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Abstract

This paper defines the single-crossing property for two-agent, two-good exchange
economies for classical (i.e., continuous, strictly monotonic, and strictly convex) indi-
vidual preferences. Within this framework and on a rich single-crossing domain, the
paper characterizes the family of continuous, strategy-proof and individually rational
social choice functions whose range belongs to the interior of the set of feasible allo-
cations. This family is shown to be the class of generalized trading rules. This result
highlights the importance of the concavification argument in the characterization of
fixed-price trading rules provided by Barberà and Jackson (1995), an argument that
does not hold under single-crossing. The paper also shows how several features of
abstract single-crossing domains, such as the existence of an ordering over the set of
preference relations, can be derived endogenously in economic environments by exploit-
ing the additional structure of classical preferences.
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1 Introduction

The set of rules that allocate resources (or the set social choice functions, SCF in short)
amongst a set of agents who have preferences over these resources typically vary with
the axioms that these rules are required to satisfy. Consider for instance classical ex-
change economies (an exchange economy where agents’ preferences are classical i.e. pref-
erences are continuous, strictly monotonic and strictly convex). If the SCFs are required
to satisfy strategy-proofness and Pareto-efficiency then Zhou (1991) (for two-agent exchange
economies) showed that these rules must be dictatorial. It is well-known that strategy-
proofness, Pareto-efficiency and individual-rationality are incompatible in classical exchange
economies. Hurwicz (1972) demonstrates this for the case of two-agent and two-good models.
Serizawa (2002) extends this result to an arbitrary number of agents and goods. However
Barberà and Jackson (1995) show that a strategy-proof and individual-rationality are com-
patible in classical exchange economies. In particular, they show that the strategy-proof and
individually rational SCF defined on the domain of all classical preferences is a Fixed-Price
Trading or FPT rule. These rules have also been shown to be salient in other mechanism de-
sign problems. For instance, Hagerty and Rogerson (1987) consider a bilateral trading model
with quasi-linear utility functions for the agents and show that a strategy-proof, individually
rational and budget-balanced SCF is an FPT rule.

A critical element in the arguments in Barberà and Jackson (1995) is the use of concavi-
fied preferences. If a domain admits concavification then it means that at every consumption
bundle in the commodity space and for every indifference curve of every preference, there
exists a preference relation in the domain that induces an indifference curve that is tangent
to the indifference curve of the former preference at the consumption bundle. The domain
of all classical preferences admits concavification. However, for the domains that fail to sat-
isfy this property, the restrictions implied by strategy-proofness and individual-rationality
are not known. Our goal is to study the constraints implied by strategy-proofness and
individual-rationality over the domain of preferences that satisfy the single-Rcrossing prop-
erty. A domain of classical preferences which satisfies the single-crossing property does not
admit concavification. This paper studies SCFs that are defined on classical single-crossing
preference domains, for two-agent and two-good exchange economies. The single-crossing
property for two goods imply that the indifference curves of any two preference orderings
can cut only once. Therefore, indifference curves of two preference orderings from a single-
crossing domain will not be tangential to each other at any consumption bundle (in the
interior of the consumption space).

We provide examples to show that if the two agents’ preferences belong to classical single-
crossing domains then there exist strategy-proof and individually rational SCFs that do not
belong to the class of FPT rules. Furthermore, we provide a characterization of such SCFs
for two-agent and two-good economies that satisfy an additional continuity requirement.
Our characterization can be briefly described as follows. An FPT rule requires the range
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of the SCFs to be piecewise linear with a kink (possibly) at the endowment. We show
that for single-crossing domains, the range need not be piecewise linear although it must
contain the endowment (assuming both the agents to be endowed with positive amounts of
both the goods) and satisfy certain additional properties. We call these rules Generalized
Trading rules, GT in short. An FPT rule with a connected range is an example of a GT rule.
We also show existence of an ordering over the set of single-crossing classical preferences.
This ordering is derived endogenously by exploiting the additional structure of classical
preferences. The ordering over preferences and strategy-proofness imply a monotonicity
property of the SCFs in the agents’ own preferences. This monotonicity property is critical
in deriving our characterization result.

1.1 Literature Review

The single-crossing property has been extensively used in the mechanism design and contract
theory. Classical papers in this regard are Spence (1973), Mirrlees (1971) and Rothschild
and Stiglitz (1976). Saporiti and Thomé (2006) show that single-crossing domains allow for
strategy-proof SCFs. Saporiti (2009) considers a single-crossing domain with a finite number
of alternatives and strict preferences and provides a characterization of the strategy-proof
SCFs. Saporiti (2009) finds these rules to be generalized median voter schemes. Caroll
(2012) shows that local incentive constraints are sufficient to have strategy-proofness in the
rich single-crossing domain that Saporiti (2009) considers. Gershkov et al. (2013) use Saporiti
(2009) to construct constrained-efficient optimal mechanism in single-crossing domains. Our
results are independent of Saporiti (2009) because our model is different. A more detailed
discussion of the relationship between our model and Saporiti (2009) can be found in Section
3.

Barberà and Jackson (2004) consider a model where society’s preferences over voting rules
satisfy the single-crossing property. However, their objective is to analyze self-stable rather
than strategy-proof voting rules. Gans and Smart (1996) study an Arrovian aggregation
problem with single-crossing preferences for voters. They show that median voters are deci-
sive in all majority elections between pairs of alternatives. Barberà and Moreno (2011) de-
velop the concept of ‘top monotonicity’ as a common generalization of single-peakedness and
single-crossingness. Corchón and Rueda-Llano (2008) analyze a public-good-private-good
production economy where agents’ preferences satisfy the single-crossing property. They
show the non-existence of smooth strategy-proof, Pareto-efficient SCFs that give strictly
positive amount of both goods to the agents.

We also remark that the concavification property of various preference domains has been
used extensively in the characterization of strategy-proof SCFs in economic environments.
See for instance, Zhou (1991), Serizawa and Weymark (2003), Ju (2003), Serizawa (2006),
Hashimoto (2008) and Momi (2013). Goswami et al. (2013), show that some results in the
literature on strategy-proofness and Pareto-efficiency are carried over to the domains where
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concavification is not permitted. However, the present paper demonstrates that a similar con-
clusion does not obtain when Pareto-efficiency is replaced by individual-rationality. In par-
ticular, a strictly larger class than FPT rules will satisfy strategy-proofness and individual-
rationality.

This paper is organized as follows. Section 2 sets up the notation, the definition of an
FPT rule and the fundamental Barberà and Jackson (1995) characterization result. Sec-
tion 3 introduces concavification, single-crossing domains and some preliminary but useful
results pertaining to this domain. A subsection of this section compares our concept of the
single-crossing property with that of Saporiti (2009). Section 4 provides examples of non-
FPT rules that are strategy-proof and individually rational and Section 5 contains the main
characterization result. Section 6 concludes.

2 Notation and Definitions

Throughout this paper, we will restrict attention to a two-agent, two-good model. We denote
the set of agents by I = {1, 2} and the two goods by x and y. The set of goods is denoted
by M . Each agent i has an endowment ωxi and ωyi of goods x and y respectively. Let
ω = ((ωx1 , ω

y
1), (ωx2 , ω

y
2)) denote the endowment vector. Let Ωj = ∑2

i=1 ω
j
i , j ∈M be the total

endowment of good j. Let Ω = (Ωx,Ωy) denote the total endowment in the economy. Define
the set of feasible allocations as,

∆ = {((x1, y1), (x2, y2))| x1 + x2 = Ωx and y1 + y2 = Ωy;xi ≥ 0, yi ≥ 0, for all i ∈ I}.

A preference ordering for agent i, Ri is a complete, reflexive and transitive ordering of the
elements of <2

+. We say that Ri is classical if it is (a) continuous, (b) strictly monotonic in
<2

++ and (c) the upper contour sets are strictly convex in <2
++

1. We consider only classical
preferences and denote the set of such preferences by Dc. A preference profile R is an 2-tuple
R ≡ (R1, R2) ∈ [Dc]2. We shall let R−i denote the 1-tuple R−i ≡ Rj ∈ Dc.

Thus UC(Ri, (xi, yi)) is the set of commodity bundles that are at least as good as (xi, yi)
according to Ri and LC(Ri, (xi, yi)) is the set of commodity bundles that are no better
than (xi, yi) according to Ri. An indifference curve for preference Ri through a bundle
(xi, yi) denoted by IC(Ri, (xi, yi)) is defined as follows: IC(Ri, (xi, yi)) = UC(Ri, (xi, yi)) ∩
LC(Ri, (xi, yi)). We make the following important remark.

1For a preference ordering Ri and a vector x ∈ <2
+, the upper contour set of Ri at x is denoted by

UC(Ri, x) and is the set {z ∈ <2
+|zRix}. Similarly the lower contour set of Ri at x is denoted by LC(Ri, x)

and is the set {z ∈ <2
+|xRiz}. A preference ordering Ri is continuous if UC(Ri, x) and LC(Ri, x) are both

closed for all x ∈ <2
+. A preference ordering Ri is strictly convex if for all x ∈ <2

++, x
′
, x
′′ ∈ UC(Ri, x) and

x
′ 6= x

′′ implies λx′ + (1−λ)x′′Pix for all λ ∈ (0, 1). For x, z ∈ <2
+ by x > z we mean xk ≥ zk for all k ∈M

and xk > zk for some k. A preference ordering is strictly monotonic in <2
++ if x > z implies xPiz.
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Remark 1 Note that IC(Ri, (xi, yi)) is a set. But due to the classical properties of the
preferences these sets can also be represented as a downward sloping curve in the relevant
consumption space. Hence, by IC(Ri, (xi, yi)) we also denote the indifference curve of the
preference Ri that passes through the consumption bundle (xi, yi). When a preference or-
dering Ri is represented by a differentiable utility function, by slope of IC(Ri, (xi, yi)) at a
consumption bundle on IC(Ri, (xi, yi)) we mean slope of the indifference curve that passes
through (xi, yi) at the relevant consumption bundle.

An SCF F is a mapping F : [D]2 → ∆ where D ⊆ Dc. The range of an SCF F is denoted
by <F . We now introduce some important but standard definitions.

Definition 1 A social choice function F is manipulable by agent i at profile R via R′i ∈ D
if F (R′i, R−i)PiF (R). It is strategy-Proof if it is not manipulable by any agent at any
profile. Equivalently F is strategy-proof if Fi(R)RiFi(R

′
i, R−i) for all Ri, R

′
i ∈ D, for all

R−i ∈ D and for all i ∈ I.

In the usual strategic model, an agent’s preference ordering is private information and F
represents the mechanism designer’s objectives. If F is strategy-proof, revealing the private
information truthfully is a dominant strategy for each agent.

Definition 2 An allocation x ∈ ∆ is Pareto-efficient at profile R if there does not exist
another allocation x′ ∈ ∆ such that x′iRixi for all i ∈ I and x′jPjxj for some j ∈ I.

Let PE(R) denote the collection of Pareto-Efficient allocations at the profileR. Individual-
rationality is defined below: it ensures that an agent is not made worse-off relative to his
endowment by F .

Definition 3 Aa social choice function F : [D]2 → ∆ satisfies individual-rationality
with respect to ω, if Fi(R)Ri(ωxi , ω

y
i )) for all i and for all R ∈ [D]2.

Our next goal is to introduce fixed-price trading rules. We closely follow the notation and
definitions in Barberà and Jackson (1995). Consider a ∈ ∆ and let ai = (xi, yi). The next
definition illustrates a property of the range of the SCF observed in Barberà and Jackson
(1995) which is diagonality. To define the notion of diagonal set, let a = ((ax1 , a

y
1), (ax2 , a

y
2)) =

(a1, a2) and b = ((bx1 , b
y
1), (bx2 , b

y
2)) = (b1, b2). That is, ai denotes the 2 dimensional allocation

of the goods x and y to agent i under the allocation vector ((ax1 , a
y
1), (ax2 , a

y
2)). Similarly bi

is defined. Consider the following notation: for all ai, bi ∈ <2, ai > bi if axi ≥ bxi , a
y
i ≥ byi

and either axi > bxi or ayi > byi . For two distinct allocations ai and bi by ai ≯ bi we mean if
axi > bxi then byi > ayi .

