitting a neighborhood and keeping its ethnic distribution.

Now let X = 〈N, (Bn,Wn)n∈N〉 be a city and consider the city Y that is obtained

from X by splitting a particular neighborhood n into two neighborhoods n1 and n2

with the same ethnic distribution. Namely, (Bn1
,Wn1

) = (αBn, αWn) and (Bn2
,Wn2

) =

((1− α)Bn, (1− α)Wn) for some α ∈ (0, 1). Table 3 illustrates two such cities.

Then, we have bn = bn1
+ bn2

, wn = wn1
+ wn2

, and pn1
= pn2

= pn. Therefore, both

X and Y have the same Lorenz curve, as depicted in Figure 5. Indeed, the segment that

represents neighborhood n in X is split into two segments representing neighborhoods

n1 and n2 in Y .

0.2 0.4 0.6 0.8 1.0
Blacks

0.2

0.4

0.6

0.8

1.0

Whites

Figure 5: The two Lorenz curves.

As a result, the Lorenz order satisfies the following axiom.

Organizational Equivalence (OE) Let X ∈ C2 be a city and let (Bn,Wn) be a neigh-
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borhood of X. Also let Y be the city that results from X by dividing (Bn,Wn)

into two neighborhoods, (Bn1
,Wn1

) and (Bn2
,Wn2

), with the same ethnic distri-

bution. Namely, pn1
= pn2

. An order < on C2 satisfies organizational equivalence

if for any such cities we have X ∼ Y .

In order to motivate the next axiom, consider a city X = 〈N, (Bn,Wn)n∈N〉. Let

i, j ∈ N be two neighborhoods such that 0 < pi < 1 and pj ≤ pi. That is, neighborhood

i contains both blacks and whites, but has proportionally less whites than neighborhood

j.

Let ε ∈ (0,Wi], and let Y be the city that is obtained from X by moving ε whites

from neighborhood i to neighborhood j. That is, Y = 〈N, (B′

n,W
′

n)n∈N〉 in which

(B′

i,W
′

i ) = (Bi,Wi − ε), (B′

j,W
′

j) = (Bj,Wj + ε), and (B′

n,W
′

n) = (Bn,Wn) for all

n 6= i, j. Then we have that

wn/bn = w′

n/b
′

n for all n 6= i, j

w′

i/b
′

i < wi/bi ≤ wj/bj < w′

j/b
′

j.

Figure 6 depicts the outcome of transferring white individuals from a neighborhood with

relatively few whites to another one with relatively more whites.

It can be checked that the Lorenz curve of X lies nowhere below the Lorenz curve of

Y while it is not true that the Lorenz curve of Y lies nowhere below the Lorenz curve

of X. (See Figure 7 for an example of the effect of a transfer of white residents on the

Lorenz curve.) Therefore, the Lorenz order satisfies the following axiom.

The W Transfer Principle (WT) For any city X = 〈N, (Bn,Wn)n∈N〉, let i, j ∈ N

be two neighborhoods such that BiWi > 0 and

Wi

Bi +Wi

≤ Wj

Bj +Wj

.

Also let ε ∈ (0,Wi], and Y be the city that is obtained from X by moving ε whites

from neighborhood i to neighborhood j. A segregation order < on C2 satisfies the

W Transfer Principle if for any such cities we have thatY ≻ X.

11



22 88 10
Blacks

3

5

2

4

7

Whites

Figure 6: Transferring whites from a neighborhood with a relatively low percentage of whites

to one with a relatively high percentage of whites.

Analogously, the Lorenz order satisfies the following axiom.4

The B Transfer Principle (BT) For any city X = 〈N, (Bn,Wn)n∈N〉, let i, j ∈ N be

two neighborhoods such that BiWi > 0 and

Bi

Bi +Wi

≤ Bj

Bj +Wj

.

Also let ε ∈ (0, Bi], and Y be the city that is obtained from X by moving ε blacks

from neighborhood i to neighborhood j. A segregation order < on C2 satisfies the

B Transfer Principle if for any such cities we have Y ≻ X.

We can summarize the two axioms in the following.

The Transfer Principle (T) A segregation order < on C2 satisfies the transfer prin-

ciple if it satisfies both WT and BT.

