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Abstract

We study two-player common-value all-pay auctions in which the players have ex-ante asymmetric

information represented by �nite partitions of the set of possible values of winning. We consider two

families of such auctions: in the �rst, one of the players has an information advantage (henceforth, IA)

over his opponent, and in the second, no player has an IA over his opponent. We show that there exists

a unique equilibrium in auctions with IA and explicitly characterize it; for auctions without IA we �nd a

su¢ cient condition for the existence of equilibrium in monotonic strategies. We further show that, with

or without IA, the ex-ante distribution of equilibrium e¤ort is the same for every player (and hence the

players�expected e¤orts are equal), although their expected payo¤s are di¤erent. In auctions with IA,

the players have the same ex-ante probability of winning, which is not the case in auctions without IA.
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1 Introduction

All-pay auctions are used in diverse areas of economics, such as lobbying in organizations, R&D races,

political contests, promotions in labor markets, trade wars, and biological wars of attrition. In an all-pay

auction each player submits a "bid" (i.e., exerts e¤ort) and the player with the highest bid wins the contest.

However, regardless of who the winner is, each player bears the cost of his bid. All-pay auctions have been

studied when players have either private or common values of winning.1 In this paper we focus on common-

value all-pay auctions and consider contests with two ex-ante asymmetrically informed players where the

value of winning is identical for both players in the same state of nature, but the information about which

state of nature was realized is di¤erent. We assume that each player�s information is represented by a �nite

partition of the set of states of nature that can be identi�ed with the set of possible common values, but these

partitions are di¤erent.2 When the state of nature is chosen, each player learns which element of partition

contains the realized common-value, but the players do not necessarily know the exact value of winning the

contest.3 This model captures situations in which winning a contest is of similar bene�t to each contestant,

but the precise value of winning, which depends on several random parameters, may be unknown.

In our two-player model of asymmetric information we assume that the information sets of each player

are connected with respect to the value of winning the contest (see Einy et al. (2001, 2002) and Forges

and Orzach (2011)). This means that if a player�s information partition does not enable him to distinguish

between two possible values of winning, then he also cannot distinguish between all intermediate values.

Connectness seems plausible in environments where the information of a player allows him to put upper and

lower bounds on the actual value of winning, without ruling out any outcome within these bounds.

We �rst study a common-value all-pay auctions where one player has an information advantage (hence-

1To mention just a few works, all-pay auctions have been considered by, e.g., Hillman and Riley (1989), Baye et al. (1993,

1996), Amann and Leininger (1996), Che and Gale (1998), Moldovanu and Sela (2001, 2006), Siegel (2009) and Moldovanu et

al. (2010).
2This partition representation is equivalent to the more common Harsanyi-type formulation of Bayesian games (see Jackson

(1993) and Vohra (1999))
3This framework has been used in several works to analyze common-value second-price auctions (see Einy et al. (2001,

2002), Forges and Orzach (2011), and Abraham et al. (2012)), and common-value �rst-price auctions (see Malueg and Orzach

(2009, 2012)).
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forth, IA) over the other, which means that his information partition is �ner than that of his opponent. It

can be shown that without loss of generality we can assume that one player is completely informed about

the state of nature, while the other player is completely uninformed. We establish existence and uniqueness

of equilibrium in mixed strategies in this class of contests and provide its complete characterization. Our

results show that although the players have asymmetric strategies that yield di¤erent expected payo¤s, the

expected e¤orts of both players are the same. Moreover, the probability of each player to win the contest in

equilibrium is the same. Hence, we �nd that asymmetry of information between the players does not result

in unequal expected e¤orts or di¤erent chances to win the contest, but it does a¤ect the allocation of payo¤s

between the players. In the unique equilibrium of this model, the expected payo¤ of the uninformed player

is zero, while the expected payo¤ of the informed payer is positive.

We then examine how the relation between players�information sets a¤ects their expected total e¤ort. We

�nd that maximizing the total e¤ort calls for narrowing the information gap between the players. Speci�cally,

if there are three players (a,b and c) where a has an IA over b who has an IA over c, then the expected total

e¤ort in the contest between a and c is necessarily lower than in the contest between b and c. In other words,

when the players�information endowments become closer to each other, their total e¤ort grows. Although

we analyze two-player (common-value all-pay) auctions, the above results can be generalized to any number

of players as long as the players� information partitions can be ranked, namely, as long as in all pairwise

comparisons one player has an IA over the other. In such a case, as well as in the complete information

all-pay auction with more than two players (see Baye et al. 1996), there will be an equilibrium in which only

the two best-informed players participate, while the rest stay out of the contest (i.e., place bids of zero).4

We also study common-value all-pay auctions in which, except in the extreme states of nature (cor-

responding to the lowest and the highest possible values of winning), neither player has an IA over his

opponent.5 For this case, we construct a "candidate" for an equilibrium with monotonic strategies (i.e.,

strategies where more favorable signals do not lead to lower bids) and �nd su¢ cient conditions for the "can-

didate" to be a true equilibrium. In this model without an IA, we show that as in the IA case, the expected

e¤orts of both players are the same in equilibrium, but, in contrast to the IA case, their probabilities to win

4For a complete discussion see Section 4.
5Malueg and Orzach (2009) studied the �rst-price auction with information partitions of this type.
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the contest may be distinct. We also show that a player�s expected payo¤, conditional on an element of his

partition, monotonically increases with the values of winning. Thus, higher/lower values in the information

set of a player lead to a higher/lower conditional expected payo¤.6

The most related work to ours is Siegel (2013), who studies asymmetric two-player all-pay auctions with

interdependent valuations, where private information of each player is represented by a �nite set of possible

types. He shows that a unique equilibrium exists in his set-up, and provides an algorithm to calculate the

equilibrium strategies. Our equilibrium characterization for common-value all-pay auctions with an IA is

akin to the result of Siegel (2013), but we also compare the distributions of equilibrium e¤orts and payo¤s

across players and for di¤erent information structures, including the case without an IA.

The paper is organized as follows. In Section 2 we present the model. In Section 3 we give a numerical

example that demonstrates how to �nd the equilibrium in a model with an IA. In Section 4, we characterize

the equilibrium in the general case with an IA, and analyze the players�expected e¤orts and payo¤s as well

as their probabilities of winning. In Section 5 we give a numerical example of equilibrium in a model without

an IA. In Section 6 we �nd su¢ cient conditions for the existence of equilibrium in the general case without

an IA, and explicitly describe one such equilibrium. In Subsection 6.1 we analyze the players�expected

e¤orts and payo¤s in a model without an IA. Section 7 concludes. Some of the proofs are in the Appendix.

2 The model

Consider the set N = f1; 2; :::; Ng of N � 2 players who compete in an all-pay auction where the player with

the highest e¤ort (output) wins the contest, but all the players bear the cost of their e¤ort. The uncertainty

in our model is described by a �nite set 
 of states of nature and a probability distribution p over 
 which

can be interpreted as the common prior belief about the realized state of nature (w.l.o.g. p(!) > 0 for every

! 2 
): A function v : 
! R+ represents the common value of winning the contest, i.e., if ! 2 
 is realized

then the value of winning is v(!) for every player.