Definition 4 We call two distinct feasible allocations a and b to be diagonal allocations
if ai ≯ bi and bi ≯ ai for all i ∈ I. A set B ⊂ ∆ is diagonal if for each agent i and for all
distinct a and b in B, ai ≯ bi and bi ≯ ai. We call (axi , a

y
i ) and (bxi , b

y
i ) to be two diagonal

bundles for agent i if axi > bxi (b
y
i > ayi ) then byi > ayi (axi > bxi ).
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The piecewise linear graph drawn in Figure 1 is a diagonal subset of ∆. Agent i’s allocation
is measured from the origin Oi and agent j’s are measured from Oj. Consider two allocations
d and d′ . Note that dxi > d

′x
i and dyi < d

′y
i . Also dxj < d

′x
j and dyj > d

′y
j . That is d

′ and d are
diagonal allocations.

For any a, b ∈ ∆, let ab = {x|∃γ ∈ [0, 1] s.t. x = γa+ (1− γ)b} that is ab is the straight
line segment that connects a and b. If ci ≥ γai+(1−γ)bi for some γ ∈ [0, 1], we write c⊗i ab
that is c lies on or above ab relative to agent i’s origin.

For any B ⊂ ∆ and R ∈ [Dc]2, let Top(Ri;B,Rj) denote the set of allocations in B

that maximize Ri given Rj.2 A function ti which is a selection from Top(Ri;B,Rj) is
called a tie-breaking rule. A tie-breaking rule ti is j-favorable at B ⊂ <F if for any R,
ti(Ri;B,Rj) 6= ti(Ri;B,R

′
j) only if ti(Ri;B,R

′
j)R

′
jti(Ri;B,Rj). In words, if agent i has

multiple tops on a set under Ri and if the choice of the tops varies when agent j changes
his announced preference ordering, then it should vary in such a way that agent j cannot
manipulate. The following is the definition a fixed-price trading rule as in Barberà and
Jackson (1995).

Definition 5 (fixed-price trading rules) A social choice function F : [D]2 → ∆ is a
fixed-price trading rule if <F is closed, diagonal and contains ω and there exists an agent i
such that the following hold:

1. For all distinct a and b in <F , either a ∈ ωb, b ∈ ωa or ω ⊗i ab.

2. There exist tie-breaking rules ti and tj such that ti is j-favorable at <F and tj is i-
favorable at ωa ∩ <F for all a ∈ <F .

3. F (R) = tj(Rj;ωa ∩ <F , Ri), where a = ti(Ri;<F , Rj).
2We realize that maximums of Ri on B does not depend on Rj ; however as we shall see, this notation

helps in defining the tie-breaking rule for FPT rules. Later in the paper while describing our results, we will
drop Rj from the notation because tie-breaking is not required in our characterization.
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The piecewise linear graph in Figure 1 can be supported as the range of an FPT rule, for
an SCF defined over the classical domain. This graph is closed, diagonal and also contains
the endowment. The first property in the definition of FPT says that if any two feasible
allocations a and b lie on the same side of the endowment then ω, a and b are collinear.
This condition is satisfied by the graph in Figure 1. Since the indifference curves of classical
preferences are strictly convex, both agents’ preferences are single-peaked on each side of the
endowment. In fact agent i’s preferences are single-peaked on the whole graph. Note that
agent j may have multiple tops on the graph, one top on each side of the endowment. Let the
SCF be the median of the endowment, agent i’s top and agent j’s top (in the case of multiple
tops of agent j consider the top of agent j which lies on the same side of the endowment on
which agent i’s top lies ) then such a rule will be strategy-proof, individually-rational and
satisfies all the properties of an FPT rule. In order to define median define an order on the
piecewise linear graph. Let a, b be in the piecewise linear graph. Fix an agent i. Define the
order >i to be a >i b if and only if axi > bxi . The second property has no role in this example
since the set d′ω∪ dω that we want to sustain as the range is connected. The third property
is satisfied because the SCF chooses the (relevant) median. In Figure 5 the graph with two
end points, one being the endowment cannot be sustained as range of an FPT rule because
allocations to the right of ω are not collinear.

Theorem 1 Barberà and Jackson (1995) Let F : [Dc]2 → ∆ be a social choice function.
The social choice function F is strategy-proof and individually rational if and only if it is a
fixed-price trading rule.3

We make a remark about the implication of Theorem 1.

3Barberà and Jackson (1995) prove an FPT result for an arbitrary number of agents by imposing further
assumptions on the SCF.
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Remark 2 An implication of Theorem 1 is that the set of SCFs defined on the classical
domain that are strategy-proof, individually rational and Pareto-efficient is empty. Serizawa
(2002) proved this negative result for classical homothetic domains. However, there are
positive results in certain restricted environments. When agents’ preferences belong to the
domain of Leontief preferences, Nicolò (2004) shows the existence of strategy-proof, Pareto-
efficient and individually rational SCFs in two-good, two-agent exchange economies. We
discuss Nicolò (2004) in Observation 4. In the context of housing market allocation problems
from Roth and Postlewaite (1977) and Ma (1994) it follows that there exist strategy-proof,
Pareto-efficient and individually rational allocation rules.

We end this section by introducing further notation that will be used subsequently. Con-
sider a feasible allocation (x′ , y′) = ((x′1, y

′
1), (x′2, y

′
2)). We let FIQi(x

′
, y
′), SEQi(x

′
, y
′)

THQi(x
′
, y
′) and FOQi(x

′
, y
′) denote the first, second, third and fourth quadrants of (x′ , y′)

from i’s perspective. Specifically, FIQi(x
′
, y
′) = {(x, y)|xi ≥ x

′
i and yi ≥ y

′
i)}; SEQi(x

′
, y
′) =

{(x, y)|xi ≤ x
′
i and yi ≥ y

′
i)}, THQi(x

′
, y
′) = {(x, y)|xi ≤ x

′
i and yi ≤ y

′
i)} and FOQi(x

′
, y
′) =

{(x, y)|xi ≥ x
′
i and yi ≤ y

′
i)}.

Let a, b ∈ ∆, then [ab] = {B ⊂ ∆|B is diagonal, connected and a, b ∈ B}. Note that
ab ∈ [ab] i.e. ab is diagonal. A typical element of [ab] will be denoted by ãb.

The notation int B refers to the interior of the set B.

3 Single-Crossing Domains and Concavification

In this section we first introduce the notion of classical single-crossing preference domains and
analyze some of its properties. We then compare this notion of single-crossing with the one
in Saporiti (2009). We shall also demonstrate that the domains of classical single-crossing
preferences do not admit concavification.

The single-crossing property requires that two different indifference curves of two distinct
preference orderings are never tangential to each other, that is either they cut each other
from above or from below. In other words, this property rules out the situations in Panel
A and allows the situation in Panel B of Figure 2. The single-crossing property is defined
formally below.
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Definition 6 The domain Ds of classical preferences admits the single-crossing property if
for all distinct R′i, R

′′
i in Ds and all (xi, yi) ∈ <2

++,

1. UC(R′i, (xi, yi)) ( UC(R′′i , (xi, yi)) and UC(R′′i , (xi, yi)) ( UC(R′i, (xi, yi)).

2. (xi, yi) 6= (x′i, y
′
i) and IC(R′i, (xi, yi)) = IC(R′i, (x

′
i, y

′
i)) imply IC(R′′i , (xi, yi)) 6=

IC(R′′i , (x
′
i, y

′
i))

In other words, single-crossing rules out the cases in Panel A and C in Figure 2. The
indifference curves in Panel B of Figure 2 satisfies the single crossing property. Note that in
Panel B of Figure 2 the indifference curve of the preference ordering R′′i cuts the indifference
curve of R′i at (xi, yi) from above. We formalize this in the following definition.

In the following definition by IC(Ri, (xi, yi)) we mean the indifference curve of preference
Ri that passes through the consumption bundle (xi, yi), (see Remark 1).

Definition 7 Let Ds be a domain of classical single-crossing preferences and let R′i, R
′′
i

are from Ds. Let (xi, yi) ∈ <2
++ and let for two distinct bundles (x∗i , y∗i ) and (x∗∗i , y∗∗i ),

{(xi, yi)} = IC(R′i, (x∗i , y∗i ))∩ IC(R′i, (x∗∗i , y∗∗i )). We say R′′i cuts R′i from above at (xi, yi) or
R
′
i cuts R

′′
i from below at (xi, yi)

if for all (x′i, y
′

i) with x′i < xi, y
′

i > yi, IC(R′′i , (xi, yi)) lies above IC(R′i, (xi, yi)) and

if for all (x′i, y
′

i) with x′i > xi, y
′

i < yi, IC(R′′i , (xi, yi)) lies below IC(R′i, (xi, yi)).

In Panel B of Figure 2, R′′i cuts R′i from above at (xi, yi) (or R′i cuts R
′′
i from below at

(xi, yi)). This means that in the interior of the second quadrant of (xi, yi) the indifference
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curve of the preference ordering R′′i that passes through (xi, yi) lies above R
′
i. Analogously, in

the interior of the fourth quadrant of (xi, yi) the indifference curve of the preference ordering
R
′′
i that passes through (xi, yi) lies below R

′
i. We record condition 2 in Definition 6 as an

observation for future reference.

Observation 1 Let R′i and R
′′
i be distinct and from a classical single-crossing domain Ds.

Then there do not exist distinct (xi, yi), (x
′
i, y

′
i) ∈ <2

++ such that

IC(R′i, (xi, yi)) = IC(R′i, (x
′
i, y

′
i)) and IC(R′′i , (xi, yi)) = IC(R′′i , (x

′
i, y

′
i)).

We now provide some examples of single-crossing domains.

Example 1 Consider the preferences represented by the utility functions of the form

ui(xi, yi; θi) = θi
√
xi + yi, θi > 0

We claim that this domain is single-crossing. Note that preferences represented by this
class of utility functions are classical and smooth. The slope of an indifference curve of a
preference in this class is given by −θi

2√xi for all xi > 0. Thus, at a given bundle (xi, yi), the
slope of an indifference curve is described uniquely by the parameter θi. Suppose, θ′i > θ

′′
i .

Consider indifference curves IC(θ′i, (xi, yi)) and IC(θ′′i , (xi, yi)). Notice that the absolute
value of the slope of IC(θ′i, (xi, yi)) is higher than IC(θ′′i , (xi, yi)) at (xi, yi). Hence the
condition 1 or 2 in Definition 6 are satisfied.

In Example 1, preferences are quasi-linear. We also provide an example of a domain
consisting of homothetic preferences that is single-crossing.

Example 2 Consider preferences represented by utility functions of the form

ui(xi, yi;αi) = xαii yi, αi > 0.

By definition of single-crossing we do not have to consider consumption bundles where
either xi = 0 or yi = 0. For all other consumption bundles the slope of an indifference curve
is given by αiyi

xi
. If α′i 6= α

′′
i then the slopes are different at any (xi, yi). Hence the condition

1 or 2 in Definition 6 are satisfied.

In the next subsection we describe some important properties of single-crossing domains
that are useful in our characterization.
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3.1 Some Properties of Classical Single-crossing Domains

We first obtain some restrictions on preferences over triples implied by the single-crossing
property.