4The two transfer principles are not equivalent. When one of the neighborhoods has no blacks, blacks

cannot be transferred from it. Therefore, in this case only the W Transfer Principle is not vacuous.
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Blacks
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Figure 7: Lorenz curves before (X = {(30, 5), (30, 25), (30, 25), (30, 40), (30, 55)}) and after

the transfer (Y = (30, 5), (30, 15), (30, 25), (30, 50), (30, 55)).

The Lorenz order satisfies the above four axioms, but it may not be the only ordering

of cities that does this. It turns out that any order that satisfies the above four axioms

must be consistent with the Lorenz order, and conversely, any order that is consistent

with the Lorenz ordering must satisfy the four axioms. This result, which is stated

in the following Proposition, was demonstrated by Hutchens [14] for the case in which

all neighborhoods have an identical number of blacks or an identical number of whites.

It was also mentioned, without proof, in James and Taeuber [18, (page 19)], and in

Hutchens [15]. For a proof, see Lasso de la Vega and Volij [20].

Proposition 1 Let < be an order on C2. It satisfies Neighborhood-Anonymity, Compo-

sition Invariance,Organizational Equivalence and the Transfer Principle if and only if

for all two cities X, Y ∈ C2 the following implications hold:

Y ≻L X ⇒ Y ≻ X (1)

Y ∼L X ⇒ Y ∼ X. (2)
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4 Segregation orderings and their measures

As we have seen, the above four axioms let us identify a partial order among cities. But

the literature on segregation is interested in identifying reasonable complete orderings,

so that any two cities could be compared according to their respective segregation levels.

Complete segregation orders are usually represented by segregation indices, which are

functions that assign to each city a nonnegative number that is meant to capture its

level of segregation. Given a segregation index S, the associated segregation order is

defined by X � Y ⇔ S(X) ≥ S(Y ). Clearly, a segregation order may be represented by

more than one index.

Additional axioms to the ones presented above have been proposed in order to identify

reasonable segregation orderings. Before we introduce them, we first list a number of

segregation indices that have been widely used to measure segregation.

4.1 Examples of Segregation Indices

The following is one of the most widely-used indices of segregation.

The Index of Dissimilarity. It is defined as:

D(X) =
∑

n∈N :bn>wn

(bn − wn) . (3)

This index was introduced to the literature by Jahn et al. [17]. It assigns to each

city the proportion of either blacks or whites that would need to be relocated in order to

obtain perfect integration. For example, if bn > wn, one needs to remove a proportion

bn − wn of the city’s blacks from neighborhood n for the neighborhood to be represen-

tative, and if bn < wn, one needs to add a proportion wn − bn of the city’s blacks to

neighborhood n for the neighborhood to be representative. The index of dissimilarity

can be represented graphically as the maximum distance between the Lorenz curve and

the 45 degree line. Since two Lorenz curves may have the same maximum distance to
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the 45 degree line with one being below the other, the index of dissimilarity is not con-

sistent with the Lorenz ordering. Indeed, as we shall see below, it does not satisfy the

transfer principle. Karmel and MaClachlan [19] proposed a slight modification to the

dissimilarity index that takes into account the city’s ethnic distribution. It is given by

2P (1− P )D(X).

This index calculates the number of people that would need to be relocated in order to

obtain perfect integration, keeping each of the neighborhoods’ population unchanged,

and normalizes it so that the index ranges between zero and one. Like the Dissimilarity

index, the Karmel and MaClachlan index is not consistent with the Lorenz ordering.

Since the value of the index depends on the city’s ethnic distribution it does not satisfy

composition invariance.

The Gini Index. It is defined as:

G(X) =
1

2

∑

n∈N

∑

m∈N

|bnwm − bmwn| . (4)

This index is adapted from the income inequality index of the same name. As in the

case of the Index of Dissimilarity, this index is also related to the Lorenz curve. Indeed,

it can be shown that G(X) equals twice the area between the Lorenz curve and the 45

degree line.

The next two indices are related to the concept of entropy. The entropy of a random

variable is the expected number of bytes needed to transmit the value of its realization.

In the case of a two-value random variable with distribution (q, 1 − q), its entropy is

given by

h(q, 1− q) = q log2

(

1

q

)

+ (1− q) log2

(

1

1− q

)

.