6Unlike the model with IA, when there is no IA the information structure does not give advantage to any player when their

expected payo¤s are concerned, as it can be easily seen that the expected payo¤ of a player may be higher or lower than that

of his opponent.
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The private information of each player i 2 N is described by a partition �i of 
: We assume that each

�i is connected with respect to the common value function v; i.e., for every element �i 2 �i; if !1; !2 2 �i

and ! 2 
 satisfy v(!1) � v(!) � v(!2); then ! 2 �i:7

A common-value all-pay auction starts when nature chooses a state ! form 
 according to the distribution

p: Each player i 2 N is informed of the element �i(!) of �i which contains ! (thus, �i(!) constitutes the

information set of player i at !), and then he chooses an e¤ort xi 2 R+: The players will typically have

di¤erent information partitions, and thus are ex-ante asymmetric.

The utility (payo¤) of player i 2 N is given by the function ui : 
� RN+ ! R as follows:

ui(!; x) =

8>><>>:
1

m(x)v(!)� xi; if xi = maxfxkgk2N ;

�xi; if xi < maxfxkgk2N ;

wherem(x) denotes the number of players who exert the highest e¤ort, namely,m(x) = ji 2 N : xi = maxfxkgk2N j.

A common-value all-pay auction with di¤erential information is fully described by and identi�ed with the

collection G = (N; (
; p); fuigi2N ; f�igi2N ):

In all-pay auctions, there is usually no equilibrium in pure strategies. Thus our attention will be given

to mixed strategy equilibria. A mixed strategy of player i 2 N is a function Fi : 
� R+ ! [0; 1]; such that

for every ! 2 
; Fi (; �) is a cumulative distribution function (c.d.f.) on R+; and for all x 2 R+, Fi (�; x) is a

�i-measurable function (that is, Fi (�; x) is constant on every element of �i): Slightly abusing notation, for

any �i 2 �i we will denote the constant value of Fi (�; x) on �i by Fi (�i; x) ; whenever convenient. If player

i plays a pure strategy given �i; i.e., if the distribution represented by Fi (�i; �) is supported on some y 2

R+; we will identify between Fi (�i; �) and y wherever appropriate.

Given a mixed strategy pro�le F = (F1; :::; FN ), denote by Ei(F ) the expected payo¤ of player i when

players use that strategy pro�le, i.e.,

Ei(F ) � E(
Z 1

0

:::

Z 1

0

ui(�; (x1; :::; xN ))dF1(�; x1); :::; dFN (�; xN )):

7 It is worth noting that our analysis remains valid if 
 is an in�nite set of states of nature provided the partitions are �nite.

To see this, simply replace 
 with a �nite 
0, which is the coarsest partition of 
 that re�nes all f�ngn2N ; and, for each

� 2 
0; let the value of winning at �, v(�); be equal to the conditional expectation E(v (�) j �):
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For �i 2 �i; Ei(�i; F ) will denote the conditional expected payo¤ of player i given his information set �i;

i.e.,

Ei(�i; F ) � E(
�Z 1

0

:::

Z 1

0

ui(�; (x1; :::; xN ))dF1(�; x1); :::; dFi(�; xi); :::; dFN (�; xN )
�
j �i):

An N -tuple of mixed strategies F � = (F �1 ; :::; F
�
N ) constitutes a (Bayesian Nash) equilibrium in the

common-value all-pay auction G if for every player i, and every mixed strategy Fi of that player, the

following inequality holds:

Ei(F
�) � Ei(F �1 ; :::; Fi; :::; F �N ):

3 Information advantage: Example 1

We begin with a simple example to illustrate the players�behavior in our model with an IA. Consider a

common-value all-pay auction with two players. Assume that there are three states of nature such that in

state !i the value of winning is v(!i) = i with probability of pi = 1
3 ; for i = 1; 2; 3: Player 1 knows only the

prior distribution p; and hence he has the trivial information partition, �1 = ff!1; !2; !3gg ; while player 2

is completely informed of the value of winning, hence �2 = ff!1g; f!2g; f!3gg partitions 
 into singletons:

It can be easily veri�ed that the corresponding common-value all-pay auction does not have an equilibrium

in pure strategies. However, there does exist a mixed strategy equilibrium. In this equilibrium, player 1�s

mixed strategy F �1 is a state-independent c.d.f. given by

F �1 (x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 0;

x, if 0 � x � 1
3 ;

x
2 +

1
6 ; if 13 < x � 1;

x
3 +

1
3 ; if 1 < x � 2;

1; if 2 < x:

Player 2�s mixed strategy F �2 does depend on the state of nature (of which he is informed):

F �2 (!1; x) =

8>>>>>><>>>>>>:
0; if x < 0;

3x; if 0 � x � 1
3 ;

1; if x > 1
3 ;
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F �2 (!2; x) =

8>>>>>><>>>>>>:
0; if x � 1

3 ;

3
2x�

1
2 ; if 13 < x � 1;

1; if x > 1;

F �2 (!3; x) =

8>>>>>><>>>>>>:
0; if x < 1;

x� 1; if 1 � x � 2;

1; if x > 2:

In order to see that the above strategies are in equilibrium, note that, given player 2�s mixed strategy

F �2 , player 1�s expected payo¤, if he exerts e¤ort x 2 [1; 2]; is

E1(x; F
�
2 ) =

1

3
� 1 + 1

3
� 2 + 1

3
� 3 � (x� 1)� x = 0

When x 2 [ 13 ; 1],

E1(x; F
�
2 ) =

1

3
� 1 + 1

3
� 2 � (3

2
x� 1

2
)� x = 0;

and when x 2 [0; 13 ],

E1(x; F
�
2 ) =

1

3
� 1 � (3x)� x = 0:

As any e¤ort above 2 would result in a negative expected payo¤, [1; 2] is the set of player 1�s pure strategy

best responses to to F �2 ; and in particular his mixed strategy F
�
1 is a best response to F

�
2 as it results in an

expected payo¤ of zero.

Now, �x payer 1�s mixed strategy F �1 , and assume that !3 is the realized state of nature. If player 2

exerts e¤ort x 2 [1; 2]; then his conditional expected payo¤ is

E2(f!3g ; F �1 ; x) = 3 � (
x

3
+
1

3
)� x = 1:

If he exerts x 2 [ 13 ; 1) or x 2 [0;
1
3 ]; correspondingly, his expected payo¤ is

E2(f!3g ; F �1 ; x) = 3 � (
x

2
+
1

6
)� x = x

2
+
1

2
< 1;

or

E2(f!3g ; F �1 ; x) = 3 � x� x = 2x < 1;
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and thus, conditional on the realization of !3; [1; 2] is the set of player 2�s pure strategy best responses to

F �1 : In particular, conditional on !3; F
�
2 (!3; �) is a mixed strategy best response to F �1 :

If !2 is the realized state, by exerting x 2 [ 13 ; 1] player 2 obtains the expected payo¤

E2(f!2g ; F �1 ; x) = 2 � (
x

2
+
1

6
)� x = 1

3
:

As before, it can be seen that all e¤ort levels outside [ 13 ; 1] lead to a lower expected payo¤, and thus conditional

on !2; F �2 (!2; �) is a mixed strategy best response to F �1 :

If !1 is the realized state, by exerting x 2 [0; 13 ] player 2, in expectation, obtains

E2(f!1g ; x) = 1 � x� x = 0;

while e¤ort levels outside [0; 13 ] lead to negative expected payo¤s. Thus, also conditional on !1; F
�
2 (!1; �)

is a mixed strategy best response to F �1 : We conclude that F
�
2 is a best response of player 2 also w.r.t.

the unconditional expected payo¤. Hence, the pair (F �1 ; F
�
2 ) is a mixed strategy equilibrium. The expected

payo¤ of player 2 is then

E2(F
�
1 ; F

�
2 ) =

1

3
(E2(f!1g ; F �1 ; F �2 ) + E2(f!2g ; F �1 ; F �2 ) + E2(f!3g ; F �1 ; F �2 )) =

4

9
:

In the next section, we characterize the players� mixed-strategy equilibrium in a general two-player

common-value all-pay auction with an IA, and prove its uniqueness.