For any a, b, c ∈ ∆, define the following sets of preference orderings over a, b, c.4

D1({a, b, c}) = {cPibPia, bPicPia, bPiaPic, aPibPic, bIiaPic, bPicIia, cIibPia}

D2({a, b, c}) = {cPibPia, aPibPic, cIibIia}

We will show that if a domain is single-crossing, then three diagonal allocations can be
chosen in such a way that all possible preference orderings over these allocations are either
from D1({a, b, c}) for one agent and from D2({a, b, c}) for the other.

Proposition 1 Consider any classical single-crossing domain Ds. There exist three diag-
onal allocations a, b, c in ∆ such that Ri|{a,b,c} ∈ D1({a, b, c}) and Rj|{a,b,c} ∈ D2({a, b, c}),
i 6= j for all (Ri, Rj) ∈ [Ds]2.5

Proof : We follow the proof in Figure 3.6

4For any a, b ∈ ∆, aPib is written for ai is preferred to bi by agent i with preferences Ri while aIib means
that agent i is indifferent between ai and bi under Ri

5The notation Ri|{a,b,c} refers to Ri restricted to {a, b, c} .
6The indifference curves in Figure 3 appear to be smooth.
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Pick an agent j and a preference ordering R∗j ∈ Ds. Pick a, b, c ∈ int ∆ that lie on an
indifference curve under R∗j . Label this indifference curve as IC(R∗j , {a, b, c}). Note that a, b
and c are diagonal. Furthermore, since preferences are classical cPiaPib, aPicPib, cIibIia,
cPibIia, cIiaPib, and aPicIib are ruled out for any Ri ∈ Ds.

Other preference orderings are not permissible because indifference curves cannot inter-
sect. Therefore, Ri|{a,b,c} ∈ D1({a, b, c}) for all Ri ∈ Ds.

The single-crossing property rules out indifference between any pair in {a, b, c} for any
Rj ∈ Ds unless all the three alternatives are indifferent. If cPjaPjb then the indifference
curve passing through a under Rj must intersect IC(R∗j , {a, b, c}) twice. However, this
would contradict Observation 1. Finally, note that bPjaPjc and bPjcPja are ruled out.
This can happen only if an indifference curve of these two orderings cuts IC(R∗j , {a, b, c})
between a and b and between b and c. This would again violate Observation 1. Therefore,
Rj|{a,b,c} ∈ D2({a, b, c}) for all Rj ∈ Ds as required. �

Remark 3 The above proposition reveals that over a triple of allocations in the interior of
an Edgeworth box, the single-crossing property imposes for the case of classical preferences a
restriction on the possible orderings over the triple. In particular, single-crossing preferences
impose more restriction on the possible preference ordering over the triple for one of the
agents. Bordes et al. (1995) show that the classical preferences in general, impose more
restrictions of one agent relative to the other agent, on the possible preference orderings over
triples. For instance, Bordes et al. (1995) show if over a triple one agent’s preferences admit
all possible preference orderings, then for the other agent some orderings are ruled out.

Proposition 1 specifies the restriction on preferences arising due to the single-crossing
property. However, all preferences in D1({a, b, c} and D2({a, b, c}) need not be present in
an arbitrary single-crossing domain. We will impose a richness requirement on the single-
crossing domains that ensures that we can pick the a, b, c triple in such a way that all
preferences in D1({a, b, c} and D2({a, b, c}) are present in the domain. The definition of
richness is given below.

Definition 8 The classical single-crossing domain Ds is rich if for all diagonal bundles
(x′i, y

′
i), (x

′′
i , y

′′
i ) ∈ <2

++, there exist Ri ∈ Ds such that IC(Ri, (x
′
i, y

′
i)) = IC(Ri, (x

′′
i , y

′′
i )).

A single-crossing domain is rich if any two diagonal bundles can be joined by an indiffer-
ence curve. We show that the domains specified in Examples 1 and 2 earlier are rich.

Example 1 (Continued) Consider the domain introduced in Example 1. We have already
seen that this domain is a single-crossing domain. Let (x′i, y

′
i), (x

′′
i , y

′′
i ) ∈ <2

+ be such that
x
′
i > x

′′
i and y

′′
i > y

′
i. Set θi = y

′′
i −y

′
i√

x
′
i−
√
x
′′
i

. Note that θi > 0 and θi
√
x
′
i + y

′
i = θi

√
x
′′
i + y

′′
i .

Hence (x′i, y
′
i) and (x′′i , y

′′
i ) lie on the indifference curve corresponding to θi. Therefore the

domain is rich.
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Example 2 (Continued) Consider the domain introduced in Example 2. We have already
seen that this is a single-crossing domain. Let (x′i, y

′
i), (x

′′
i , y

′′
i ) ∈ <2

++ be such that x′i > x
′′
i

and y
′′
i > y

′
i. Set αi = ln(y′′i )−ln(y′i)

ln(x′i)−ln(x′′i ) . Since ln is a strictly increasing function, αi > 0.
Therefore, αi ln(x′i) + ln(y′i) = αi ln(x′′i ) + ln(y′′i ) or equivalently, (x′i)αiy

′
i = (x′′i )αiy

′′
i . Hence,

(x′i, y
′
i) and (x′′i , y

′′
i ) are on the same indifference curve corresponding to αi. Therefore this

domain is rich.

We now define maximal single-crossing domains. It says that a domain of single-crossing
preferences is maximal if any superset of this domain is not single-crossing.

Definition 9 Let D be a domain of classical single-crossing preferences. We say D is
maximal single-crossing if it is not possible to add any preference to D and still have a
single-crossing domain.

An important implication of richness is that a rich single-crossing domain is also a max-
imal single-crossing domain. We formalize this below.

Proposition 2 Let D∗ and Ds be two classical single-crossing domains. Let Ds be rich.
Then either D∗ ∪ Ds is not a single-crossing domain or D∗ ⊂ Ds.

Proof : Pick an arbitrary Ri ∈ D∗ \ Ds. Pick an arbitrary indifference curve of Ri and
(xi, yi), (x

′
i, y

′
i) ∈ <2

++ such that IC(Ri, (xi, yi)) = IC(Ri, (x
′
i, y

′
i)). Since Ds is rich, there ex-

istsR′i ∈ Ds, such that IC(R′i, (xi, yi)) = IC(R′i, (x
′
i, y

′
i)). If IC(Ri, (xi, yi)) 6= IC(R′i, (xi, yi)),

then we contradict Observation 1, i.e. in this case a situation as in Panel C of Figure
2 emerges. Since Ri 6= R

′
i, if on the other hand IC(Ri, (xi, yi)) = IC(R′i, (xi, yi)) =

IC(Ri, (x
′
i, y

′
i)) = IC(R′i, (x

′
i, y

′
i)), then Ri and R

′
i cannot be elements of a single-crossing

domain (1 in Definition 6), that is D∗ ∪ Ds is not single-crossing. �

In the next Lemma we show that if a domain of single-crossing preferences is rich, we can
find allocations a, b, c with c >i b >i a (as in Figure 3)7, such that all preferences ordering
from D1({a, b, c}) and D2({a, b, c}) are induced.

Lemma 1 Let the classical single-crossing domain Ds be rich. Then there exists a, b, c ∈ ∆
with c >i b >i a such that {Ri|{a,b,c}|Ri ∈ Ds} = D1({a, b, c}) and {Rj|{a,b,c}|Rj ∈ Ds} =
D2({a, b, c}).

7Let a and b be two diagonal allocations. Fix an agent i. We say a >i b if axi >i bxi (or ayi <i b
y
i ). Let

{a1, a2, a3} be a set of diagonal allocations. We define median{a1, a2, a3} ∈ {a1, a2, a3} to be the median
of {a1, a2, a3} if

∣∣{aj |aj ≥i median{a1, a2, a3}}
∣∣ ≥ 2 and

∣∣{aj |median{a1, a2, a3} ≥i aj}
∣∣ ≥ 2. The usual

definition of single-peaked preferences apply on a diagonal set according to this order. For instance, if a
diagonal set is a straight line segment and lies in the interior of ∆, then all the allocations on it can be
sustained as tops for some preference ordering from Ds (this follows from arguments similar to Proposition
4). Also, on both sides of the top, the allocation nearer (note that under the order, distance between two
allocations can be defined in the Euclidean sense) to it are preferred to the one which is further.
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Proof : Choose R∗j and fix an indifference curve. Now pick Ri and an indifference curve
of Ri such that it is tangent to the chosen indifference curve of R∗j in the interior of ∆.
Label the tangency point as b. Then choose a and c on the indifference curve of R∗j such
that bPicIia. Also choose R′j such that IC(R′j, b) cuts IC(R∗j , b) from above. By richness,
such an R

′
j exists. Since the domain is single-crossing, we have aP ′jbP

′
jc.8 Also choose

R
′′
j such that IC(R′′j , b) cuts IC(R∗j , b) from below. This will result in cP

′′
j bP

′′
j a. Hence,

{Rj|{a,b,c}|Rj ∈ Ds} = D2({a, b, c}).
Using the richness of Ds we can show that {Ri|{a,b,c}|Ri ∈ Ds} = D1({a, b, c}). For

instance, choose R′i whose indifference curve passes through a and some allocation between
b and c. This results in bP ′i aP

′
i c. Choose R′′i to be such that agent i is indifferent between

a and b. This gives bI ′′i aP
′′
i c. Similarly, all other preference orderings in D1({a, b, c}) can be

constructed.
�

We will use the sets D1({a, b, c}) and D2({a, b, c}) to construct SCFs that are not FPT
rules.

Our next goal is to show that an order relation can be defined on a classical single-crossing
domain Ds. The next Proposition is crucial for that purpose.

Proposition 3 Consider any classical single-crossing domain Ds. Let R̄i, R̃i ∈ Ds and
(x∗i , y∗i ) ∈ <2

++. If IC(R̃i, (x∗i , y∗i )) cuts IC(R̄i, (x∗i , y∗i )) from above at (x∗i , y∗i ), then
IC(R̃i, (xi, yi)) cuts IC(R̄i, (xi, yi)) from above at all (xi, yi) ∈ <2

++.

Proof : We prove the Proposition in four steps.

Step 1: We show that an indifference curve of R̄i that cuts the indifference curve of R̃i at
(x∗i , y∗i ) from below must cut R̃i from below at all (xi, yi) ∈ <2

++ ∩ IC(R̃i, (x∗i , y∗i )). By way
of contradiction, suppose that an indifference curve of R̄i cuts the indifference curve of R̃i

that contains (x∗i , y∗i ) from above at (x′i, y
′
i). Suppose (x′i, y

′
i) is in SEQi((x∗i , y∗i )). Hence,

IC(R̄i, (x
′
i, y

′
i)) ∩ UC(R̄i, (x∗i , y∗i )) ∩ LC(R̃i, (x∗i , y∗i )) 6= ∅. Since indifference curves of an

ordering cannot intersect, IC(R̄i, (x
′
i, y

′
i)) and IC(R̃i, (x∗i , y∗i )) must cut twice, contradicting

Observation 1. We reach the same contradiction if (x′i, y
′
i) belongs to FOQi((x∗i , y∗i )).

Step 2: Let E = {(xi, yi)|yi = y∗i , xi ≥ 0}. We will show that the indifference curves of
R̃i must cut the indifference curves of R̄i at all the bundles in E from above. For the
purpose of contradiction, consider (x∗∗i , y∗i ) ∈ E such that x∗∗i > x∗i and IC(R̃i, (x∗∗i , y∗i )) cuts
IC(R̄i, (x∗∗i , y∗i )) from below. Figure 4 is helpful in understanding the argument that follows.
In the figure, the darker indifference curves represent R̃i and the lighter ones R̄i.