The entropy of a random variable is a measure of the uncertainty contained in it.

One can interpret a city’s ethnic distribution as the distribution of a random variable,

i.e., the ethnicity of a city’s resident. Therefore, the entropy of a city’s ethnic distribution
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(P, 1−P ) represents the uncertainty concerning the ethnicity of a randomly chosen city

resident. Similarly, the entropy of a neighborhood’s ethnic distribution, (pn, 1− pn),

represents the uncertainty concerning the ethnicity of a randomly chosen individual,

conditional on knowing that he belongs to that neighborhood. Although the entropy of

a given neighborhood may be higher or lower than the entropy of the whole city, the

entropy of the latter is at least as high as the average entropy of its neighborhoods.5 The

next two indices compare the entropy of a city’s ethnic distribution with the average

entropy of its neighborhoods.

The Mutual Information Index. It is defined as

MI(X) = h(P, 1− P )−
∑

n∈N

Tn
T
h (pn, 1− pn) (5)

where h is the entropy function.

The Mutual Information is the average reduction in entropy that results from learning

the neighborhood in which a randomly chosen individual lives. This index was first

proposed by Theil [30] and has been applied by Fuchs [13] and Mora and Ruiz-Castillo

[22, 24]. In the case of two ethnic groups, many of its properties, have been pointed out

by Mora and Ruiz-Castillo [23].

The Entropy Index. It is defined as

H(X) =
∑

n∈N

Tn
T

h(P, 1− P )− h (pn, 1− pn)

h(P, 1− P )
. (6)

Note that H(X) =MI(X)/h(P, 1− P ).

The Entropy Index is the average decrease in entropy that results from learning the

neighborhood, relative to the whole city’s entropy. It was proposed by Theil [31] and

Theil and Finizza [32].

The next index has been used in several applications.

5This is just a restatement of the fact that the entropy function h is concave.
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Index of Isolation. It is given by:

J(X) =

(
∑

n∈N bnpn
)

− P

1− P
. (7)

This index calculates the gap between the average of the neighborhoods’ proportions

of blacks (weighted by the neighborhood’s fraction of the city’s blacks) and the city’s

overall proportion of blacks, and normalizes it so that it ranges between zero and one.

It turns out that this index is symmetric with respect to ethnic groups. Therefore, it

also equals the normalized gap between the average of the neighborhoods’ proportions

of whites (weighted by the neighborhood’s fraction of the city’s whites) and the city’s

overall proportion of whites. This index was originally proposed by Bell [4]. James and

Taeuber [18] refer to J as the variance ratio index. Massey and Denton [21] call it the

correlation ratio. Reardon and Firebaugh [26] call it the index of Normalized Exposure.

A variant of this index was used by Cutler, Glaeser, and Vigdor [6] to measure the

evolution of segregation in American cities.

The following family of indices, called generalized entropy measures, was introduced

and characterized by Hutchens [16]. It is defined for β ∈ (0, 1) as follows:

Oβ = 1−
[

∑

n∈N

w1−β
n bβn

]

.

When β = 1/2, the corresponding generalized entropy measure, sometimes called the

square root index, is

O1/2 = 1−
∑

n∈N

√

wnbn.

A closely related family of segregation measures is the Atkinson’s family which was

introduced by James and Tauber [18]. For β ∈ (0, 1) it is defined as follows:

Aβ = 1− P

1− P

[

1

PT

∑

n∈N

Tn(1− pn)
1−βpβn

]
1

1−β

.
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By routine substitutions this expression can be rewritten as

Aβ = 1−
[

∑

n∈N

w1−β
n bβn

]
1

1−β

.

It is readily seen that measure Aβ is obtained from Oβ by means of a monotonic trans-

formation. Indeed,

Oβ = 1− (1− Aβ)
1−β.

Consequently, for any β ∈ (0, 1), the indices Aβ and Oβ represent the same segrega-

tion ordering. In particular, the symmetric Atkinson measure A1/2 represents the same

segregation order as the Square Root index O1/2.

