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Abstract

The literature on agglomeration has focused largely on primary agglomeration caused by di-
rect attraction effects. Here we focus on secondary and tertiary agglomerations caused by a
primary agglomeration. Initially, scale economies in the provision of club goods (CGs) lead
each CG to agglomerate in facilities of a club. This primary agglomeration causes a secondary
concentration of population around these facilities, which in turn brings about a tertiary ag-
glomeration of facilities of different clubs into centers. The agglomeration of facilities occurs
only if a secondary concentration of population takes place. We analyze in detail two specific
patterns of agglomeration. One is the central location pattern in which the facilities of all clubs
agglomerate perfectly in the middle of their joint market area. The second is a triple-centered
complex in which the center in the middle of the complex consists of perfectly agglomerated
facilities of different clubs, each with a single facility per complex. The other two sub-centers
consist of facilities of different clubs, each with two facilities per complex. These sub-centers are
closer to the middle of the complex than to the boundaries and their facilities form condensed
clusters of facilities that may contain residential land in between the facilities.

Keywords: agglomeration, clubs, complex, collective goods, local public goods, indirect at-
traction.

JEL Classification: R1, H4.
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1. Introduction

The purpose of this paper is threefold: the first is to introduce an optimization model of an
economy with spatial clubs, the second is to identify those forces in the economy that lead to the
agglomeration of facilities of various clubs into multi-club centers and the last is to characterize
these centers.

To facilitate the exposition we first introduce some terminology related to the theory of
spatial clubs. A spatial club consists of facilities spread throughout the economy, each of which
contains a concentration of the good provided by the club. A club-good (CG) is a good or
service provided by each of the club facilities to their patrons. The provision of a CG by its
club’s facility is subject to scale economies. The patrons of a facility are a group of households
who jointly consume the CG provided by the facility and are distinct from patrons of other
facilities of the same club. In order to consume a particular CG a household has to commute to
one of the facilities of the spatial club that provides this good. The market area of a facility is
the area of residency of the facility’s patrons.

Many local public goods are CGs as are many private consumption goods and services whose
provision is subject to scale economies and therefore are provided collectively by spatial clubs.
Real-life clubs such as country clubs, parks, museums, churches, etc. are also relevant to our
model. In addition other institutions, not necessarily known as clubs, satisfy our specifications,
for example, schools, police stations, theater and movie halls, restaurants, government offices,
courthouses, shops and stores, and many more.. Notable among these various clubs is the
‘production club’ whose facilities include industrial areas and employment centers.
Three main reasons are typically offered to explain why both residential and non-residential

activities agglomerate. One is reciprocal informational exchange, the second is increasing returns
to scale and the last is spatial competition (see Fujita and Thisse (1996) for a comprehensive
survey and Fujita and Thisse (2002) for recent theories on agglomeration). Most of these ex-
planations are based on direct attraction forces such as the mutual attraction of units of an
industry because their activity is enhanced when located close to each other.

In this paper, the primary agglomeration of CGs into facilities, is, similarly to other studies, a
result of a direct attraction between units of a CG whose provision is subject to scale economies.
Each CG agglomerates into its own facilities in order to provide the CG to households throughout
the economy. We focus here, however, mainly on the secondary agglomerations of population
around facilities and on the tertiary agglomerations of facilities of different clubs in centers in
the midst of population concentrations.

The primary agglomeration of a CG in facilities attracts households to locate close
to a facility in order to save commuting costs. The desire to save commuting costs is offset
by congestion costs due to the limited supply of land in the proximity of the facility. The
indirect attraction and the subsequent congestion cause secondary concentration of population
around facilities, where the density of population decreases with its distance from the facility.
In turn, the concentration of population around a facility causes facilities of different clubs to
locate in the same vicinity in order to increase accessibility even further, thus creating tertiary
agglomerations of facilities into centers in the midst of densely populated areas. All three
stages of agglomeration, namely the primary agglomeration of CGs, the secondary concentration
of population and the tertiary agglomeration of facilities into centers, occur simultaneously
and the stages indicate the order of causality rather than the timing. Indeed, we show that
tertiary agglomeration does not occur without a secondary concentration of population and
that secondary agglomeration of population does not occur without the primary agglomeration
of CGs into facilities.
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In the 1960’s urban economics models have dealt mainly with the secondary agglomeration
of households in a residential ring surrounding a predetermined central business district (CBD),
where all employment takes place. The concentration of industry in the CBD was exogenously
assumed, the rationale being that the industry must be located in proximity to a sea port,
train depot or other shipping facility through which the city’s basic products can be exported
to the rest of the world (e.g., Muth (1969)). Mills (1967) argued that the agglomeration of
industry in a CBD is the result of the industry being subject to scale economies but he still
assumed exogenous agglomeration. Instead of focusing on an endogenous CBD, Mills and his
contemporaries concentrated on the residential ring. Henderson (1974) was the first to introduce
a model in which an industry agglomerates endogenously into a CBD, however he still imposed on
the model a single employment location surrounded by a residential ring. In the 1980’s, Ogawa
and Fujita (1980), Fujita and Ogawa (1982), and Fujita (1989) constructed simulation models of
the agglomeration of an industry based on direct attraction effects. These simulations resulted
in a variety of primary agglomerations. However, no secondary agglomeration of population
and hence no tertiary agglomeration were possible, since a uniform density of population was
everywhere assumed.
Recently, Lucas and Rosi-Hansberg (2002) incorporated both direct and indirect agglomera-