4 Information advantage: Equilibrium analysis

We consider �rst the case of two players, where player 2 has an IA over player 1 (i.e., information partition �2

of player 1 is �ner than �1): This model will be called common-value all-pay auction with an IA. Let us write


 as an indexed sequence f!igni=1: It can be easily shown that as far as the equilibrium analysis is concerned,

the IA assumption can be reduced to the postulate that �1 = f
g and �2 = ff!1g; f!1g; :::; f!ngg:

Now, for each state of nature !i 2 
; denote

vi = v(!i) and pi = p(!i) > 0: (1)
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Assume that the possible values are positive and strictly ranked as

0 < v1 < v2 < ::: < vn: (2)

In what follows, we describe a mixed strategy equilibrium (F �1 ; F
�
2 ) of the all-pay auction with an IA.

Let x0 � 0; and

xi �
iX

j=1

pjvj (3)

for each i = 1; :::; n: Thus, x0 < x1 < ::: < xn: Consider a function F �1 on R+ given by

F �1 (x) =

8>>>>>><>>>>>>:
0; if x < 0;

x
vi
+
Pi�1

j=1 pj

h
1� vj

vi

i
; if x 2 [xi�1; xi] for i = 1; :::; n;

1; if x > xn:

(4)

It is easy to see that F �1 is well de�ned, strictly increasing on [x0; xn], and continuous. Moreover, F
�
1 (x0) = 0

and F �1 (xn) = 1. Thus, F �1 is a c.d.f. of a continuous probability distribution supported on the interval

[x0; xn] : (Such a distribution is obtained by assigning probability pi to each interval [xi�1; xi] ; randomly

choosing an interval, and then selecting a point w.r.t. the uniform distribution on the chosen interval). Being

that the function F �1 ; is state-independent, it can be viewed as a mixed strategy of the uninformed player 1.

Note next that

E2(f!ig; F �1 ; x) = viF
�
1 (x)� x (5)

= viF
�
1 (xi�1)� xi�1 = E2(f!ig; F �1 ; xi�1) (6)

for every x 2 [xi�1; xi], and i = 1; :::; n: Thus, given that !i was realized, the informed player 2 is indi¤erent

between all e¤orts in the interval [xi�1; xi] ; provided that his rival acts according to F �1 : Since the slopes of

the function viF �1 (x)� x are positive when x < xi�1 and negative when x > xi�1; the set of player 2�s pure

strategy best responses is the interval [xi�1; xi] :

Now, for each i = 1; :::; n; consider a function F �2 (!i; �) on R+ given by

F �2 (!i; x) =

8>>>>>><>>>>>>:
0; if x < xi�1;

x�
Pi�1

j=1 pjvj

pivi
; if x 2 [xi�1; xi] ;

1; if x > xi

: (7)
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Note that the function F �2 (!i; �) is well de�ned, strictly increasing on [xi�1; xi], continuous, F �2 (!i; xi�1) = 0

and F �2 (!i; xi) = 1. Thus, F
�
2 (!i; �) is a c.d.f. of a probability distribution supported on [xi�1; xi], and, in

particular, F �2 constitutes a mixed strategy of player 2. Moreover,

E1(x; F
�
2 ) =

i�1X
j=1

pjvj + piviF
�
2 (!i; x)� x = 0 (8)

for every x 2 [xi�1; xi] : Thus, player 1 is (in expectation) indi¤erent between all e¤orts in [x0; xn] (and is

obviously worse o¤ when e¤orts are outside [x0; xn]) provided his rival 2 acts according to F �2 : We conclude

that (F �1 ; F
�
2 ) is a mixed strategy equilibrium. It turns out that it is the only one:

Proposition 1 Mixed strategy equilibrium (F �1 ; F
�
2 ) described above is the unique equilibrium in G.

Proof. See Appendix.

Thus far, we have assumed that there are only two players. This entails no loss of generality in the

following sense. Suppose that there are N > 2 players, such that the players�information endowments are

ranked as follows: player 2 has an IA over player 1, and player 1 has an IA over or the same information

endowment as players 3; :::; N: Let (F �1 ; F
�
2 ) be the unique equilibrium in the contest between 1 and 2 (which

exists by Proposition 1 and footnote 4). We claim that in the contest between 1; 2; :::; N , strategy pro�le

(F �1 ; F
�
2 ; 0; 0; :::0) constitutes an equilibrium. That is, all but the two players with the best information

submit bids of zero which means that they are e¤ectively staying out of the contest, while players 1 and 2

behave as if they were engaged in a two-player contest. This will ensure that any N -player contest in which

information endowments are ranked possesses a reduction to the two-player case.

In order to see that (F �1 ; F
�
2 ; 0; 0; :::0) is an equilibrium, note �rst that players 1 and 2 have no incentive

to unilaterally deviate from their strategies in (F �1 ; F
�
2 ; 0; 0; :::0); since their payo¤s are identical to those in

a two-player contest where such deviations are not pro�table in expectation. Note next that if any of the

remaining players (say, player 3) had a pro�table deviation F3 from bid 0; we would have had

E3(F
�
1 ; F

�
2 ; F3; 0; :::; 0) > E3(F

�
1 ; F

�
2 ; 0; 0; :::; 0) = 0;

and hence

E3(F
�
1 ; F

�
2 ; F3; 0; :::; 0) > 0:
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Since player 1 has an IA over (or the same information as) player 3, F3 is also a Bayesian strategy of player

1. As F �1 is 1�s best response to (F
�
1 ; F

�
2 ; 0; 0; :::0), it follows that

E1(F
�
1 ; F

�
2 ; 0; 0; :::0) � E1(F3; F

�
2 ; 0; 0; :::; 0)

= E3(0; F
�
2 ; F3; 0; :::; 0)

� E3(F
�
1 ; F

�
2 ; F3; 0; :::; 0) > 0:

Thus

E1(F
�
1 ; F

�
2 ; 0; 0; :::0) > 0;

and in particular E1(F �1 ; F
�
2 ) > 0 in the two-player contest between 1 and 2. However, it follows from

(8), Proposition 1, and footnote 4 that the expected payo¤ to player 1 in the unique equilibrium is zero, a

contradiction. We conclude that players 3; ::; N cannot unilaterally deviate from bid 0 and make a pro�t,

and hence that (F �1 ; F
�
2 ; 0; 0; :::0) is an equilibrium of the N -player contest.