5 More Axioms

Since there is such a great variety of indices that are available for researchers to measure

segregation it is worth asking if any are more desirable than others? In this section we

discuss a number of properties to help answer this question.6

The next axiom is similar to the Transfer Principle in that it states circumstances

under which the overall city’s segregation increases. Specifically, it states that if a

neighborhood is split into two neighborhoods with different ethnic distributions, then

segregation must increase. Formally,

Neighborhood Division Property (NDP) Let X ∈ C2 be a city and let n be a

neighborhood of X. Also let Y be the city that results from dividing n into two

neighborhoods, n1 and n2. If n1 and n2 have different ethnic distributions (i.e.,

pn1
6= pn2

), then Y ≻ X.

Frankel and Volij (2011) show that Organizational Equivalence and the Transfer

Principle imply the Neighborhood Division Property. The next claim, the proof of which

6With some abuse of language, we will say that a segregation index satisfies a property if its induced

segregation order does.
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can be found in the appendix, shows that, assuming Organizational Equivalence, the

Transfer Principle and the Neighborhood Division Property are in fact equivalent. One

advantage of the Neighborhood Division Property over the Transfer Principle, however,

is that while the former is naturally extended to cities with more than two groups, the

latter is not.

Claim 1 Let < be an order on C2 that satisfies Organizational Equivalence. Then,

it satisfies the Transfer Principle if and only if it satisfies the Neighborhood Division

Property.

The next axiom states that segregation does not depend on which ethnic group is

called black and which one is called white.

Group Symmetry (GS) Segregation in a city is unaffected by relabeling the ethnic

groups: 〈N, (Bn,Wn)n∈N〉 ∼ 〈N, (Wn, Bn)n∈N〉.

This axiom is satisfied by all the indices presented in section 4.1 except for the Atkinson

indices with parameter β 6= 1/2. These latter indices view segregation not as a feature

of the city as a whole but as the relation between the city and its minority group which

is given a different weight than the one received by the other group.

The next axiom states that adjoining the same set of neighborhoods to two cities

with the same population and ethnic distribution preserves their order.

Independence (IND) Let X and Y be two cities with the same number of blacks and

whites. Then X < Y if and only if X ◦ Z < Y ◦ Z, for all cities Z.

Figure 8 illustrates the independence axiom. Two cities are depicted, one consisting

of the two neighborhoods that are denoted by small dots, and the other of the two

neighborhoods that are denoted by large dots. Note that these two cities have the same

number of blacks and whites. Independence requires that no matter how these two cities
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Figure 8: IND: Adding the triangular neighborhood to the small-dot and large-dot cities does

not affect their segregation ranking.

are ranked by the segregation order, the annexation of the neighborhood denoted by a

triangle to both of them does not affect their ranking.

The Mutual Information index as well as the whole family of Atkinson indices satisfy

independence. The Gini and the Dissimilarity indices do not.

Independence is a strong axiom in the sense that it requires order preservation when-

ever any set of of neighborhoods is adjoined to the existing ones. The next axiom weakens

Independence in that order preservation is required only if the set of neighborhoods that

is added, Z, has the same ethnic distribution as the two existing cities.

Weak Independence (WIND) Let X Y and Z be three cities. Suppose all three of

them have the same proportion of blacks, and that X and Y have the same total

populations. Then X < Y if and only if X ◦ Z < Y ◦ Z.

Figure 9 illustrates Weak Independence. Two cities are depicted, one consisting of

the two small-dot neighborhoods and the other of the two large-dot neighborhoods. A

hypothetical isolated neighborhood is also depicted there by a triangle. This neigh-

borhood has the same proportion of blacks and whites as the other two cities. Weak
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Independence requires that however these two cities are ranked, the annexation of the

black neighborhood to both of them does not affect the ranking. If the annexed neigh-

borhood did not have the same ethnic distribution as the other two cities, then Weak

Independence (as opposed to Independence) would not have required anything.

Although the Dissimilarity index does not satisfy Independence, it does satisfy Weak

Independence. The Gini index, however, does not satisfy this weaker axiom.

4 55 6 10
Blacks

6

1

7

2

8

Whites

Figure 9: WIND: Adding the triangular neighborhood to the small-dot and large-dot cities

does not affect their segregation ranking.

For the same reason that not all preference relations can be represented by a utility

function, not all segregation orders can be represented by a segregation index. Further-

more, the segregation literature is usually interested not just in segregation indices but

in continuous ones.7 In order to guarantee that a continuous representation exists, a

continuity axiom is often needed. The following one, which is satisfied by all the indices

introduced so far, requires that certain similar cities must have similar segregation levels.