Note that if IC(R̄i, (xi, y∗i )) cuts IC(R̃i, (xi, y∗i )) from below (resp.above) at (xi, y∗i ) then
Step 1 and the continuity of preferences imply that there is a neighborhood N(xi) ⊂ E of

8Note that we are using the order over a, b and c for this inference.
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xi such that IC(R̄i, (x̄i, y∗i )) cuts IC(R̃i, (x̄i, y∗i )) from below (resp.above) for all x̄i ∈ N(xi).
Call this the “openness property”. Let x′i be the largest number for which IC(R̄i, (xi, y∗i ))
cuts IC(R̃i, (xi, y∗i )) from below for all xi ∈ [x∗i , x

′
i). By the openness property and our

assumption that IC(R̄i, (x∗∗i , y∗i )) cuts IC(R̃i, (x∗∗i , y∗i )) from above such x′i is well defined.
Note that openness property implies that IC(R̄i, (x

′
i, y
∗
i )) does not cut IC(R̃i, (x

′
i, y
∗
i )) at

(x′i, y∗i ) from below but it cannot cut from above either otherwise the openness property will
be violated. An analogous argument can be used when x∗∗i < x∗i .

Step 3: Consider the subset E′ = {(xi, yi)|xi = x∗i , yi ≥ 0}. Using the same argument as
above it follows that indifference curves of R̃i must cut the indifference curves of R̄i at all
the bundles of E′ from above.

Step 4: From Step 2 and Step 3 it follows that along every horizontal and vertical line, the
indifference curves of R̃i must cut the indifference curves of R̄i at all the bundles from from
above. This establishes the Proposition. �

Let R′i, R
′′
i ∈ Ds. We say R′i � R

′′
i if the indifference curves of R′i cut the indifference

curves of R′′i from above at all bundles. Proposition 3 ensures that the order � is well-defined.
However, we want to emphasize that the use of classical preferences plays an important role
in the validity of this order.

Observation 2 Consider two preference orderings defined as follows. Let (x1, y1), (x2, y2)
be in <2

+.

1. (x1, y1) �′ (x2, y2) iff [x1 > x2 or (x1 = x2 and y1 ≥ y2)]
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2. (x1, y1) �′′ (x2, y2) iff [x1 < x2 or (x1 = x2 then y1 ≤ y2)]

None of these preferences are classical, in fact �′′ is not even monotonic and it is well
known that �′ is not continuous. Since �′ is monotonic and �′′ is not, the first condition
in Definition 6 is satisfied at all consumption bundles in <2

++. Under both the orderings
(x1, y1) and (x2, y2) are indifferent if and only if (x1, y1) = (x2, y2), that is the indifference
sets are singletons. Hence, the second condition in Definition 6 is vacuously satisfied. But
also note that since indifference sets are singletons vacuously �′′ cuts �′ from above and �′

cuts �′′ from above at all consumption bundles in <2
++. Hence, we cannot derive a linear

order on the set {�′ ,�′′} using the two conditions listed in Definition 6.

The next Lemma describes an important set theoretic feature of a classical single-crossing
domain which is rich.

Definition 10 Let Ds be a classical single-crossing domain. We say that Ds is a linear
continuum if the following conditions hold.

1. If R′′i � R
′
i, then there exists R′′′i such that R′′i � R

′′′
i � R

′
i.

2. The domain Ds has the least upper bound property.9

Lemma 2 If the classical single-crossing domain Ds is rich, then it is a linear continuum.

Proof : Let R′′i � R
′
i and let (xi, yi) be arbitrary. Choose (x′i, y

′
i) ∈ int UC(R′i, (xi, yi)) ∩

int LC(R′′i , (xi, yi)). Note that (xi, yi) and (x′i, y
′
i) are diagonal. Since Ds is rich, there exists

R
′′′
i such that it has an indifference curve that passes through these two bundles. Note that

since Ds is a single-crossing domain, it will cut the indifference curve of R′i from above and
cut the indifference curve of R′′i from below at (xi, yi). Hence, R

′′
i � R

′′′
i � R

′
i.

Now we show that Ds has the least upper bound property. Choose an allocation (xi, yi)�
(0, 0). Let Cδ((xi, yi)) ⊂ <2

++ be a circle centered at (xi, yi) with radius δ. Observe that for
all Ri ∈ Ds, there exists an indifference curve passing thorough (xi, yi). Let A be the arc
of Cδ((xi, yi)) in SEQi((xi, yi)) excluding the end points. Let the arc intersect the vertical
axis through (xi, yi) at (xi, y∗i ) and let it intersect the horizontal axis at (x∗i , yi). Note that
by the single crossing property, for any two diagonal bundles there is a unique Ri ∈ Ds with
an indifference curve containing them.

Hence, we obtain a bijection G : Ds → A where G(R′i) = (x′i, y
′
i) if IC(R′i, (xi, yi)) =

IC(R′i, (x
′
i, y

′
i)). Since the open interval (x∗i , xi) has the least upper bound property, so does

Ds.
�

9A ordered set S is said to have the least upper bound property if every bounded subset of S has the
supremum in S.
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From now on, we will assume that the topology on Ds is the order topology generated
by the collection of open intervals of the form (R′i, R

′′
i ) = {Ri|R

′′
i � Ri � R

′
i}. Since Ds is a

linear continuum, Ds is connected in this order topology.10 It follows that if F is a continuous
SCF defined on Ds, then <F is connected.

According the next Proposition, any interior allocation in ∆ can be sustained as a Pareto-
efficient allocation for some preference profile.

Proposition 4 Let the classical single-crossing domain Ds be rich. Consider an arbitrary
allocation ((xi, yi), (xj, yj)) in the interior of ∆. Then there exists (Ri, Rj) ∈ [Ds]2 such that
((xi, yi), (xj, yj)) ∈ PE(Ri, Rj).

Proof : Since (x, y) = ((xi, yi), (xj, yj)) is in the interior of ∆ we can choose an Rj ∈ Ds such
that (x1, y1) ∈ IC(Rj, (x, y)) in the interior of ∆, such that (x1, y1) is in the SEQi((x, y)).
Choose R1

i such that IC(R1
i , (x1, y1)) = IC(R1

i , (x, y)). Let (x2, y2) ∈ PE(R1
i , Rj) on

IC(Rj, (x, y)). Then choose R2
i such that IC(R2

i , (x2
i , y

2
i )) = IC(R2

i , (xi, yi)). Note that R2
i �

R1
i . In this way, we construct an increasing sequence of preferences {Rk

i }∞k=1 and an associ-
ated sequence of Pareto-efficient allocations for the profiles {(Rk

i , Rj)}∞k=1 on IC(Rj, (x, y))
such that Euclidean distance between (x, y) and the Pareto-efficient allocations monotoni-
cally converge to zero. Now note that {Rk

i }∞k=1 is bounded above by any Ri ∈ Ds which cuts
IC(Rj, (x, y)) from above at (x, y).11

Since Ds has the least upper bounded property, {Rk
i }∞k=1 converges to its supremum.

Since the Euclidean distance between (x, y) and {(xk, yk)}∞k=1 monotonically converges to
zero, the supremum must be the Ri such that (x, y) ∈ PE(Ri, Rj).

�

Remark 4 From Goswami et al. (2013) we know that allocating a zero amount of good
x and positive amount of good y to an agent does not correspond to a Pareto-efficient
allocation for the single-crossing domain in Example 1. Therefore, Proposition 4 is not true
for non-interior allocations.

Since Saporiti (2009) also characterizes strategy-proof SCFs, before we proceed further it
is important to understand the similarities and differences between our model and the model
in Saporiti (2009). The next subsection deals with this aspect.

3.2 Discussion

In this subsection, we compare our model with that of Saporiti (2009). He assumes a finite
set of alternatives with cardinality at least three. He assumes strict orderings and that the
domain is an ordered set. His definition of the single-crossing property is as follows.

10See Munkres (2005), page 169.
11Note that such an upper bound need not exist if either the indifference curves are not strictly convex or

the allocation that is considered is not in the interior of ∆.
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Definition 11 (Saporiti (2009)) A set of preferences (strict) L exhibits the single-crossing
property on the set of alternatives X if there is a linear order > on X and a liner order �
on L such that for all a, b ∈ X and for all Pi, P

′
i ∈ L

(SC1) [b > a, P
′

i � Pi and bPia]⇒ bP
′

i a

and
(SC2) [b > a, P

′

i � Pi and aP
′

i b]⇒ aPib.

We remark below on the differences and the similarities between our model and his.

• Since we are concerned with allocations in an Edgeworth box, we do not assume finite-
ness of the set of alternatives. The assumption of strict preferences is also inappropriate
in our model because it rules out classical preferences.

• Our notion of the single-crossing property is consistent with Definition 11. Consider
SC(1). Suppose b > a, bPia and IC(R′i, b) cuts IC(Ri, b) from above in the sense of
our definition. We then have bP ′i a. Similarly for SC(2), if b > a, aPib and IC(Ri, a)
cuts IC(R′i, a) from below we have aPib.

• Due to the specific characteristics of the classical preferences we have been able to
derive an order on single-crossing preferences. Hence, classical preferences which are
important in many economic environments, are important examples of Saporiti (2009)’s
definition of single-crossing preferences.

The following observation points out to the importance of classical single-crossing pref-
erences when we compare our model with that of Saporiti (2009).

Observation 3 The consistency of the notion of single-crossing in this paper with the one
defined in Saporiti (2009) discussed in this section depends on the fact that the preferences
considered in this paper are classical. Consider a = (x′i, y

′
i), b = (x′′i , y

′′
i ) in <2

++. Let a > b

that is x′i > x
′′
i and y

′
i > y

′′
i . Let R′i and R

′′
i be two preference relations such that the

indifference curves are strictly concave from the origin. Also let the indifference curves of R′′i
cuts the indifference curves of R′i from above, so that R′′i � R

′
i. Let R

′
i is strictly monotonic

and R′′i increases in the direction of the origin. Hence we have a > b, R′′i � R
′
i, bP

′′
i a , but

aP
′
i b. Hence, (SC2) is violated. Note that R′′i is not monotonic and none of the preferences

are strictly convex.

We conclude this section with a note that single-crossing domains do not satisfy con-
cavification. First we state the notion of concavification as defined in Barberà and Jackson
(1995).
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Definition 12 Let R′i be a preference ordering and let (xi, yi) ∈ <2
+. The preference order-

ing R′′i is a concavification of R′i at (xi, yi) if

(i) UC(R′′i , (xi, yi)) ⊂ UC(R′i, (xi, yi)) and

(ii) (x′i, y
′
i) ∈ UC(R′′i , (xi, yi)) and (x′i, y

′
i) 6= (xi, yi)⇒ (x′i, y

′
i)P

′
i (xi, yi).

In Figure 2 Panel A, R′′i is a concavification of R′i at (xi, yi). The indifference curve of R
′′
i

touches the indifference curve of R′i at (xi, yi) and lies strictly above it at all other bundles.
In Panel B, neither R′′i is a concavification of R′i nor R

′
i a concavification of R′′i at (xi, yi).

In other words, single-crossing does not allow concavification.

Definition 13 The domain D ⊆ Dc admits concavification if for all Ri ∈ D and ai ∈
<2

++, there exists R̃i ∈ D that is a concavification of Ri at ai.

The following remark tells us why the single-crossing property has been defined for the
consumption bundles in the interior of the consumption space.

Remark 5 For the bundles on the boundary of the consumption space, concavification and
single-crossing property can co-exist. Therefore, only the consumption bundles in the interior
of the consumption space have been considered in Definition 6.

The domain Dc is an example of a domain that admits concavification. An example of a
“smaller” domain that also admits concavification is provided below.

Example 3 Consider the domain represented by the utility function

ui(xi, yi; θi, αi) = θix
αi
i + yi, θi > 0 and 0 < αi < 1.

Note that this domain consists of classical preferences; moreover all preferences in the
domain are smooth. Fix an utility function (θ′i, α

′
i) and a consumption bundle (x∗i , y∗i ). If

x∗i = 0 then (θ′′i , α
′
i) is a concavification of (θ′i, α

′
i) at (x∗i , y∗i ), where θ

′′
i < θ

′
i. Now consider

the case where x∗i > 0. Then the absolute value of the slope of an indifference curve of the
utility function (θ′i, αi) at (x∗i , y∗i ) is θ′iαi(x∗i )αi−1.