We have shown that the equilibrium strategies in a two-payer common-value all-pay auction are deter-

mined uniquely. From (8) it follows that the expected equilibrium payo¤ of player 1 is

E1(F
�
1 ; F

�
2 ) = 0: (9)

It follows also from (5)-(6) that player 2�s expected payo¤ is

E2(F
�
1 ; F

�
2 ) =

nX
i=1

pi(viF1 (xi�1)� xi�1) (10)

=
nX
i=1

pi(
i�1X
j=1

pj(vi � vj)):

The equilibrium strategies F �1 ; F
�
2 of the two players are quite di¤erent. Among other distinctions, F

�
2

is state-dependent, while F �1 is not. However, both players have the same ex-ante distribution of the e¤ort

they make. Indeed, for every i = 1; 2; ::::; n; and every x 2 [xi�1; xi] (where xi is given by (3)), the ex-ante

probability F2(x) that player 2 exerts an e¤ort that is smaller than or equal to x according to his strategy

F �2 is given by

F2(x) =
i�1X
j=1

pj + piF
�
2 (!i; x) =

i�1X
j=1

pj + pi �
x�

Pi�1
j=1 pjvj

pivi

=
x

vi
+

i�1X
j=1

pj

�
1� vj

vi

�
= F �1 (x) :

11



Thus, the ex-ante distribution of equilibrium e¤ort is identical for both players. This fact leads to the

following proposition.

Proposition 2 In the unique equilibrium (F �1 ; F
�
2 ) of every two-player common-value all-pay auction with

an IA

(i) each player has (ex-ante) probability 1
2 to win;

and

(ii) both players exert the same expected e¤ort

nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A :
Proof. It was shown above that the players have ex-ante identical (and, obviously, independent) distrib-

utions of e¤orts, and hence, as claimed in (i), each wins the contest with the same probability. It also follows

that the expected e¤orts of both players are equal. Calculating the expected payo¤ for player 1 (using (4))

leads to the formula claimed in (ii):

EE1 =

Z xn

x0

xdF �1 (x) =
nX
i=1

Z xi

xi�1

x

vi
dx =

nX
i=1

x2i � x2i�1
2vi

=
nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A :
Q:E:D:

According to Proposition 2, the asymmetry in information does not a¤ect the ratio of the two players�

expected e¤orts, as the expected e¤orts are equal. However, the asymmetric information does a¤ect the

players�expected total e¤ort.

4.1 Comparative results

We have just shown that the expected payo¤ of player 1, over whom player 2 has an IA, is zero in equilibrium.

We will now examine how the extent of IA a¤ects the expected payo¤ of player 2. Assume, as before, that

�1 = f
g and �2 = ff!1g; f!1g; :::; f!ngg: Also consider an additional player 2�with an "intermediate"

connected information partition �02; which is a strict coarsening of �2 and a strict re�nement of �1: Then

we have the following comparative result.
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Proposition 3 In a two-player common-value all-pay auction with an IA, the expected payo¤ of player 2

(when he competes against player 1) is higher than the expected payo¤ of player 2�(when he competes against

player 1).

Proof. By (10), the expected payo¤of player 2, when he competes against player 1, is given in equilibrium

by

E2 =
nX
i=1

pi(
i�1X
k=1

pk(vi � vk)):

Regarding player 2�, assume �rst that �02 is di¤erent from �2 only in that player 2�cannot distinguish between

the states !j and !j+1; for some 1 � j < n: Thus, �02 = ff!1g; f!2g; :::f!j�1g; f!j ; !j+1g; f!j+2g; :::f!ngg:

The auction in which player 2�competes against player 1 is amenable to our previous analysis, but with a

minor modi�cation: the set of states of nature must be rede�ned as 
0 = (
nf!j ; !j+1g) [ f!j;j+1g; where

the new state !j;j+1 is the amalgamation of !j and !j+1; occurring with probability pj;j+1 = pj + pj+1 and

having the common value of vj;j+1 =
pj

pj+pj+1
vj +

pj+1
pj+pj+1

vj+1: In this modi�ed contest (payo¤-equivalent to

the original), player 1 has the trivial information, while player 2�has the �nest possible information partition.

Applying (10) to this contest, the expected payo¤ of player 2 is equilibrium is given by

E02 =

j�1X
i=1

pi(
i�1X
k=1

pj(vi � vj))

+pj;j+1

j�1X
k=1

pk(vj;j+1 � vk)

+
nX

i=j+2

pi(
X

k�i�1;k 6=j;k 6=j+1
pk(vi � vk) + pj;j+1(vi � vj;j+1)):

Then we have

E2 � E02 = pjpj+1(vj+1 � vj) +
nX

i=j+2

pi(

j+1X
k=j

pk(vi � vk)� pj;j+1(vi � vj;j+1)):

Since pjpj+1(vj+1�vj) > 0 and
nX

i=j+2

pi(
Pj+1

k=j pk(vi�vk)�pj;j+1(vi�vj;j+1)) = 0 we obtain that E2�E02 > 0:

We have thus shown that player 2�obtains in expectation less than player 2 (when competing against 1

in a two-player auction) if �02 is a connected partition which is a strict coarsening of �2 with j�02j = j�2j�1:

Inductively, the claim can be extended to any connected partition �02 with j�02j < n: Q:E:D:

The next result shows that there is an opposite relation between the players�total expected payo¤ and

their total expected e¤ort.
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Proposition 4 In a two-player common-value all-pay auction with an IA, the expected total e¤ort when

player 2 competes against player 1 is lower than the expected total e¤ort when player 2� competes against

player 1.

Proof. In every common-value all-pay auction, the relation between the players�expected total e¤ort

and their expected total payo¤ is

Expected total e¤ort = Expected reward � Expected total payo¤

Since the expected payo¤ of player 1 when he competes against player 2 or against 2�is zero (see (9)), in

both auctions

Expected total e¤ort = Expected reward� Expected payo¤ of player 2 (or, 2�)

By Proposition 3, the expected payo¤ of player 2 is higher than that of player 2�(when competing against

player 1): On the other hand, both contests clearly have the same expected reward, E(v). Thus, the expected

total e¤ort when player 2 competes against player 1 is lower than when player 2�competes against player 1.

Q:E:D:

The above propositions demonstrate that increasing asymmetry between players in a two-player common-

value all-pay auction with an IA has a positive e¤ect on the expected payo¤ of the player with an IA, and a

negative e¤ect on the expected total e¤ort.