Continuity (C) For any cities X Y and Z, where X and Y have the same proportion

7Any city with |N | neighborhoods can be seen as a point in a R
2|N | Euclidean space.
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of blacks and the same total population, the sets

{c ∈ [0, 1] : cX ◦ (1− c)Y < Z} and {c ∈ [0, 1] : Z < cX ◦ (1− c)Y }

are closed.

All the axioms presented thus far impose conditions on the segregation order. The

literature also offers axioms which impose conditions directly on segregation indices.

One example is the next one, which turns out to be closely related to IND.

Aggregation (AGG) An index S is Aggregative if there is a function F such that

S (X ◦ Y ) = F (S (X) , S (Y ) , B (X) ,W (X) , B (Y ) ,W (Y )), where F is a con-

tinuous function, strictly increasing in its first and second arguments.

The next claim, which is proved in the appendix, shows that Independence and

Aggregation are to some extent equivalent axioms.

Claim 2 If an index S satisfies Aggregation then it also satisfies Independence. Fur-

thermore, a continuous index that satisfies Independence satisfies Aggregation as well.

6 Implications of the Axioms

In this section we present two results that show the implications of the axioms pre-

sented in Section 5.8 As stated before, Neighborhood-Anonymity, the Transfer Principle

and Organizational Equivalence are minimal requirements that any segregation ordering

should satisfy. Furthermore, Composition Invariance is a requirement that cannot be

violated if the dimension of evenness is to be captured by the ordering. Group Symmetry

is an uncontroversial axiom if we want to be color blind, namely, if segregation is to be

independent of the name of the ethnic groups. Continuity is a technical requirement

8From now on, we restrict attention to complete segregation orders.
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which is also uncontroversial; similar cities should have similar segregation levels. The

following result, which can be found in Frankel and Volij [9], shows that adding Weak

Independence to the above axioms yields a very convenient additive representation.

Theorem 1 The segregation ordering < satisfies Neighborhood-Anonymity, Group Sym-

metry, Composition Invariance, the Transfer Principle, Weak Independence, Organiza-

tional Equivalence, and Continuity, if and only if there is a function f : [0, 1]×[0, 1] → IR

with the following properties:

1. For all cities X and Y ,

X < Y if and only if
∑

i∈N(X)

f (bi, wi) ≥
∑

j∈N(Y )

f (bj, wj) .

2. f is symmetric, homogeneous of degree 1, and strictly convex on the simplex ∆ =

{(b, w) ∈ [0, 1] : b+ w = 1}.

In addition, the function f(c, 1− c) is unique up to a positive affine transformation.

That is, f and g both satisfy properties 1 and 2 if and only if there are constants α ∈
(0,∞) and β ∈ IR, such that

f(c, 1− c) = αg(c, 1− c) + β ∀c ∈ [0, 1].

Hutchens [15] proved a similar result by replacing Weak Independence and Continuity

with the requirement of Additivity. This axiom requires the ordering to be represented

by an index of the form
∑

i∈N f (bi, wi) for some continuous function f .

As Theorem 1 shows, there are many indices that satisfy Weak Independence, Com-

position Invariance and Continuity, along with the basic axioms of Group Symmetry,

Anonymity, Organizational Equivalence, and the Transfer Principle. The next theorem,

proved by Hutchens [16], shows that by strengthening the weak independence axiom one

obtains a full characterization of a single ordering.
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Theorem 2 Let S : C2 → IR be a continuous aggregative segregation index that satis-

fies Neighborhood-Anonymity, Group Symmetry, Composition Invariance, the Transfer

Principle, Organizational Equivalence. Then, S is a strictly increasing transformation

of the square root index, O1/2.

In fact, Frankel and Volij [11, Theorem 2] show that Continuity is not needed:

Theorem 3 The ordering represented by the Symmetric Atkinson index, A1/2, is the

only one that satisfies Neighborhood-Anonymity, Organizational Equivalence, Neighbor-

hood Division Property, Composition Invariance, Group Symmetry, and Independence

on C2.