Note that, limαi→0 θ
′
iαi(x∗i )(αi−1) = 0. Therefore, we can choose α

′′
i < α

′
i such

that θ′iα
′′
i (x∗i )(α′′i −1) < θ

′
iα
′
i(x∗i )(α′i−1). Then choose θ

′′
i > θ

′
i such that θ′′i α

′′
i (x∗i )(α′′i −1) =

θ
′
iα
′
i(x∗i )(α′i−1). We claim that (θ′′i , α

′′
i ) is a concavification of (θ′i, α

′
i) at (x∗i , y∗i ). Since

θ
′
iα
′
i(x∗i )(α′i−1) = θ

′′
i α
′′
i (x∗i )(α′′i −1), slopes of the two utility functions at (x∗i , y∗i ) are equal.

We can write the equality as θ
′
iα
′
i

θ
′′
i α
′′
i

= 1

(x∗i )(α′
i
−α′′

i
)
. Since (α′i − α

′′
i ) > 0, if xi < x∗i then

θ
′
iα
′
ix

(α′i−1)
i < θ

′′
i α
′′
i x

(α′′i −1)
i and if xi > x∗i then θ

′
iα
′
ix

(α′i−1)
i > θ

′′
i α
′′
i x

(α′′i −1)
i . This establishes our

claim.
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We conclude this section with the following definition single-crossing classical exchange
economies.

Definition 14 An exchange economy i.e. {I,M, ω, (R1, R2)} is a single-crossing classi-
cal exchange economy if R1 and R2 are classical single-crossing preferences.

In the next section we provide examples of SCFs in single-crossing domains that do not
belong to the class of FPT rules.

4 Non Fixed-price Trading Rules

In this section, we give examples of SCFs that are strategy-proof and individually rational
but are not FPT rules. These examples show that the Barberà and Jackson (1995) character-
ization does not hold over single-crossing domains and highlights the role of concavification in
their arguments. In addition, various features of these examples will illustrate the role of rich
domains and continuity of the SCFs, the properties that we require for our characterization.

Example 4 We consider a rich single-crossing domain Ds. In this example allocations a, b
and c are as shown in Figure 3. Preferences over this triple for agents 1 and 2 belong to
(D1({a, b, c}) and D2({a, b, c}) (Proposition 1). Let the endowment ω be the allocation a.
The SCF, that depends only on the preference restricted to {a, b, c}, is depicted in Table 1
below.

cP2bP2a aP2bP2c cI2bI2a

cP1bP1a c a c

bP1cP1a b a b

bP1aP1c b a b

aP1bP1c a a a

bI1aP1c b a b

bP1cI1a b a b

cI1bP1a b a b

Table 1: A Non FPT Rule

It is easily verified that the SCF in Table 1 is strategy-proof, individually rational and
has three elements in the range. It is not a FPT rule because all the allocations in the range
lie on one side of the endowment but are not collinear. The range contains the endowment.

Consider a preference domain where aPibPic is not admissible for both i = 1, 2. The
domain remains single-crossing although it is no longer rich. The SCF over the restricted
domain is still strategy-proof and individually rational. However, the endowment is no longer
in its range. This example in conjunction with our characterization result makes it clear that
richness of the domain is critical in ensuring that the endowment lies in the range of the
SCF.
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The next example shows that agents’ preferences need not be single-peaked on the range
on each side of the endowment.

Example 5 Consider a rich domain of classical single-crossing preferences. The SCF is
shown in Figure 5.

Consider a preference R∗j such that IC(R∗j , ω) = IC(R∗j , d). We will define a strategy-
proof and individually rational SCF F such that <F = ω̃d, where ω̃d ⊂ IC(R∗j , ω) . By the
single-crossing property, Top(Rj, ω̃d) ∈ {ω, d} for all Rj 6= R∗j .

Define the SCF F as follows:

F (Ri, Rj) =

ω, if ω ∈ Top(Rj, ω̃d);
x, if x = Top(Ri, ω̃d) and d = Top(Rj, ω̃d)

Since the domain of F is rich there exists Ri such that x = Top(Ri, ω̃d) for all x ∈ ω̃d.
To see this note that the range drawn is in the interior of the Edgeworth box. Arguing in the
same way as in Proposition 4 we can show that there exists Ri such that x = Top(Ri, ω̃d)
for all x ∈ ω̃d.

We claim that F is strategy-proof. Note that agent i does not have any incentive to
deviate when the outcome is ω because he cannot change the outcome by changing his
announcement and when the outcome is other than ω he gets his best outcome.

Agent j is not going to change her announcement when the outcome is ω because she is
getting her best allocation. When the outcome is not ω she can change it to ω only. But
if d = Top(Rj, ω̃d), then ω is the worst allocation for agent j in ω̃d because of the single-
crossing property. This SCF is also individually rational because an allocation other than ω
is chosen only when both the agents are better-off relative to ω.
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Observe that F is not continuous. To see this choose a profile (R1
i , R

1
j ) such that d =

Top(Ri, ω̃d) for all i. Such a profile exists by richness and since d ∈ int ∆.12 Also consider
R2
j such that ω = Top(Rj, ω̃d). According to the construction of the order � on the domain

of preferences, R2
j � R1

j . By definition F (R1
i , R

1
j ) = d and F (R1

i , R
2
j ) = ω. Also note

that F (R1
i , Rj) ∈ {ω, d} for all Rj. Hence continuity for agent j is violated when agent i’s

preference is fixed at R1
i .

We will show in our characterization result that if continuity is additionally imposed
on the SCF, then agents’ preferences over the range are single-peaked on each side of the
endowment. In the next section we discuss our characterization result.

5 A Characterization Result

In this section, we will provide a characterization of the SCFs defined on the rich single-
crossing domains that are strategy-proof, individually rational and continuous. We call this
class of trading rules to be Generalized Trading rules. We define such rules as follows.

Definition 15 Let F : [D]2 → ∆ be an SCF, where D ⊆ Dc. We say that F is a general-
ized trading (GT) rule if the following conditions hold:

1. ω ∈ <F .

2. <F is diagonal.

3. Agent preferences restricted to <F are single-peaked on each side of the endowment.

4. There exists an agent i whose preferences are single-peaked on <F such that,

F (Ri, Rj) =



median{Top(Ri,<F ), T op(Rj, SEQi(ω) ∩ <F ), ω)},
if i’s peak is in SEQi(ω) ∩ <F ;

median{Top(Ri,<F ), T op(Rj, FOQi(ω) ∩ <F ), ω},
if i’s peak is in FOQi(ω) ∩ <F .

From Definition 15, it follows that F is a GT rule then ω ∈ <F . The range of a GT rule is
diagonal and agent preferences are single-peaked on both sides of the endowment. However,
the range of a GT rule need not be piece-wise linear.

Saporiti (2009) shows that if an SCF is strategy-proof, anonymous and unanimous, then
the SCF must be a peak rule. For two agent economies, a peak rule ensures that F (Ri, Rj) ∈
median{Top(Ri,<F ), T op(Rj,<F ), τ)}, where τ = Top(R∗,<F ) for some R∗ ∈ Ds. GT rules

12If d is not an interior allocations in ∆, then this may not be true. We will discuss about this later.
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are a little different from the peak rules but both are similar in spirit. These two classes of
rules are similar because both of them choose median of some tops (or peaks). In a GT rule
the median need not be the median of tops of both the agents in the range. In a GT rule only
one agent needs to have single-peaked preference in the entire range. The alternative that
cannot be manipulated i.e. τ in Saporiti (2009) is ω in a GT rule. If the range is a straight
line then both the agents have single-peaked preference in the entire range and in this case a
GT rule is also a peak rule. However, it does not mean that a GT rule is a generalization of a
peak rule or a peak rule is a generalization of a GT rule. A peak rule is not a generalization
of a GT rule because a GT rule needs only one agent to have a single-peaked preference on
the entire range. A GT rule is not a generalization of a peak rule because GT rules have
been defined only for a particular kind of non-manipulable alternative which is ω.

Example 6 is an example of a GT rule. In this example the range of the SCF is not
piece-wise linear but the SCF is continuous.

Example 6 Let agent i’s preferences be given by utility functions of the form ui(xi, yi; θi) =
θi
√
xi + yi with θi > 0 and i = 1, 2. In Example 1, we have shown that this is a rich domain

of classical single-crossing preferences.
Let Ωx = 8 and Ωy = 4. Let ω1 = (4, 4− 4 2

3 ) and ω2 = (4, 4 2
3 ).

Let B = {((x1, y1)(x2, y2))|y1 + x
2
3
1 = 4}.

Let B′ = B ∩ {((x1, y1), (8 − x1, 4 − y1))|0.1 ≤ x1 ≤ 7.9 and 0.1 ≤ y1 ≤ 3.9}. The set
B
′ is depicted in Figure 6. By our choice of the domain and B

′ , we can find θ1 such that

23



((
3
4θ1
)6
, 4−

(
3
4θ1
)4)

solves the problem Max(0.1≤x1≤7.9,0.1≤y1≤3.9)θ1
√
x1 +y1 s.t. x

2
3
1 +y1 = 4.13

Otherwise the solution is one of the end points where x1 = 0.1 or x1 = 7.9. Note that
Top(θ1, B

′) is unique for every θ1, also Top(θ1, B
′) is a continuous function of θ1. Since

0 < θ1 <∞ we can find the relevant θ1 satisfying
((

3
4θ1
)6
, 4−

(
3
4θ1
)4)

for all the consumption
bundles along B′ . Hence, given that the domain satisfies the single-crossing property the
preference must exhibit single-peakedness on B′ . To see this note that by the single-crossing
property, for any θ1 we cannot have the situation such that a 6= b, ãb ⊆ B

′ and ãb ⊆
LC(θ1, a) = LC(θ1, b).

For agent 2 the optimization problem is,

Max(0.1≤x2≤7.9,0.1≤y2≤3.9)θ2
√
x2 + y2 s.t. (8− x2) 2

3 + 4− y2 = 4.

The first order condition is given by the equation, θ2 = 4
3

√
x2

(8−x2)
1
3
. Note that the derivative

in the right hand side of this equation is 2
3(8−x2)

1
3
√
x2

+ 4√x2

9(8−x2)
4
3
. It is continuous and strictly

positive for all x2 ∈ (0.1, 7.9) and hence by the Inverse Function Theorem, the solution of
x2 is a continuous function of θ2. The first order condition of optimization problem indeed
results in the maximum because from agent 2’s origin the constraint B′ is strictly concave.
Otherwise the solution is one of the end points where x2 = 0.1 or x2 = 7.9.

Hence, Top(θ2, B
′) is unique for every θ2 and a continuous function of θ2.

Define an SCF F as follows,

F (θ1, θ2) = median{Top(θ1, B
′), T op(θ2, B

′), ω}.

By construction, <F = B
′ . Also the SCF F is strategy-proof and individually rational.

Since Top(θi, B
′) is continuous for i = 1, 2, F is also continuous.

Remark 6 Example 6 implies that the continuity of the SCF need not result in the piecewise
linearity of an SCF.

Now we state our main characterization result.

Theorem 2 Let ω ∈ int ∆, the classical single-crossing domain Ds be rich and F : [Ds]2 →
∆ be a continuous SCF such that <F ⊆ int ∆ and <F is a closed set. Then F is strategy-proof
and individually rational if and only if it is a GT rule.