5 No information advantage: Example 2

We now illustrate by a simple example the behavior of players in our model when no player possesses

IA. Consider a common-value all-pay auction with two players, and assume that there are three states

of nature. For i = 1; 2; 3; state !i occurs with probability pi = 1
3 and the value for the prize in !i is

v(!i) = i: Player 1�s information partition is �1 = ff!1g; f!2; !3gg ; while player 2�s information partition

is �2 = ff!1; !2g; f!3gg:

It can be easily veri�ed that the corresponding common-value all-pay auction does not have an equilibrium

in pure strategies. However, there does exist a mixed strategy equilibrium. In this equilibrium, player 1�s

mixed strategy F ��1 is a state-dependent c.d.f. given by
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F ��1 (f!1g; x) =

8>>>>>><>>>>>>:
0; if x < 0;

2x; if 0 � x � 1
2 ;

1; if x > 1
2

and

F ��1 (f!2; !3g; x) =

8>>>>>>>>>><>>>>>>>>>>:

0; if x < 1
2 ;

x� 1
2 , if 12 � x � 1;

x
3 +

1
6 ; if 1 < x � 5

2 ;

1; if x > 5
2 :

Player 2�s mixed strategy F ��2 is a state-dependent c.d.f. given by

F ��2 (f!1; !2g; x) =

8>>>>>><>>>>>>:
0; if x < 0;

x; if 0 � x � 1;

1; if x > 1

and

F ��2 (f!3g; x) =

8>>>>>><>>>>>>:
0; if x < 1;

2
3x�

2
3 ; if 1 � x � 5

2 ;

1; if x > 5
2 :

In order to see that the above strategies are an equilibrium, note that when player 2 uses mixed strategy

F ��2 , player 1�s expected payo¤ conditional on the event f!1g is

E1(f!1g; x; F ��2 ) = 1 � x� x = 0

for any e¤ort x 2 [0; 12 ]. It is easy to see that e¤orts above
1
2 would result in a non-positive conditional

expected payo¤ to player 1. Thus, any e¤ort in [0; 12 ] is a best response of player 1 to F
��
2 conditional on

f!1g. Furthermore, player 1�s expected payo¤ conditional on the event f!2; !3g is as follows: when 1 exerts

e¤ort x 2 (1; 52 ];

E1(f!2; !3g; x; F ��2 ) =
1

2
� 2 + 1

2
� 3 � (2

3
x� 2

3
)� x = 0;

and when 1 exerts e¤ort x 2 [ 12 ; 1],

E1(f!2; !3g; x; F ��2 ) =
1

2
� 2 � x� x = 0:

15



It is easy to see that exerting e¤orts below 1
2 or above

5
2 would lead to non-positive conditional expected

payo¤s, and thus any e¤ort in [ 12 ;
5
2 ] is a best response of player 1 to F

��
2 conditional on f!2; !3g. Thus the

mixed strategy F ��1 (supported on [0; 12 ] given f!1g and on [
1
2 ;

5
2 ] given f!2; !3g) is an (unconditional) best

response of player 1 to F ��2 .

Similarly, when payer 1 uses mixed strategy F ��1 , player 2�s expected payo¤ conditional on the event

f!1; !2g payo¤ is as follows: when 2 exerts e¤ort x 2 ( 12 ; 1];

E2(f!1; !2g ; F ��1 ; x) =
1

2
+
1

2
� 2 � (x� 1

2
)� x = 0;

and when 1 exerts e¤ort x 2 [0; 12 ];

E2(f!1; !2g ; F ��1 ; x) =
1

2
� 1 � 2x� x = 0:

It is easy to see that any e¤ort above 1 would result in a negative expected payo¤. Also, conditional on the

event f!3g ; the expected payo¤ of player 2 when he exerts e¤ort x 2 [1; 52 ] is

E2(f!3g ; x); F ��1 ; x) = 3 � (
x

3
+
1

6
)� x = 1

2
:

Any e¤ort above 5
2 or below 1 would lead to a conditional expected payo¤ smaller than

1
2 . Thus the mixed

strategy F ��2 (supported on [0; 1] given f!1; !2g and on [1; 52 ] given f!3g) is an (unconditional) best response

of player 2 to F ��1 .

Hence, the pair F �� = (F ��1 ; F
��
2 ) is a mixed strategy equilibrium. The expected payo¤ of the players in

F �� are

E1(F
��
1 ; F

��
2 ) = 0;

E2(F
��
1 ; F

��
2 ) =

1

3
� 1
2
=
1

6
:

The ex-ante probability of player 2 to win is given by

P2 =
1

3
[

Z 1
2

0

�Z x

0

2ds

�
1dx+

Z 1

1
2

1dx]

+
1

3

Z 1

1
2

 Z x

1
2

1ds

!
1dx

+
1

3
[

Z 5
2

1

�Z x

1

1

3
ds

�
2

3
dx+

Z 1

1
2

1ds]

=
13

24
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Thus, the ex-ante probabilities of players 1 and 2 to win di¤er from 1
2 (they are

11
24 and

13
24 , respectively),

and thus part (i) of Proposition 2 does not apply to common-value all-pay auctions without an IA.

In the next section we will present a su¢ cient condition for the existence of a mixed-strategy equilibrium,

and describe the monotonic equilibrium strategies in a general two-player common-value all-pay auction

without an IA.

6 No information advantage: Equilibrium analysis

We assume that players 1 and 2 have the following information partitions of 
 = f!1; !2; :::; !ng (where

n > 1 is an odd number):

�1 = ff!1g; f!2; !3g; f!4; !5g; :::; f!n�1; !ngg (11)

�2 = ff!1; !2g; f!3; !4g; :::; f!n�2; !n�1g; f!ngg

We will use throughout notation (1) and assumption (2) of section 4.

Before we describe equilibrium strategies of the players, it is important to emphasize that the all-pay

auction with the above information structure (which will be referred to as a common-value all-pay auction

without an IA), is strategically equivalent to a large family of all-pay auctions with more general information

partitions. For this purpose we make the following de�nition:

De�nition 1 Partitions �1 and �2 are overlapping if for any �1 2 �1 and �2 2 �2 the following holds:

!1; !n =2 �1 =) �1 * �2

!1; !n =2 �2 =) �2 * �1

This feature means that except in the extreme states of nature (containing the lowest and the highest

values of winning), after observing their own signals neither player has an IA over his opponent. It can

then be shown (see Malueg and Orzach (2009)) that every common-value all-pay auction with information

partitions �i; i = 1; 2 which are connected and overlapping, is strategically equivalent to a common-value

17



all-pay auction with information partitions given by (11).8

In order to describe equilibrium strategies we introduce the following notations. Denote

�i �

8>>>>>><>>>>>>:
f!i; !i+1g; if i = 1; 2; :::; n� 1;

f!1g; if i = 0;

f!ng; if i = n:

Thus, �1 consists of the sets �i for every even integer 0 � i � n� 1; and �2 consists of the sets �i for every

odd integer 1 � i � n: Also, for every i = 1; :::; n� 1; let

pi;i+1 � p(!i j �i) (=
pi

pi + pi+1
)

and

pi+1;i � 1� pi;i+1

be the conditional probabilities of the states !i and !i+1 given the event �i: Additionally, set

pn;n+1 = p1;0 � 1; pn+1;n = p0;1 � 0:

In what follows, we describe a mixed strategy equilibrium (F ��1 ; F
��
2 ) of the all-pay auction. Let x0 = 0;

and for every i = 1; 2:::; n set

xi �
iX

j=1

pj;j�1pj;j+1vj :

Given �0 = f!1g; player 1�s mixed strategy is

F ��1
�
�0; x

�
=

8>>>>>><>>>>>>:
0; if x < 0;

x
p1;2v1

; if 0 � x � x1;

1; if x > x1:

(12)

Note that the function F ��1
�
�0; �

�
is well de�ned, strictly increasing on [x0; x1], continuous, F ��1

�
�0; x0

�
= 0

and F ��1
�
�0; x1

�
= 1. Thus, F ��1

�
�0; �

�
is a c.d.f. of a continuous probability distribution supported on

[x0; x1].