Table 4 provides a summary of the satisfied properties, or those that fail to be

satisfied by the indices presented in Section 4.1. For proofs, see Frankel and Volij [10]

N-Anon OE CI T WIND GS IND NDP CONT

1 Symmetric Atkinson: A1/2(X)
√ √ √ √ √ √ √ √ √

2 Asymmetric Atkinson: Aw(X)
√ √ √ √ √ × √ √ √

6 Mutual Information: M(X)
√ √ × √ √ √ √ √ √

11 Dissimilarity: D(X)
√ √ √ × √ √ × × √

13 Gini Index: G (X)
√ √ √ √ × √ × √ √

14 Entropy Index: H (X)
√ √ × √ √ √ × √ √

15 Isolation: J (X)
√ √ × √ √ √ √ √ √

Table 4: Which Indices Violate Which Axioms? A “
√
” means that the axiom is satisfied

while an “×” indicates that it is not.

7 Variable number of groups

As we mentioned before, most of the axioms can be extended to segregation orderings

defined on any class with a fixed number of groups. Moreover, both Theorem 1 and
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Theorem 3 can be extended to these classes. However, if one is interested to characterize

a segregation order on the whole class of cities, an axiom that restricts the order when

it compares cities with different numbers of groups is required. In this section we will

present one such axiom, and state a characterization of the Mutual Information index

that is based on it.

Before we introduce the new axiom, we need to define an extended class of cities that

allows for a variable number of ethnic groups.

Definition 2 A city is a system,
〈

N,G,
(

(T gn)g∈G

)

n∈N

〉

, where N is a finite nonempty

set of neighborhoods, G is a finite nonempty set of ethnic groups, and for each ethnic

group g ∈ G and neighborhood n ∈ N , T gn is a nonnegative real number that represents

the number of members of ethnic group g that reside in neighborhood n.

We denote by C the class of all cities.

As before, Tn =
∑

g∈G T
g
n denotes the total number of people located in neighborhood

n, and T =
∑

n∈N Tn denotes the city’s total population. The total number of members

of ethnic group g is denoted by T g, and the proportion of group g members in the city is

denoted by P g. The city’s ethnic distribution is given by the list (P g)g∈G. Similarly, the

proportion of neighborhood n’s population that belongs to ethnic group g is denoted by

pgn, and neighborhood n’s ethnic distribution by (pgn)g∈G. The entropy of a distribution

(qg)g∈G is now given by

h((qg)g∈G) =
∑

g∈G

qg log2

(

1

qg

)

.

The extension of the Mutual Information index to the class of all cities is given by the

function M : C → IR defined by

M(X) = h ((P g)g∈G)−
∑

n∈N

T n

T
h ((pgn)g∈G) .

In words, the Mutual Information of a city is the difference between the entropy of

the city’s ethnic distribution and the average entropy of its neighborhoods’ ethnic dis-
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tributions. Alternatively, it is the average reduction of entropy that results from the

knowledge of the neighborhood where a randomly chosen individual is located.

As in the case of two ethnic groups, we would like segregation orderings defined

on the class of all cities to be invariant to the renaming of both neighborhoods and

ethnic groups. For this purpose, it is convenient to identify cities that are equiva-

lent, up to the renaming of groups and neighborhoods. We say that two cities, X =
〈

N,G,
(

(T gn)g∈G

)

n∈N

〉

and X ′ =
〈

N ′,G′,
(

(T ′g
n )g∈G′

)

n∈N ′

〉

, are equivalent if there are

one-to-one mappings φ : N → N ′ and ψ : G → G′ such that for all n ∈ N and

g ∈ G, (T gn) = (T
ψ(g)
φ(n) ). The following axiom states that only the racial composition of

neighborhoods and not their names matter.

Anonymity (ANON) A segregation ordering satisfies anonymity if any two equivalent

cities are equally segregated.

Anonymity is the conjunction of the Neighborhood-Anonymity and Group Symmetry

axioms defined in Sections 3 and 5.

We are now ready to state the above-mentioned axiom. It states that splitting a

group, say blacks, into two subgroups, say black females and black males, while keeping

their distribution across neighborhoods constant, should not affect segregation. For-

mally,

Group Division Property (GDP) Let X ∈ C be a city in which the set of ethnic

groups is G. Let X ′ be the result of partitioning some group g ∈ G into two

subgroups, g1 and g2, such that the two subgroups have the same distribution

across neighborhoods; namely, T g1n /T
g
n is independent of n, and thus equals T g1/T g.