13For any relevant θ1 the solution given by ( 3θ1
4 )6 indeed corresponds to the maximum. To see this note

that the maximization problem can be equivalently written as Max θ1
√
x1−x

2
3
1 . The first order condition is

θ1
2
√
x∗1

= 2
3

1
(x∗1)

1
3
, which can be equivalently written as 3θ1

4 = (x∗1) 1
6 . Since

√
x1

x
1
3
1

= x
1
6
1 is an increasing function

of x1, θ1
2√x1

> 2
3

1

x
1
3
1

for x1 < x∗1 and θ1
2√x1

< 2
3

1

x
1
3
1

for x1 > x∗1. Hence, for the relevant θ1 the family of

functions θ1
√
x1 + y1 concavify x

2
3
1 + y at the consumption bundles along B′ . Therefore, for relevant θ1s the

solution given by ( 3
4θ1)6 indeed correspond to the maximum.
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Remark 7 Our result implies that the Barberà and Jackson (1995) result is robust to
domain contractions. On the contrary, Sprumont (1995) shows that the Barberà and Jackson
(1995) result is not robust to domain expansions. Sprumont (1995) considers the problem of
allocating two private goods between two agents whose preferences are continuous, convex
(i.e. not strictly convex hence a domain expansion) and strictly increasing. Sprumont (1995)
shows that every strategy-proof SCF that is continuous in the preferences must ‘let one agent
choose his best bundle from some exogenous set’. In other words Sprumont (1995) obtains
a dictatorship result by expanding the domain of the SCFs.

Note that we provide a characterization of GT rules under the assumptions that <F ⊆
int ∆ and that <F is closed. In Barberà and Jackson (1995) the range has been proved to be
closed. Closedness of the range is a result of strategy-proofness in their model. They show
that limit points must be in the range. Otherwise strategy-proofness will be violated. In order
to show this, Barberà and Jackson (1995) first show that there exists a preference ordering
in the domain such that a limit point is uniquely preferred to the all other allocations on the
closure of the range. The largeness of the domain of classical preferences is an important
reason that given a limit point such a preference ordering exists. A classical, rich, single-
crossing domain is not so large. Therefore, it may be difficult to use such techniques to show
closedness of the range of an SCF. We explain this further in Example 7.

Example 7 Consider the domain in Example 6. The slope of an indifference curve of an
utility function from this domain is − θi

2√xi . Note that limxi→0− θi
2√xi = −∞. Consider any

straight line yi = −mxi + c, where m > 0, c > 0. The consumption bundle (0, c) cannot
be sustained as a top on this straight line for any θi > 0. This is because for any θi > 0,
there exists ε > 0 such that − θi

2√xi < −m for all xi ∈ (0, ε). The question we ask is
whether it is possible to support the set B = {(x, y) = ((xi, yi), (xj, yj))|(x, y) ∈ ∆ and yi =
−mxi + c and ((o, c), (xj, yj)) ∈ ∆} as the range of a GT rule. Note that according to
definition of a GT rule there must exist a θi such that (0, c) = Top(θi,B). But as we have
seen, this cannot happen.

Remark 8 Example 7 implies that if a limit point of <F lies on the boundary of ∆ then it
need not be attained as a maximum under any preference from Ds. Hence, we cannot prove
the range of an SCF defined on a single-crossing domain to be closed. Hence, we assume the
‘closed’ feature of SCFs that are characterized in Barberà and Jackson (1995). Also we want
ω ∈ <F . Due to the same reason we also assume ω ∈ int ∆. Using these two assumption of
closedness and interiority, we show that if an SCF defined on a classical, rich single-crossing
domain is strategy-proof, individually rational and continuous then it must be a GT rule.

A GT rule by definition is strategy-proof and individually rational. The other direction
of the proof of this result is contained in Appendix 7. In the next paragraph, we provide an
overview of the steps involved in the proof.
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Since the domain that we consider is connected, continuity of the SCF implies that the
range is also connected. We show that the range contains the endowment (Lemma 3) and
that it is diagonal (Proposition 5). Then we argue that the agents’ preferences are single-
peaked on the both sides of the endowment (Lemma 7 and Remark 10). Next we show that
at least one of the agents’ preferences are single-peaked on the entire range (Lemma 10).
Then in the next step we prove the claim in Theorem 2. With the help of continuity of the
SCF, richness and the single-crossing property we can only show that the range is diagonal,
but we cannot prove it to be piecewise linear. Therefore single-peakedness on the range does
not follow immediately. We use continuity and richness of the domain to conclude that both
the agents’ preferences are single-peaked on both sides the endowment and for at least one
agent preferences are single-peaked on the entire range.

We make the following observation about a characterization result concerning strategy-
proof, Pareto-efficient and individually rational SCF on a domain which is not classical.

Observation 4 Nicolò (2004) examines a two-good, two-agent exchange economy with the
domain of Leontief preferences.14 He shows that the range of a strategy-proof and individ-
ually rational SCF must consist of a set of diagonal allocations containing the endowment.
Our result is intermediate between the Nicolò (2004) and Barberà and Jackson (1995) results
in the sense that the range of an SCF on a rich single-crossing domain (satisfying continuity)
must satisfy some restrictions, but can be more general than being piece-wise linear. It
must however contain the endowment, as in the other cases. Furthermore, agent preferences
restricted to the range must be single-peaked on each side of the endowment.

6 Conclusion

In this paper, we have formulated the concept of rich single-crossing domains for two-good
exchange economies. Using some regularity conditions we have characterized the class of
strategy-proof, individually rational and continuous SCFs and identified them to be the class
of Generalized Trading rules. This class is wider than the class of Fixed-Price Trading rules
identified in Barberà and Jackson (1995). However, the class is not big enough relative to the
class of FPT rules. This is because, other than piecewise linearity all other properties of the
FPT rules hold in the restricted domain of single-crossing preferences also. An important
question for further research is whether the GT rule result can be extended to the case of an
arbitrary number of agents with additional assumptions such as anonymity and non-bossiness
as in Barberà and Jackson (1995).

14Observe that these preferences are not classical.
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7 Appendix A

We prove the sufficient part of Theorem 2. Good x is measured along the horizontal axis
and Good y is measured along the vertical axis.
Proof : We first show that the endowment is in the range. This result does not require
either strategy-proofness or continuity.

Lemma 3 Let the classical single-crossing domain Ds be rich. Let ωi � (0, 0) for all i. Let
the SCF F : [Ds]2 → ∆ be individually rational. Then ω ∈ <F .

Proof : Since Ds is rich, we know from Proposition 4 that there exists a profile (Ri, Rj)
such that ω ∈ PE(Ri, Rj). Note that indifference curves are strictly convex. Therefore, for
any allocation other than ω at the profile (Ri, Rj), F will violate individual-rationality for
at least one agent. Hence, F (Ri, Rj) = ω that is ω ∈ <F . �

We now establish a monotonicity result with reference to the order on Ds defined earlier.

Lemma 4 Let the classical single-crossing domain Ds be rich. Let F : [Ds]2 → ∆ be a
strategy-proof SCF. If R′i � R

′′
i , then xi(R

′
i, Rj) ≥ xi(R

′′
i , Rj).

Proof : By strategy-proofness, Fi(R
′
i, Rj) ∈ LC(R′′i , Fi(R

′′
i , Rj))∩UC(R′i, Fi(R

′′
i , Rj)). Hence,

xi(R
′
i, Rj) ≥ xi(R

′′
i , Rj). �

Next we show that if an SCF is continuous, strategy-proof and individually rational, then
its range is a diagonal subset of ∆.

Proposition 5 Let the classical single-crossing domain Ds be rich. If the SCF F : [Ds]2 →
∆ is strategy-proof, individually rational and continuous, then <F is diagonal.

Proof :
For the sake of contradiction assume that Fi(R̃i, R̃j) > Fi(R̄i, R̄j) as shown in Figure

A.1 15. Note that by strategy-proofness R̄k 6= R̃k for all k ∈ I. We prove that if R̃i � R̄i

then R̃j � R̄j. We use Lemma 4 twice. Let R̃i � R̄i. Then by Lemma 4 it follows that
xi(R̃i, R̄j) ≥ xi(R̄i, R̄j). If F (R̃i, R̄j) ∈ THQi(F (R̃i, R̃j)) then agent j will manipulate at
the profile (R̃i, R̃j) via R̄j. Therefore, F (R̃i, R̄j) ∈ int FOQi(F (R̃i, R̃j)). This means that
xj(R̃i, R̃j) > xj(R̃i, R̄j). Hence by Lemma 4 R̃j � R̄j.

Similarly, if R̄i � R̃i then R̄j � R̃j. Therefore, without loss of generality we assume
that R̃i � R̄i. Also, note by individual-rationality, either ω ∈ int FOQi(F (R̃i, R̃j)) or
ω ∈ int SEQi(F (R̄i, R̄j)).

Lemma 5 and 6 are important intermediate steps to prove this proposition.
15For a, b ∈ <2, a > b means ak ≥ bk for all k ∈M and ak > bk for at least one k.
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Lemma 5 Let Fi(R̃i, R̃j) > Fi(R̄i, R̄j). There exists a sequence of profiles such that, (R̃i, R̃j) ��
(Rk+1

i , Rk+1
j ) �� (Rk

i , R
k
j ) �� (R̄i, R̄j), (Rk

i , R
k
j )→ (R̃i, R̃j) (resp. (R̃i, R̃j) �� (Rk

i , R
k
j ) ��

(Rk+1
i , Rk+1

j ) �� (R̄i, R̄j), (Rk
i , R

k
j )→ (R̄i, R̄j)) for any k (Figure A.1).

Proof : The construction of the sequence in the Lemma follows from Steps 1, 2 and 3.

We show the construction of the increasing sequence. The construction of the decreasing
sequence is similar to the construction of the increasing sequence. Consider Figure A.1 and
the set A.
A = {(Ri, Rj)|xi(Ri, Rj) = axi , a

y
i ≤ yi(Ri, Rj) ≤ yi(R̃i, R̃j), and (R̃i, R̃j) � (Ri, Rj) �

(R̄i, R̄j)}.

Step 1 shows that there exists profiles in A other than (R̃i, R̃j).

Step 1: There exists (Ri, Rj) ∈ A such that (R̃i, R̃j) �� (Ri, Rj) �� (R̄i, R̄j) with
F (Ri, Rj) 6= F (R̃i, R̃j) and F (Ri, Rj) 6= F (R̄i, R̄j).

Proof of Step 1: Since F is strategy-proof F (R̃i, R̄j) ∈ int FOQi(F (R̃i, R̃j)). By continuity
of F there exists R∗i such that R̃i � R∗i � R̄i and F (R∗i , R̄j) lies on the line segment joining
a and F (R̃i, R̃j). Also note that by strategy-proofness of i, F (R∗i , R̄j) 6= F (R̃i, R̃j)16. [**]

16Let F xi (Ri, Rj) and F yi (Ri, Rj) denote the allocation of good x and y to agent i according to the SCF F

at the profile (Ri, Rj). Consider the situation F xi (R̄i, R̄j) = F xi (R̃i, R̃j) and F yi (R̄i, R̄j) < F yi (R̃i, R̃j). By
Lemma 4 F (R̄i, Rj) ∈ SEQi(F (R̄i, R̄j)) for all Rj � R̄j . By continuity and strategy-proofness there exists
Rj such that R̃j � Rj � R̄j and F (R̄i, Rj) ∈ int THQi(F (R̃i, R̃j)). Hence, the positions of F (R̄i, R̄j) and
F (R̃i, R̃j) are without the loss of generality.
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Since F is continuous, F (R∗i , Rj) 6= F (R∗i , R̄j) for some Rj ∈ (R̄j, R̃j). If F (R∗i , Rj) =
F (R∗i , R̄j) for all Rj ∈ (R̄j, R̃j) then by continuity of F , F (R∗i , R̃j) = F (R∗i , R̄j). Then
agent i will manipulate F at (R∗i , R̃j) via R̃i because F (R̃i, R̃j)P ∗i F (R∗i , R̃j) = F (R∗i , R̄j).
By Lemma 4 choose R∗∗j ∈ (R̄j, R̃j) such that F (R∗i , R∗∗j ) ∈ int THQi(F (R̃i, R̃j)). Note
that Fi(R̃i, R̃j) > Fi(R∗i , R∗∗j ). Therefore, by [**] there exists R∗∗i such that R̃i � R∗∗i � R∗i
and F (R∗∗i , R∗∗j ) lies on the line segment joining a and F (R̃i, R̃j). Hence, again by strategy-
proofness of i, F (R∗∗i , R∗∗j ) 6= F (R̃i, R̃j). Hence Step 1 is established.