8Malueg and Orzach (2009) provided other examples depicting environments that can be transformed into the setting

analyzed in this paper.
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For i = 1; 2; :::; n� 1; given �i = f!i; !i+1g and assuming that �i 2 �j for player j, the mixed strategy

of player j is

F ��j
�
�i; x

�
=

8>>>>>>>>>><>>>>>>>>>>:

0; if x < xi�1;

x�xi�1
pi;i�1vi

; if xi�1 � x � xi;

x+pi+1;i+2vi+1�xi+1
pi+1;i+2vi+1

; if xi < x � xi+1;

1; if x > xi+1:

(13)

The function F �j
�
�i; �

�
is well de�ned, strictly increasing on [xi�1; xi+1], continuous, F ��j

�
�i; xi�1

�
= 0,

F ��j
�
�i; xi+1

�
= 1 and F ��j

�
�i; xi

�
= pi;i+1. Thus, F ��j

�
�i; �

�
is a c.d.f. of a continuous probability

distribution supported on [xi�1; xi+1].

Finally, given �n = f!ng; player 2�s mixed strategy is

F ��2 (�
n; x) =

8>>>>>><>>>>>>:
0; if x < xn�1;

x�xn�1
pn;n�1vn

; if xn�1 � x � xn;

1; if x > xn .

(14)

The function F ��2 (�n; �) is well de�ned, strictly increasing on [xn�1; xn], continuous, F ��2 (�n; xn�1) = 0 and

F ��2 (�n; xn) = 1. Thus, F ��2 (�n; �) is a c.d.f. of a probability distribution supported on [xn�1; xn].

Proposition 5 Suppose that

pi+1;i+2vi+1 � vi � 0 for every i = 1; 2; :::; n� 1: (15)

Then strategy pro�le F �� = (F ��1 ; F
��
2 ) described in (12), (13), and (14) is a mixed strategy equilibrium of

G:9

Proof. See Appendix.

6.1 No information advantage: other results

In this subsection we derive some comparative results about the players� expected payo¤s and e¤orts in

equilibrium F �� (described in (12), (13), and (14) in section 6).
9Note that (15) can be assumed to hold only for i = 1; 2; :::; n � 2: As for i = n � 1; the inequality pn;n+1vn � vn�1

= vn � vn�1 > 0 holds trivially by (2).
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The proof of Proposition 5 (given in the Appendix) provides an explicit formula for expected equilibrium

payo¤s of the players conditional on each event �i; for i = 0; :::; n: If j is the player for whom �i 2 �j ; it

follows from (27), (28), and (29) that10

Ej(�
i; F ��) =

i�1X
k=1

pk;k+1(pk+1;k+2vk+1 � vk); (16)

when the sum in (16) is de�ned as 0 if i � 1: This yields the following immediate result that compares the

players�conditional expected payo¤s.

Proposition 6 Under condition (15), for every i = 1; :::; n; and player j such that �i 2 �j,11

Ej(�
i; F ��)� E�j(�i�1; F ��) = pi�1;i(pi;i+1vi � vi�1) � 0:

It follows, in particular, that the expected payo¤ of each player j, conditional on �i 2 �j ; is increasing in i:

E1(�
0; F ��) � E1(�2; F ��) � ::: � E1(�n�1; F ��)

and

E2(�
1; F ��) � E2(�3; F ��) � ::: � E2(�n; F ��):

Furthermore, for every i = 2; 4; :::; n� 112

E1(�1(!i); F
��) � E2(�2(!i); F ��)

and for every i = 1; 3; :::; n

E1(�1(!i); F
��) � E2(�2(!i); F ��):

The next result shows that although the players are asymmetrically informed (i.e., have di¤erent infor-

mation partitions), their ex-ante distributions of equilibrium e¤ort are identical.

Proposition 7 In equilibrium F ��, the expected e¤orts of both players are the same:

10We additionally use the fact that, by de�nition, F ��j
�
�i; �

�
is supported on [xi�1; xi+1] if 1 � i � n � 1 and �i 2 �j ;

F ��1
�
�0; �

�
is supported on [x0; x1]; and F ��2 (�n; �) is supported on [xn�1; xn]:

11As in the proof of Proposition 5, we use the convention that when i = 1; vi�1 = v0 is de�ned as 0.
12Recall that �j(!i) 2 �j denotes the element of �j that contains !i:
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Proof. We will show that both players have the same ex-ante distribution of e¤ort in equilibrium. This

will imply that the expected e¤orts of both players are equal.

Let xi�1 � x � xi; for i = 2; :::; n � 1; and let j be the player for whom �i 2 �j . Then the ex-ante

probability that player j exerts an e¤ort smaller than or equal to x is

F
��
j (x) =

i�1X
k=1

pk + (pi + pi+1)F
��
j

�
�i; x

�
(17)

=
i�1X
k=1

pk + (pi + pi+1)
x� xi�1
pi;i�1vi

=
i�1X
k=1

pk +
(pi + pi+1)(pi + pi�1)(x� xi�1)

pivi
:

The ex-ante probability that j�s rival, player �j, exerts an e¤ort smaller than or equal to x is then

F
��
�j(x) =

i�2X
k=1

pk + (pi�1 + pi)F
��
�j
�
�i�1; x

�
(18)

=

i�2X
k=1

pk + (pi�1 + pi)
x+ pi;i+1vi � xi

pi;i+1vi

=
i�1X
k=1

pk +
(pi + pi+1)(pi + pi�1)(x� xi�1)

pivi

= F
��
j (x):

With the convention that
Pi�2

k=1 pk =
Pi�1

k=1 pk = 0 when i < 2 and that p0 = pn+1 = 0; (17) and (18) also

hold for i = 1 and i = n:

Since we showed that F
��
1 (x) = F

��
2 (x) for every x 2 [0; xn] ; and since obviously F

��
1 (x) = F

��
2 (x) = 1

for x > xn; the ex-ante distributions of e¤ort in equilibrium F �� are identical for both players.

7 Concluding remarks

In models with asymmetric information, di¤erences in players�information usually result in di¤erent equilib-

rium strategies, probabilities of winning, and expected payo¤s. In this model we show that when the players�

information endowments can be ranked, with one player having an IA over his opponent, the ex-ante dis-

tributions of players e¤orts, as well as their ex-ante probabilities of winning the contest, are the same in

equilibrium. The di¤erence in information only manifested itself in the di¤erent expected payo¤s.
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In the model without an IA, we show that equilibrium e¤orts still have the same distribution for all

players, and thus the expected e¤orts of all players are equal, but their probabilities of winning may di¤er.

We also show that the conditional expected payo¤s of the players increase in the expected value of winning

(as conveyed by the revealed information).

In the model with an IA we also observe that the player with better information has a positive expected

payo¤ while his opponent�s expected payo¤ is zero, and that the highest expected total e¤ort is obtained

when the di¤erence in the players�information is as small as possible. Thus, a contest designer who wishes

to maximize the expected total e¤ort has an incentive to reduce the di¤erence in information between the

players.

Our results are established under the postulate that the information set of each player is connected with

respect to the value of winning the contest. This, and the assumption that di¤erent information endowments

can be ranked (the IA case), are found to be su¢ cient for the existence of a unique equilibrium. When the

di¤erent information endowments cannot be ranked (the no IA case) we present a su¢ cient condition for the

existence of the equilibrium.