Then X ′ ∼ X.

One of the main axioms used in previous results is CI, which is an essential axiom

of any index that wants to capture the dimension of evenness. However, there are some

segregation orders, in particular those that intend to capture the dimension of isolation,

that fail to satisfy CI. To measure isolation, a weaker requirement is enough.
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Scale Invariance (SI) Let X be a city and let Y = αX be the city that is obtained

from X by multiplying the number of residents by a positive factor α. An order

< on C satisfies scale invariance if for any such cities we have X ∼ Y .

Scale invariance states that for the purpose of measuring segregation one does not

need to know whether people of the various ethnic groups are measured in units, tens,

or thousands, etc., as long as they are measured in the same units.

The axioms of Independence, Organizational Equivalence and Continuity are gener-

alized for the case of a variable number of ethnic groups in a straightforward way.

The next result, proved in Frankel and Volij [12], provides a characterization of the

Mutual Information order on the class of all cities.

Theorem 4 An ordering on C satisfies Scale Invariance, Independence, Organizational

Equivalence, the Neighborhood Division Property, the Group Division Property, Anonymity,and

Continuity if and only if it is represented by the Mutual Information index.

Not all the indices we have discussed in Section 4.1 can be generalized to the many-

group case in a straightforward way. However, the symmetric Atkinson index, the Gini

index and the Entropy index can.9 The information that appears in Table 4 is still valid

for the multigroup version of these indices, except of course for the transfer principle. We

should mention, however, that none of the above-mentioned indices satisfy the Group

Division property. See Frankel and Volij [12] for details.

Finally, let us point out a relationship between the Mutual Information index and the

informativeness of information structures. A city can be interpreted as an information

structure where neighborhoods are signals that provide information about the ethnicity

of a randomly chosen city resident. Consequently, we can adopt Blackwell’s [5] partial

order, which ranks information structures according to their informativeness, and use it

9For generalizations of the Dissimilarity index and the Isolation index, see Reardon and Fire-

baugh [26].

27



to partially order cities. It turns out that since the Mutual Information index does not

satisfy Composition Invariance, it is not consistent with Blackwell’s order. However, as

argued in Frankel and Volij [12], if one restricts comparisons to pairs of cities with the

same ethnic distribution, the Mutual Information index is consistent with Blackwell’s

ordering.

8 Concluding comments

The axiomatic approach, by emphasizing the essential properties that the various mea-

sures share and those on which they differ, can help researchers select the segregation

indices that best fit their purposes. This chapter has surveyed some of what we believe

are the most interesting theoretical results that employ this approach.

We first noted that the Lorenz order satisfies the four basic properties of neighborhood-

anonymity, composition invariance, organizational equivalence and the transfer principle.

We further saw that every segregation order that satisfies these properties must agree

with the Lorenz order. Therefore, the Lorenz order is the common denominator of all

segregation orders that satisfy them.

We later showed that adding independence to the above list of axioms results in

a full characterization of the segregation order that is represented by the symmetric

Atkinson index, also known as the Square Root index. We also saw that by weakening

the independence axiom and by adding a continuity requirement one obtains a family

of segregation measures that have a convenient additive representation.

Finally, we demonstrated that for the class of a variable number of ethnic groups,

weakening composition invariance and adding the group division property results in the

characterization of the Mutual Information index.
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9 Appendix

Proof of Claim 1. Let < be a segregation order that satisfies OE and T. We will show

that it satisfies NDP as well. Let X be a city and let n be a neighborhood of X. Let

Y be the city that results from dividing n into two neighborhoods, n1 and n2. Assume

that n1 and n2 don’t have the same ethnic distributions. Further assume, without loss

of generality, that the proportion of blacks is higher in n1 than in n2; namely, Bn1
Wn2

>

Bn2
Wn1

. Neighborhood n in city X can be written (Bn,Wn) = (Bn1
+ Bn2

,Wn1
+Wn2

).

Let α =
Bn1

+Wn1

Bn+Wn
and let X ′ be the city that results from X by splitting neighborhood

n into the following two neighborhoods: n′

1 = α (Bn,Wn) and n′

2 = (1 − α) (Bn,Wn).