Step 2: Let (R′i, R
′
j) be such that (R̃i, R̃j) �� (R′i, R

′
j) and (R′i, R

′
j) ∈ A with F (R′i, R

′
j) 6=

F (R̃i, R̃j). Then there exists (R′′i , R
′′
j ) such that (R̃i, R̃j) �� (R′′i , R

′′
j ) �� (R′i, R

′
j) and

(R′′i , R
′′
j ) ∈ A with F (R′′i , R

′′
j ) 6= F (R̃i, R̃j).

Proof of Step 2: The proof follows immediately by repeating the a rguments that has been
used to prove Step 1. First increase agent j’s preference and then increase agent i’s.

Step 3: Consider a profile (R∗i , R∗j ) such that (R̃i, R̃j) �� (R∗i , R∗j ) �� (R̄i, R̄j). There exists
(Ri, Rj) such that (R̃i, R̃j) �� (Ri, Rj) �� (R∗i , R∗j ) and (Ri, Rj) ∈ A.

Proof of Step 3: Since F is continuous A is a closed set in the order topology. Therefore set
A contains all its limit points. Therefore by Step 2 the proof follows.

Now consider any neighborhood around (R̃i, R̃j). By Step 3 there exists (Ri, Rj) in this
neighborhood such that (R̃i, R̃j) �� (Ri, Rj) and (Ri, Rj) ∈ A. This proves the existence of
the desired increasing sequence. By decreasing Ris and Rjs we obtain the desired decreasing
sequence.

�

Observation 5 Note that by the construction of the sequence in Lemma 5 for all k F (Rk
i , R

k
j ) 6=

F (R̃i, R̃j). To show this, let F (Rk−1
i , Rk−1

j ) ∈ A and F (Rk−1
i , Rk−1

j ) 6= F (R̃i, R̃j). Note that
F (Rk−1

i , Rk−1
j ) and F (R̃i, R̃j) are non diagonal. Therefore, by Step 1 of Lemma 5 we obtain

(Rk
i , R

k
j ) such that F (Rk

i , R
k
j ) ∈ A and F (Rk

i , R
k
j ) 6= F (R̃i, R̃j).

Lemma 6 Let Fi(R̃i, R̃j) > Fi(R̄i, R̄j). For some Rj � R̃j (resp. R̄j � Rj), F (R̃i, Rj) ∈
int SEQi(F (R̃i, R̃j)) (resp. F (R̄i, Rj) ∈ int FOQi(F (R̄i, R̄j))).

Proof : Assume for the sake of contradiction that this does not happen. Then for all
Rj � R̃j, F (R̃i, Rj) = F (R̃i, R̃j). Consider ˜̃Rj � R̃j. Note that (R̃i,

˜̃Rj) �� (R̄i, R̄j). By
Lemma 5, we can construct an increasing sequence of profiles (Rk

i , R
k
j ) with F (Rk

i , R
k
j ) ∈

THQi(F (R̃i, R̃j)) = THQi(F (R̃i,
˜̃Rj)), F (R̃i,

˜̃Rj) > F (Rk
i , R

k
j ) and the sequence converges

to (R̃i,
˜̃Rj). Observe that for k large enough we can choose Rk

j such that ˜̃Rj � Rk
j � R̃j

and F (R̃i,
˜̃Rj) > F (Rk

i , R
k
j ). But F (R̃i, R

k
j ) = F (R̃i, R̃j)P k

i F (Rk
i , R

k
j ). Hence agent i will

manipulate F at (Rk
i , R

k
j ) via R̃i.

�
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Back to the proof of the proposition. By F (R̄i, R̄j)e, ec and F (R̄i, R̄j)m we denote the
straight lines that joins F (R̄i, R̄j) and e, e and c and F (R̄i, R̄j) and m respectively. This
is an abuse of notation because none of these line segments are diagonal (Figure A.1). We
consider two cases.

Case 1: ω ∈ int FOQi(F (R̃i, R̃j)).

By Lemma 6 choose R1
j � R̃j such that F (R̃i, R

1
j ) ∈ int SEQi(F (R̃i, R̃j)) ∩

FIQi(F (R̄i, R̄j)). By individual-rationality of agent i, F (Ri, R
1
j ) ∈ FOQi(c) for some Ri

where Ri � R̃i. By continuity there exists R1
i � R̃i such that F (R1

i , R
1
j ) ∈ F (R̄i, R̄j))e or

F (R1
i , R

1
j ) ∈ ec. Note that (R1

i , R
1
j ) �� (R̄i, R̄j) and Fi(R1

i , R
1
j ) > Fi(R̄i, R̄j). By using

Lemma 5 again we find a sequence of increasing profiles that converges to (R1
i , R

1
j ). Then

use Lemma 6, individual-rationality and continuity to find (R2
i , R

2
j ) �� (R1

i , R
1
j ) such that

F (R2
i , R

2
j ) ∈ F (R̄i, R̄j))e or F (R2

i , R
2
j ) ∈ ec. Continuation of this process results in (R∗i , R∗j )

high enough such that F (R∗i , R∗j ) ∈ F (R̄i, R̄j))e or F (R∗i , R∗j ) ∈ ec and ωP ∗i F (R∗i , R∗j ). Hence
individual-rationality of agent i is violated at R∗i .

Case 2: ω ∈ int SEQi(F (R̄i, R̄j)).

By Lemma 6 choose R1
j such that R̄j � R1

j and F (R̄i, R
1
j ) ∈ int FOQi(F (R̄1, R̄2)) ∩

THQi(F (R̃i, R̃j)).
As in Case 1, by continuity and individual-rationality of agent i there exists R1

i such
that R̄i � R1

i and F (R1
i , R

1
j ) ∈ F (R̄i, R̄j))m or F (R1

i , R
1
j ) ∈ F (R̄i, R̄j)e. Note that

(R̃i, R̃j) �� (R1
i , R

1
j ) and F (R̃i, R̃j) > F (R1

i , R
1
j ). Using Lemma 5, Lemma 6, individual-

rationality and continuity repeatedly we find R∗i and R∗j low enough such that F (R∗i , R∗j ) ∈
F (R̄i, R̄j)m or F (R∗i , R∗j ) ∈ F (R̄i, R̄j)e and individual-rationality of agent i is violated since
ω ∈ int SEQi(F (R̄i, R̄j)).

Hence, by contradiction the proof of the Proposition follows.
�

Remark 9 Since the rich classical single-crossing domain Ds is connected in the order topol-
ogy and F is continuous, <F is connected. Hence, the diagonal property of <F implies that
<F can be written as d̃′ω ∪ ω̃d where d′ ∈ SEQi(ω) and d ∈ FOQi(ω), for some i.

The following Lemma demonstrates that agent preferences are single-peaked on each side
of the endowment.

Lemma 7 Let the classical single-crossing domain Ds be rich. Let the SCF F : [Ds]2 → ∆ be
strategy-proof, individually rational and continuous. Let <F ⊆ int ∆ and let <F be closed.
Let <F = d̃′ω ∪ ω̃d. Then agent preferences are single-peaked on <F ∩ int SEQi(ω) and
<F ∩ int FOQi(ω).
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Proof : First we show that d and d′ are attained as tops in ω̃d and d̃′ω respectively. Without
the loss of generality consider d. Since d ∈ <F there exists (R′i, R

′
j) such that F (R′i, R

′
j) = d.

Let there exists y ∈ ω̃d such that yP ′i d. By strategy-proofness of i, there does not exist Ri

such that F (Ri, R
′
j) = y. Hence, by continuity for all Ri such that R′i � Ri, F (Ri, R

′
j) ∈

ỹd \ {y}.
Since <F is diagonal by richness there exists R′′i (small according to the order �) such

that ωP ′′i b for all b ∈ ỹd. Since F (R′′i , R
′
j) ∈ ỹd \ {y}, individual-rationality of agent i will

be violated at R′′i .
Hence, we have shown d ∈ Top(R′i, ω̃d). By richness there exists Ri � R

′
i such that

d = Top(Ri, ω̃d).
Now we prove the Lemma in four steps. In the first step we show that any allocation

such that c ∈ d̃′ω \ {ω} or c ∈ ω̃d \ {ω} can be sustained as a top in d̃′ω or ω̃d respectively.
In the second step we show that no agent has isolated tops on any side of the endowment.
In the third step we show that both agents’ preferences have unique top on both sides of the
endowment. In the fourth step we show that preferences are in fact, single-peaked on both
sides of the endowment.

Note that both d̃′ω and ω̃d are compact. Since, preferences are continuous, on each of
these segments a maximum exists under all Ri. In Step 1 we show that all the allocations
in each side of ω can be sustained as a top under some Ri.

Step 1: Let c ∈ d̃′ω \ {ω} or c ∈ ω̃d \ {ω}. Then there exists Ri such that c ∈ Top(Ri, d̃
′ω)

or c ∈ Top(Ri, ω̃d).

Proof of Step 1: Consider c ∈ ω̃d \ {ω} and c 6= d. We know that F (R′i, R
′
j) = d. Since

<F is diagonal, by richness there exists R∗i such that ωP ∗i b for all b ∈ c̃d. Therefore, by
individual-rationality of i at R∗i , F (R∗i , R

′
j) ∈ SEQi(c). Hence by continuity of F there

exists R′′i such that F (R′′i , R
′
j) = c. If there exists y ∈ c̃d such that yP ′′i c then agent

i will manipulate F at (R′′i , R
′
i) via R∗∗i where F (R∗∗i , R

′
i) = y. Such R∗∗i exists because

F (R′i, R
′
j) = d, F (R′′i , R

′
j) = c and F is continuous.

Therefore, let y ∈ ω̃c such that yP ′′i c. If y = ω then individual-rationality of i at R′′i
is violated. Therefore, let y 6= ω. By Lemma 4 for all Ri such that R′′i � Ri, F (Ri, R

′
j) ∈

SEQi(c). Since <F is diagonal by richness there exists R∗i (small according to the order
�) such that ωP ∗i b for all b ∈ ỹd. But then by continuity, there exists R∗∗i such that
F (R∗∗i , R

′
j) = y. Hence, i will manipulate F at (R′′i , R

′
i) via R∗∗i .

Step 2: Consider an agent i and ω̃d. Let a, b ∈ Top(Ri, ω̃d) such that bxi > axi and byi < ayi .
Consider xi ∈ [axi , bxi ] and yi ∈ [byi , a

y
i ] such that ((xi, yi), (ω − xi, ω − yi)) ∈ ω̃d. Then,

(xi, yi) ∈ Top(Ri, ω̃d).

Proof of Step 2: We will prove Step 2 by contradiction. Suppose F has isolated plateaus on
ω̃d at some R∗i (Figure A.2).
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Let ã′a and b̃b′ be two plateaus under R∗i . Pick an allocation c between a and b such
that a 6= c 6= b. By Step 1 there exists a preference Ri such that c ∈ Top(Ri, ω̃d \ {ω}).
Since c ∈ int LC(R∗i , a), Ri and R∗i cuts twice. This is a contradiction to the single-crossing
property.
Step 3. Consider agent i, Ri and ω̃d. Then Top(Ri, ω̃d) is unique.
Proof of Step 3: It follows from Step 2 that agent preferences have unique plateaus on both
sides of ω. We show that preferences admit unique maximal element on both sides of ω. Let
ã′a be a plateau for some preference R∗i .