tion engines into a single simulation model of an agglomerating industry and population/workers.
But contrary to our model, in which facilities of different clubs agglomerate into centers, in their
model only one type of facility exists and therefore no tertiary agglomeration can occur. Actually,
none of the above models address the tertiary agglomeration of different primary agglomerations
into centers in the midst of population concentrations as described in this paper.
Some studies in the literature (e.g., Fujita and Thisse (1986), Thisse and Wildasin (1992),

Papageorgiou and Pines (1998) and papers surveyed by Berliant and ten Raa (1994)) investigate
the agglomeration of facilities while imposing a uniform distribution of population. In this paper
we show that effective agglomeration of facilities cannot occur without a secondary concentration
of population and the agglomerations of facilities in the above studies are due to either the ‘edge-
of-economy effect’, to indivisibility problems and/or to random technological effects. Therefore,
to avoid confounding our own results we assume herein an economy without edges, i.e., our
economy’s territory is ring-shaped and fully occupied. In addition we investigate here only cases
of full divisibility.
On this ring-shaped area of homogeneous land, we construct a model of an economy with

spatial clubs using the conceptual framework of Hochman, Pines and Thisse (1995) (HPT here-
after).2 In this economy there are many types of essential collective goods that require a wide
variety of spatial clubs that a household must visit in order to consume the goods. The agglom-
eration of each CG into a separate facility results from scale economies in the provision of the
good. Without such scale economies, each household would consume the CG privately in its own
premises in order to avoid commuting costs. Since the direct attraction forces between units of
a CG caused by scale economies are assumed to be internal to the facility, they are reflected
only in the size of the facilities and not in their number. Thus, at any given site no more than
one facility per club exists. We demonstrate that the population density is never uniform in a
first-best allocation and that there are always areas in the economy in which population and
facilities agglomerate.
Our model’s results specify that in an optimal allocation the economy’s territory is partitioned

into identical complexes, where a complex is the smallest autonomous area in the economy, i.e.,
the smallest area in which all residents, and they alone, consume all the types of CGs in facilities

2While HPT focused on the finance of services rendered by the facilities, they disregarded spatial aspects and
questions of agglomeration of facilities on which the present paper focuses.
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located inside the complex. Thus, nobody commutes in or out of a complex. In a sense, this
fact makes the complex the ideal municipality. In this paper we characterize an allocation by
characterizing its representative complex.
A complex configuration is a vector of integers without a common multiplier that specifies the

number of facilities of each club in the complex. Thus, the first entry in the vector is the number
of facilities of club one in a complex, the second entry is the number of facilities of club two
and so forth. Each model with a given set of functions which consists of feasible transportation
cost functions and feasible provision cost functions, both for each club type, as well as of a
utility function and a given complex configuration, have an optimal solution with identical and
symmetric complexes. We refer to such a solution as a local optimum. In a global optimum the
complex configuration is also chosen optimally.
Next, we characterize the spatial pattern of two local optimum solutions with two specific

complex configurations.3 In the first configuration, each club has a single facility per complex.
With this configuration, the model results in monocentric complexes (cities) in which facilities
of all clubs agglomerate perfectly in the center of the complex and share the whole complex
as a common market area.4 The population density and the housing price function in each of
the complexes of this configuration increase with proximity to the complex’s center, where both
functions reach their peak. In addition, we provide specifications of a functions domain in which
this solution is the unique global (over all possible configurations) optimum.
The second configuration that we investigate has two groups of clubs. Each club in the first

group has a single facility per complex and each club in the second group has two facilities
per complex. In the optimal allocation all the facilities of clubs of the first group agglomerate
perfectly in the middle of each complex and the whole complex is their market area. The facilities
of clubs of the second group are divided into two clusters each of which contains one facility of
each club of the second group. The complex area is divided in the middle into two equal market
areas, one for each cluster of facilities of the clubs of the second group. One cluster is located in
the second quarter of the complex’s area and the other in the third quarter. Thus, the clusters
of the second group (DF clubs hereafter) are closer to the middle of the complex than to its
boundaries. In other words, these clusters gravitate towards the center of the complex. The
facilities in a cluster are close to each other but residential areas may exist between the facilities
in the cluster, depending on whether or not the transportation cost functions of the different
DF clubs are proportional to each other. Facilities with proportional transportation costs share
the same facility location. Thus, while clubs of the second group do not necessarily agglomerate
perfectly, they are drawn to each other and the cluster as a whole is drawn towards the facilities
located in the middle of the complex. The complex is symmetric around its middle with a
higher density of population between the clusters of DF clubs and the center of the complex
than between the clusters and the boundaries.
Contrary to non-spatial clubs (e.g., Berglas (1976), Scotchmer and Wooders (1987); see also

the survey by Scotchmer (2002) of spatial and non-spatial clubs), our optimal solution cannot
be attained by a laissez faire allocation and sometimes not even by decentralization. In a
laissez faire situation club owners are free to operate without restrictions, so they engage in
spatial monopolistic competition, which, in general, does not yield an optimal allocation. We
also show that for an economy with price taking agents there sometimes is a limited number of
decentralization methods, each of which may fit under different conditions. Most decentralization
methods involve subsidizing households and taxing facilities. However, such a decentralized