By organizational equivalence, X ∼ X ′. Since Bn1
Wn2

> Bn2
Wn1

we have

Bn1
> αBn.

Transfer Bn1
− αBn > 0 blacks from from n′

2 to n′

1, (since Bn1
− αBn < (1− α)Bn, this

can be done). Further transfer the same amount of whites from n′

1 to n′

2. The city that

results is Y . By the transfer principle, this operation strictly raises segregation; namely,

Y ≻ X ′ ∼ X, so by transitivity, Y ≻ X.

We will now show that NDP implies WT. The proof that it also implies BT is

analogous and is left to the reader. Let X = 〈N, (Bn,Wn)n∈N〉, and let i, j ∈ N be two

neighborhoods such that BiWi > 0 and

BiWj ≥ BjWi

Let ε ∈ (0,Wi], and let Y be the city that is obtained from X by moving ε whites

from neighborhood i to neighborhood j. That is, Y = 〈N, (B′

n,W
′

n)n∈N〉 in which

(B′

i,W
′

i ) = (Bi,Wi−ε), (B′

j,W
′

j) = (Bj,Wj+ε), and (B′

n,W
′

n) = (Bn,Wn) for all n 6= i, j.

We need to show that Y ≻ X. If Bj = 0, then Y is the result of splitting neighborhood

(Bi,Wi) into (Bi,Wi − ε) and (0, ε) and then merging (0, ε) with (0,Wj). By NDP, the

splitting operation increases segregation, and by OE, the merging of two neighborhoods

with the same proportion of whites leaves segregation unchanged. Therefore, Y ≻ X.
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If Bj > 0, define the following values:

α =
Wj + ε

Bj

β =
Wi − ε

Bi

γ =
ε

α− β
=

εBiBj

Bi(Wj + ε)−Bj(Wi − ε)

Since WjBi ≥ WiBj, we have that γ, β, α > 0. Split (Bi,Wi) into (Bi− γ,Wi−αγ) and

(γ, αγ). Similarly, split (Bj,Wj) into (Bj − γ,Wj − βγ) and (γ, βγ). (This can be done

because γ < min{Bi, Bj}. Indeed,

γ =
εBiBj

Bi(Wj + ε)−Bj(Wi − ε)
<

BiBj

Bi + Bj

Therefore, γ(Bi + Bj) < BiBj or equivalently, which implies that γ < Bi and γ < Bj.)

By NDP the resulting city is more segregated. Now merge (Bi−γ,Wi−αγ) with (γ, βγ)

and also merge (Bj − γ,Wj − βγ) with (γ, αγ). Since

Wi − αγ

Bi − γ
= β

Wj − βγ

Bj − γ
= α

by OE this merger does not affect segregation. The resulting pair of neighborhoods is

(Bi,Wi − αγ + βγ) and (Bj,Wj − βγ + αγ)

which happen to be (Bi,Wi − ε) and (Bj,Wj + ε), respectively.

Proof of Claim 2. (Based on Frankel and Volij [12]) Let X and Y be two cities

with the same number of blacks and the same number of whites and let Z be any city.

X ◦ Z < Y ◦ Z

⇔ S(X ◦ Z) ≥ S(Y ◦ Z)

⇔ F (S (X) , S (Z) , B,W,B (Z) ,W (Z)) ≥ F (S (Y ) , S (Z) , B,W,B (Z) ,W (Z))

⇔ S (X) ≥ S (Y )

⇔ X < Y.
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Conversely, assume that < satisfies IND and that is represented by a continuous index

S. Define F : R6 → R by

F (sx, sy, bx, wx, by, wy) = S(X ◦ Y )

where X is a city with S(X) = sx, B(X) = bx, W (X) = wx and Y is a city with

S(Y ) = sy, B(Y ) = by, W (Y ) = wy. First note that F is well-defined. Indeed, if

X ′ and Y ′ are cities such that X ∼ X ′, Y ∼ Y ′, B(X) = B(X ′), W (X) = W (X ′),

B(Y ) = B(Y ′), W (Y ) = W (Y ′), then by IND applied twice,

S(X ◦ Y ) = S(X ′ ◦ Y ) = S(X ′ ◦ Y ′).

Second, note that by IND, F is increasing in its first two arguments. Third, since S is

continuous, so is F .
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