Let c ∈ ã′a and a′ 6= c 6= a. We have F (R′i, R
′
j) = d. By richness we can find R∗∗i such that

wP ∗∗i b for all b ∈ c̃d. Hence, by individual-rationality of i at R∗∗i , F (R∗∗i , R
′
j) ∈ int SEQi(c).

Therefore, by continuity, there exists R′′i such that F (R′′i , R
′
j) = c.

From the single-crossing property it follows that either a′P ′′i c or aP
′′
i c. Consider a′P ′′i c.

If a′ = ω then individual-rationality of i is violated at R′′i . If a
′ 6= ω then we can choose R∗∗∗i

(small according to the order �) such that wP ∗∗∗i b for all b ∈ ã′d. By individual-rationality
of agent i at R∗∗∗i , F (R∗∗∗i , R

′
j) ∈ int SEQi(a

′). By continuity there exists Riv
i such that

F (Riv
i , R

′
j) = a

′ . Then agent i will manipulate F at (R′′i , R
′
j) via Riv

i .
Now let aP ′′i c. We have F (R′i, R

′
j) = d. Hence, by strategy-proofness of i a 6= d. Choose

R∗∗∗i such that wP ∗∗∗i b for all b ∈ ãd. By individual-rationality of i at R∗∗∗i F (R∗∗∗i , R
′
j) ∈

intSEQi(a). Therefore, by continuity there exists Rv
i such that F (Rv

i , R
′
j) = a. Hence agent

i will manipulate F at (R′′i , R
′
j) via Rv

i .
We have proved that on both sides of the endowment each agent i has a unique top.

However this is not enough to conclude that agent preferences are single-peaked. We now
show this.
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Step 4: The preferences of any agent i exhibit single-peakedness over d̃′ω \{ω} and ω̃d\{ω}.

Suppose R∗i is not single-peaked but has a unique top on ω̃d. Therefore, there exists an
indifference curve of the preference R∗i and allocations a and b, a 6= b in ω̃d such that
ãb ⊆ LC(R∗i , a) = LC(R∗i , b). But by Step 1 this will violate the single-crossing property.

�

The following Lemma demonstrates a relationship between the end elements of a diagonal
set and single-crossing preferences.

Lemma 8 Let the classical single-crossing domain Ds be rich. Let <F ⊆ int ∆ be closed
with <F = d̃′ω ∪ ω̃d. Then there exist profiles (R∗i , R∗j ) and (R∗∗i , R∗∗j ) such that,

1. dP ∗i b and dP ∗j b for all b ∈ <F , d
′
P ∗∗i b and d

′
P ∗∗j b for all b ∈ <F .

2. We can choose (R∗i , R∗j ) and (R∗∗i , R∗∗j ) in such a way that for all i, ωP ∗i b for all
b ∈ d̃′ω \ {ω} and ωP ∗∗i b for all b ∈ ω̃d \ {ω}.

Proof : Without the loss of generality consider d. We have shown in the proof of Lemma 7
that there exists Ri such that d = Top(Ri, ω̃d). Since <F is diagonal by richness 1 follows.

However note that the existence of R′i such that d = Top(R′i,<F ) does not mean that
ωP

′
i b for all b ∈ d̃

′ω \ {ω}. It is possible that there exists b ∈ d̃′ω such that bR′iω as shown
in Figure A.3.
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By richness there exists R∗j such that IC(R∗j , ω) = IC(R∗j , d
′). Now recall from Lemma

7 that for all b ∈ d̃′ω \ {ω}, b = Top(Rj, d̃
′ω) for some Rj. Hence, by Lemma 7, d̃′ω ⊆

UC(R∗j , ω), otherwise the single-crossing property will be violated. Hence, by applying
richness the desired R∗i is obtained.

�

Remark 10 By Lemma 7 all the allocations on d̃′ω \ {ω} are supported as singele-peaked
tops. HenceR∗i obtained in Lemma 8 exhibits single-peakedness on d̃′ω with ω = Top(R∗i , d̃

′ω).
In other words, by Lemma 7 and Lemma 8 both the agents exhibit single-peakedness on d̃′ω
and ω̃d.

The following property of a closed range is useful.

Lemma 9 Let the classical single-crossing domain Ds be rich. Let the SCF F : [Ds]2 → ∆
be strategy-proof, individually rational and continuous. Let <F ⊆ int ∆ be closed and <F =
d̃′ω ∪ ω̃d. If the profiles (R∗i , R∗j ) and (R∗∗i , R∗∗j ) are such that they satisfy (1) and (2) in
Lemma 8, then F (R∗i , R∗j ) = d and F (R∗∗i , R∗∗j ) = d

′.

Proof : Let R∗i and R∗i satisfy (1) in Lemma 8. Since d is in the range of F , there exists
(Ri, Rj) such that F (Ri, Rj) = d. Since d is the best element on the range of F at R∗i , by
strategy-proofness, F (R∗i , Rj) = d. Similaraly, we have F (R∗i , R∗j ) = d. �

We now show that at least one agent’s preferences exhibit single-peakednes on <F .

Lemma 10 Let the classical single-crossing domain Ds be rich. Let the SCF F : [Ds]2 → ∆ be
strategy-proof, individually rational and continuous. Let <F ⊆ int ∆ be closed <F = d̃′ω∪ω̃d.
Then there exists an agent i such that his preferences are single-peaked on <F .

Proof : By Lemma 7 agent preferences are single-peaked on both sides of the endowment.
Suppose agent j has a preference R∗j such that a ∈ int ω̃d and b ∈ int d̃′ω are tops on ω̃d
and d̃′ω respectively under R∗j (Figure A.4).
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Consider the profiles (R1
i , R

1
j ) and (R2

i , R
2
j ) such that they satisfy (1) and (2) in Lemma

8. By Lemma 9 F (R1
i , R

1
j ) = d and F (R2

i , R
2
j ) = d

′ .
By individual-rationality of agent i, F (R1

i , R
∗
j ) ∈ ω̃d and F (R2

i , R
∗
j ) ∈ d̃

′ω. By individual-
rationality of j, F (R1

i , R
2
j ) = ω and F (R2

i , R
1
j ) = ω. Hence now we have, F (R1

i , R
1
j ) = d,

F (R1
i , R

2
j ) = ω and F (R1

i , R
∗
j ) ∈ ω̃d. Since agent j’s preferences are single-peaked on each

side of the endowment, continuity and strategy-proofness imply F (R1
i , R

∗
j ) = a. Similarly,

F (R2
i , R

∗
j ) = b. Note that R1

i � R2
i . By continuity there exists R∗i such that F (R∗i , R∗j ) =

ω. By strategy-proofness of agent i at the profile (R∗i , R∗j ), ω ∈ Top(R∗i , ω̃a) and ω ∈
Top(R∗i , b̃ω). But by Lemma 7 and the single-crossing property ω = Top(R∗i , ω̃a) and ω =
Top(R∗i , b̃ω). Again by Lemma 7 and the single-crossing property ω = Top(R∗i , ω̃d) and
ω = Top(R∗i , d̃

′ω). Therefore, ω = Top(R∗i ,<F ). By Lemma 7 agent i’s preferences are also
single-peaked on both sides of the endowment. Since ω = Top(R∗i ,<F ) by the single-crossing
property, agent i’s preferences exhibit single-peakedness on <F .

�

From the preceding Lemma it follows that there exists an agent i such that for some R∗i ,
Top(R∗i ,<F ) = ω. Hence, Top(Ri,<F ) ∈ ω̃d if Ri � R∗i and Top(Ri,<F ) ∈ d̃′ω if R∗i � Ri.
Therefore, by individual-rationality for all Rj, F (Ri, Rj) ∈ ω̃d if Ri � R∗i and F (Ri, Rj) ∈
d̃′ω if R∗i � Ri. By individual-rationality, F (R∗i , Rj) = ω for all Rj. Now consider the
following partition of [Ds]2: K(1) = {(Ri, Rj)|Ri = R∗i }, K(2) = {(Ri, Rj)|Ri � R∗i } and
K(3) = {(Ri, Rj)|R∗i � Ri}. Hence, it follows that if (Ri, Rj) ∈ K(2) then F (Ri, Rj) ∈ ω̃d
and if (Ri, Rj) ∈ K(3) then F (Ri, Rj) ∈ d̃′ω. Now note that in both ω̃d and d̃′ω preferences
of agent j are also single-peaked.
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Now considerK(1)∪K(2). We know by individual-rationality of F that if (Ri, Rj) ∈ K(2)
then F (Ri, Rj) ∈ ω̃d. Now we know that
F (Ri, Rj) =

min
{
a∅,max{Top(Ri,<F ), a{i}},max{Top(Rj, ω̃d), a{j}},max{Top(Ri,<F ), T op(Rj, ω̃d), a{i,j}}

}
.

From Theorem 2 in Barberà and Jackson (1994) if s ⊆ s
′ ⊆ {i, j} then as ≥ as′ , where as is

an extended real number for all s ⊆ {i, j}. [***]

Claim 1: a∅ ≥ d and a{i,j} ≤ ω.

Proof of Claim 1: Let for the sake of contradiction a∅ < d. From Lemma 8 and Lemma 9
we can choose a profile such that under F ,

min
{
a∅,max{d, a{i}},max{d, a{j}},max{d, d, a{i,j}}

}
= d.

By [***], min
{
a∅, d, d, d

}
< d, which is a contradiction to the above equality.

Now, let for the sake of contradiction a{i,j} > ω. By individual-rationality of F from our
earlier discussion we can choose a profile such that,

min
{
a∅,max{ω, ai},max{ω, aj},max{ω, ω, ai,j}

}
= ω.

By [***] min
{
a∅, a{i}, a{j}, a{i,j}

}
> ω, which is a contradiction to the above equality. This

establishes Claim 1.

Since F (Ri, Rj) ∈ ω̃d for all (Ri, Rj) ∈ K(1) ∪K(2), the definition of min-max function in
conjunction with Claim 1 imply, a∅ = d and a{i,j} = ω.

Claim 2: a{i} = ω and a{j} = ω.

Proof of Claim 2: Let for the sake of contradiction a{i} > ω. We know that by individual-
rationality of F , min

{
d,max{d, a{i}},max{ω, a{j}},max{d, ω, ω}

}
= ω. Hence, a{j} = ω.

Again by, individual-rationality of F , min
{
d,max{ω, a{i}},max{d, ω},max{ω, d, ω}

}
= ω,

i.e. min
{
d,max{ω, a{i}}, d, d

}
= ω, which is a contradiction.

Let for the sake of contradiction a{j} > ω. By individual-rationality of F ,

min
{
d,max{d, ω},max{ω, a{j}},max{d, ω, ω}

}
= ω.

This is a contradiction since, max{ω, a{j}} > ω. This establishes the Claim 2.

Hence, from the claims above it follows that a∅ = d and as = ω for s ⊆ {i, j} and s 6= ∅.
Therefore,
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F (Ri, Rj) =
min

{
d,max{Top(Ri,<F ), ω},max{Top(Rj, ω̃d), ω},max{Top(Ri,<F ), T op(Rj, ω̃d), ω}

}
.

Since none of the tops can be higher than d so we can write,
F (Ri, Rj) =

min
{

max{Top(Ri,<F ), ω},max{Top(Rj, ω̃d), ω},max{Top(Ri,<F ), T op(Rj, ω̃d), ω}
}
.

Equivalently, F (Ri, Rj) = median
{
Top(Ri,<F ), T op(Rj, ω̃d), ω

}
.

Analogously, if (Ri, Rj) ∈ K(1) ∪K(3) then

F (Ri, Rj) = median
{
Top(Ri,<F ), T op(Rj, d̃

′ω), ω
}
.

This completes the proof of Theorem 2. �
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