Our results yield the conclusion that in common-value all-pay auctions the players�information does not

a¤ect the ratio of the players�expected e¤orts. Moreover, in the IA model, the players� information does

not a¤ect their probabilities of winning the contest. It is interesting to note that this property does not

hold for other forms of contests such as Tullock contests under the IA assumption (see Einy et al. 2013 and

Warneryd (2003, 2012)).

8 Appendix

Proof of Proposition 1

Fix an equilibrium (F1; F2) in the auction G. We will prove that (F1; F2) = (F �1 ; F
�
2 ):

In what follows, for k = 1; 2 and ! 2 
; Fk (!; �) will be treated either as a probability distribution on

R+; or as the corresponding c.d.f., depending on the context. Also, as F1 is state-independent, F1 (!; �) will

be shortened to F1 (�) ; whenever convenient.
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Notice that Fk (�; fcg) � 0 for any e¤ort c > 0 and k = 1; 2: Indeed, if Fk (!; fcg) > 0 for some k and !;

then Fm (!0; (c� "; c]) = 0 for the other player m and every !0 2 
; and some su¢ ciently small " > 0: But

then k would be strictly better o¤ by shifting the probability from c to c� "
2 , a contradiction to Fk being an

equilibrium strategy. Thus, F1 (�) ; F2 (!; �) are non-atomic on (0;1) for every ! 2 
: Notice also that there

is no interval (a; b) � (0;1) on which in some state of nature only one player places positive probability

according to his equilibrium strategy. Indeed, otherwise there would exist a0 > a such that only one player

places positive probability on (a0; b), and it would then be pro�table for that player to deviate (in at least

one state of nature, if this is the informed player 2) by shifting positive probability from (a0; b) to a0.

Suppose now that there is a bounded interval (a; b) � (0;1) such that F1 ((a; b)) = 0 (and thus

F2 (!; (a; b)) = 0 for every ! 2 
; by the previous paragraph), but F1([0; a]) > 0 and F1 ([b;1)) > 0.

By extending this interval if necessary, it can also be assumed that (a; b) is maximal with respect to this

property, i.e., that F1([max(a � "; 0); a]) > 0 and F1 ([b; b+ "]) > 0 for every small enough " > 0: However,

using the fact that F2 (!; �) is non-atomic on (0;1) for every ! 2 
; the expected payo¤ of player 1 at a+b
2

is strictly bigger than his payo¤ for any e¤ort in [b; b + "], if " > 0 is small enough: This contradicts the

assumption that F1 ([b; b+ "]) > 0. This contradiction shows that there exists no interval (a; b) as above,

meaning that F1 (�) must have full support on some closed interval. Denote this interval13 by [c; d] : Notice

also that, for every ! 2 
; F2 (!; �) must be supported on the interval [c; d] (though there need not be full

support), since otherwise there would be an interval where only player 2 places positive probability, and this

was ruled out.

Note next that c = 0: Indeed, if c > 0 then F2 (�; fcg) � 0, and thus player 1 has a negative expected

payo¤ for e¤orts in [c; c+ "] for all small enough " > 0 (because with e¤orts in [c; c+ "] he loses the contest

almost for sure while expending positive e¤ort of at least c). He would then pro�tably deviate from F1 by

shifting the probability from [c; c + "] to e¤ort 0. Thus, indeed, c = 0: Note also that the interval [0; d] is

non-degenerate, i.e., 0 < d; since otherwise the equilibrium strategies would prescribe the constant e¤ort 0,

and it is clear that each player would have a pro�table unilateral deviation to some " > 0:

Given i; i = 1; :::; n, we will now show that F2 (!i; �) has full support on a (possibly degenerate) subinterval
13The interval must be bounded as no e¤orts above vn will be made in equilibrium, due to the associated negative payo¤.
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of [0; d]. Indeed, if not, there would exist an open subinterval (a; b) � [0; d] such that F2 (!i; (a; b)) = 0, but

F2 (!i; [0; a]) > 0 and F2 (!i; [b; d]) > 0: Since F1 ((a; b)) > 0, there must be j 6= i such that F2 (!j ; (a; b)) =

0 > 0: Assume that i < j (the opposite case is treated similarly). Then there are x 2 [b; d] and y 2 (a; b)

such that

viF
1(x)� x = E2

�
f!ig ; F 1; x

�
(19)

� E2
�
f!ig ; F 1; y

�
= viF

1(y)� y (20)

and

vjF
1(x)� x = E2

�
f!jg ; F 1; x

�
(21)

� E2
�
f!jg ; F 1; y

�
= vjF

1(y)� y: (22)

But x > y; and therefore

(vj � vi)F 1(x) > (vj � vi)F 1(y) (23)

since vi < vj and the c.d.f. F 1 is strictly increasing on [0; d]: Adding (23) to the inequality in (19)-(20)

contradicts the inequality obtained in (21)-(22), and therefore no such (a; b) exists. Consequently, each

F2 (!i; �) has full support on some subinterval14 [ai; bi] of [0; d]:Moreover, if i < j then [ai; bi] lies below [aj ; bj ]

(barring boundary points), since otherwise it would have been possible to �nd x > y; where x 2 [ai; bi] and

y 2 [aj ; bj ]; such that inequalities (19)-(20) and (21)-(22) hold. As above, this would lead to a contradiction

via (23).

Thus, the intervals f[ai; bi]gni=1 are disjoint (barring boundary points), and "ordered" according to the

index i on the interval [0; d]: Moreover, [ni=1 [ai; bi] = [0; d]; since otherwise there would be a "gap" (a; b)

on which only player 1 places positive probability, which is impossible as we have seen earlier. It follows

that there are points 0 = x0 � x1 � ::: < xn � d such that [ai; bi] = [xi�1; xi] for every i = 1; 2; :::; n; i.e.,

F 1 (�) has full support on [0; xn]; and, for i = 1; :::; n; F2 (!i; �) has full support on [xi�1; xi]: Denote by i0

the smallest integer with xi0 > 0:
15

Since F 1 (�) has full support on [0; xn] and F2 (!; �) has no atoms (except possibly at 0); player 1 is

indi¤erent between any two e¤orts in (0; xn]. Thus, the following equality must hold for every i = i0; :::; n
14All these subintervals are either non-degenerate (of positive length), or f0g ; as only the latter can be an atom of F2 (!i; �) :
15Since each interval [xi�1; xi] is either non-degenerate or f0g, 0 = x0 = ::: = xi0�1 < xi0 < ::: < xn:
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and every positive x 2 [xi�1; xi] :

i�1X
j=1

pjvj + piviF2(!i; x)� x = E1(x; F2) = lim
y&0

E1(y; F2) � e1 � 0:

In particular,

F2(!i; x) =
x�

Pi�1
j=1 pjvj + e1

pivi
(24)

for every i = i0; :::; n and every positive x 2 [xi�1; xi]: Since F2 (!i; �) is supported on [xi�1; xi]; we have

F2(!i; xi) = 1; and thus

xi =
iX

j=1

pjvj � e1 (25)

for every i = i0; :::; n:

Since, for i = i0; :::; n; F2 (!i; �) has full support on [xi�1; xi] and F1 (�) has no atoms (except, possibly,

at 0); player 2 is indi¤erent between all positive e¤orts in [xi�1; xi]. Thus, the following equality must hold

for every positive x 2 [xi�1; xi] :

viF1 (x)� x = E2(f!ig; F1; x)

= E2(f!ig; F1; xi) = viF1 (xi)� xi:

In particular,

F1 (x) =
x

vi
+ F1 (xi)�

xi
vi
;

and using the fact that F1 (xn) = 1 and (25); we obtain

F1 (x) =
x+ e1
vi

+
i�1X
j=1

pj

�
1� vj

vi

�
(26)

for every i = i0; :::; n; and every positive x 2 [xi�1; xi]:

If e1 > 0; it follows from (26) that F1 (�) has an atom at e¤ort 0. Then, obviously F2(!i; �) cannot

have an atom at 0, for any i, since otherwise each player would have a pro�table unilateral deviation that

shifts the probability from zero to an e¤ort slightly above zero. In particular, all intervals f[xi�1; xi]gni=1 are

non-degenerate, i.e., i0 = 1: But then, by (24), F2(!1; �) has an atom at 0; a contradiction. We conclude

that e1 = 0:
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If i0 > 1; xi0�1 = 0, and thus (24) should hold for i = i0 and any su¢ ciently small x. But then, if

x < p1v1

F2(!i0 ; x) =
x�

Pi0�1
j=1 pjvj

pi0vi0
� x� p1v1

pi0vi0
< 0;

and thus F2(!i0 ; x) is not a c.d.f., a contradiction. Consequently, i0 = 1:

It now follows from (25), (24), and (26) that

xi =
iX

j=1

pjvj

for every i = 1; :::; n; that

F1 (x) =
x

vi
+

i�1X
j=1

pj

�
1� vj

vi

�
for every i = 1; :::; n and every x 2 [xi�1; xi]; and that

F2(!i; x) =
x�

Pi�1
j=1 pjvj

pivi

for every i = 1; :::; n and positive x 2 [xi�1; xi]: Thus, (F1; F2) coincides with (F �1 ; F �2 ) as described in (4)

and (7). Q.E.D.

Proof of Proposition 5

For any i = 0; :::; n consider the player j for whom �i 2 �j ; and assume that j�s rival (denoted �j) uses

the strategy F ���j : The expected payo¤ of player j conditional on the event �
i is given as follows. If 1 �

i � n; and j exerts e¤ort x 2 [xi�1; xi]; then

Ej(�
i; x; F ���j) = (27)

= pi;i+1viF
��
�j
�
�i�1; x

�
� x

= pi;i+1vi
x+ pi;i+1vi � xi

pi;i+1vi
� x

= pi;i+1vi � xi:
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If 1 � i � n� 1 and j exerts e¤ort x 2 [xi; xi+1]; then

Ej(�
i; x; F ���j) = (28)

= pi;i+1vi + p
i+1;ivi+1F

��
�j
�
�i+1; x

�
� x

= pi;i+1vi + p
i+1;ivi+1

x� xi
pi+1;ivi+1

� x

= pi;i+1vi � xi:

Now set v0 = 0: Then (28) applies also when i = 0 (in which case j = 1), i.e. (28) holds for every 0 � i � n�1:

Equalities (27) and (28) establish the following fact:

Fact 1. When player j�s opponent uses F ���j ; player j is: (i) indi¤erent between all e¤orts in [xi�1; xi+1]

given the event �i 2 �j for 1 � i � n� 1; (ii) indi¤erent between all e¤orts in [x0; x1] given �0 (if j is player

1); (iii) indi¤erent between all e¤orts in [xn�1; xn] given �n (if j is player 2):

It can be shown by induction on i that, for i = 2; 3; :::; n;

pi;i+1vi � xi =
i�1X
k=1

pk;k+1(pk+1;k+2vk+1 � vk) � 0: (29)

The expression in (29) is non-negative as every summand in
Pi�1

k=1 p
k;k+1(pk+1;k+2vk+1�vk) is non-negative

by assumption (15). When i = 0 or i = 1; equality (29) remains meaningful if the sum is de�ned as 0. It

then follows from (29) and (27), (28) that:

Fact 2. The conditional expected payo¤s of player j considered in (27) and (28) are non-negative for

the corresponding e¤orts.

Next consider �i 2 �j ; for some 0 � i � n � 2 and player j: Notice that, given the event �i; if

y 2 [xi+1; xi+2] then

Ej(�
i; y; F ���j) = pi;i+1vi + p

i+1;ivi+1F
��
�j
�
�i+1; y

�
� y (30)

= pi;i+1vi + p
i+1;ivi+1

y + pi+2;i+3vi+2 � xi+2
pi+2;i+3vi+2

� y

� pi;i+1vi + p
i+1;ivi+1

xi+1 + p
i+2;i+3vi+2 � xi+2
pi+2;i+3vi+2

� xi+1

= pi;i+1vi + p
i+1;ivi+1

xi+1 � xi
pi+1;ivi+1

� xi+1

= pi;i+1vi � xi = Ej(�i; xi; F ���j):
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The inequality in (30) holds since, by (15), pi+2;i+3vi+2 > pi+1;ivi+1; and the last equality in (30) holds by

(28). Since obviously, if y > xi+2 and i � n� 2;

Ej(�
i; y; F ���j) � Ej(�i; xi+2; F ���j) (31)

and, if y > xn;

E1(�
n�1; y; F ��2 ) � E1(�

n�1; xn; F
��
2 ) = E1(�

n�1; xn�1; F
��
2 ); (32)

E2(�
n; y; F ��1 ) � E2(�

n; xn; F
��
1 )

Then (31), (32) and (30) establish the following:

Fact 3. When player j�s rival uses F ���j ; player j (weakly) prefers e¤ort xi to any e¤ort above xmin(i+1;n);

given the event �i 2 �j for 0 � i � n:

Now consider �i 2 �j ; for some 2 � i � n and player j. Given the event �i; if y 2 [xi�2; xi�1] then

Ej(�
i; y; F ���j) = (33)

= pi;i+1viF
��
�j
�
�i�1; y

�
� y

= pi;i+1vi
y � xi�2

pi�1;i�2vi�1
� y

� pi;i+1vi
xi�1 � xi�2
pi�1;i�2vi�1

� xi�1

= pi;i+1vi � xi = Ej(�i; xi; F ���j):

The inequality in (33) holds since by (15) pi;i+1vi � pi�1;i�2vi�1; and the last equality in (33) holds by (27).

Note also that when i � 2 and 0 � y � xi�2,

Ej(�
i; y; F ���j) � 0: (34)

Then (33), (34), and Fact 2 lead to the following:

Fact 4. When player j�s rival uses F ���j ; player j (weakly) prefers e¤ort xi to any e¤ort below xi�1; given

the event �i 2 �j for 2 � i � n:

Facts 1, 3, and 4 show that for any 0 � i � n; conditional on the event �i 2 �j ; any e¤ort in the support

of F ��j
�
�i; �

�
is a best response of player j against the mixed strategy F ���j of his rival. Thus F

��
j is also an

unconditional best response of player j, which means that F �� is indeed an equilibrium of G. Q.E.D.
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