3These complex configurations are: (1,. . . ,1) and (1,. . . ,1,2,. . . ,2).
4By perfect agglomeration we mean that facilities are adjacent to each other without having any residential area
between them.



5

solution may entail different subsidies to identical households that are located in different places
and is, therefore, difficult to implement.

Five additional sections follow this introduction. Section 2 describes the setup of the model.
The necessary conditions for Pareto optimum are described in section 3 and the decentralization
of the optimal allocation is depicted in section 4. Section 5 contains our main results. First, in
subsection 5.1, we present general characteristics of the solution. Then we proceed to describe
a perfect agglomeration in subsection 5.2 and an imperfect agglomeration in 5.3. We conclude
with a short summary and a few pointers for future research of global optimum solutions.

2. The Model Setup

The country’s geography is designated by a ring of unit width, with a circle running through
the middle of the ring being the axis (see Figure 1).

 

X

 

L,O

Figure 1: A Ring-Shaped Economy
We assume the circle’s circumference is L. Note that the total area of the ring in this case is

also L. An arbitrary point on the ring’s axis is referred to as the origin. The location of any
point on the axis of the ring is uniquely defined by its distance x from the origin in a clockwise
direction (henceforth also the positive or the right direction). All points on the line segment
perpendicular to the axis are designated as the same location because travel between these points
involves no costs. The country accommodates N households (each time we introduce a concept
it is italicized) which are identical to each other in all respects. We assume that these households
are free to choose their residential location in the economy. Hence, all households must have
the same utility level everywhere; otherwise they will migrate to the location with the higher
utility. Each individual household derives utility from the consumption of a composite good, Z,
and from housing, H, both of which the household consumes at its location of residency.
The household also derives utility from I types of collective goods (CGs hereafter), where Gi,

is the quantity of the ith CG the household consumes, i = 1, ..., I, according to a well-behaved
utility function, u(Z,H,G1, . . . , GI). All goods are essential, and each CG is consumed at a
special facility to which the household has to travel. Each individual is endowed with Y units
of the composite good which can be used for private consumption and for the production of
housing, CGs and transportation.



6

The economy contains I different clubs, one for each type of CG . A club of type i supplies
units of the i-th CG through its m̃i facilities which are located throughout the economy. Each
facility is identified by i, j, where j ∈ (1, . . . , m̃i) is the index of the specific facility of club i, and
i ∈ (1, . . . , I) refers to the club type. Facility i, j, whose location is designated by xi,2j , provides
Gij units of the i-th CG to Nij patrons, i.e., to individual households consuming the i-th CG in
facility ij and residing within itsmarket area, where a market area of a facility is a segment of the
x-axis where all and only the facility’s patrons live.5 We also make the simplifying assumption
that a facility does not occupy land and since, in practice, club facilities occupy only a small
fraction of the total land available compared to residential land, the distortion caused by this
assumption is negligible when considering the simplification involved. We represent facility ij’s
market area by the interval [xi,2j−1, xi,2j+1]. The union of the market areas of the m̃i facilities
supplying the i-th CG coincides with the residential area [0, L] where L, the boundary of the
residential area, fulfills the condition that L ≤ L.6 Accordingly, the spatial characteristics of
each facility ij are fully specified by the following triplet of nodes (see Figure 2):

xi,2j−1 = the left boundary of the ij-th facility’s market area and the right boundary
of the i(j − 1)-th facility’s market area,

xi,2j = the location of the ij-th facility, and

xi,2j+1 = the right boundary of the ij-th facility’s market area and the left boundary
of the i(j + 1)—th facility’s market area.

Since each resident must consume all the types of club goods, the extreme boundaries
must fulfill, xi,2m̃i+1 = L, and xi,1 = 0, for all i.

7

We define the clubs configuration as the vector of integers {m̃1, ..., m̃I} , where m̃i is the
number of facilities of type i in the economy. Thus, the clubs configuration is a vector of I
integer variables.
To facilitate the analysis, we sort the clubs
configurations into classes, where each class is represented by a vector (m1 , ...,mI) ((mi) for

brevity) of I integers which have no common multiplier other than 1, i.e., for every λ ≥ 2, at
least one of the quotientsmi/λ, i = 1, ..., I, is not an integer. We term the configuration without
a common multiplier a basic configuration. From here on we designate a club’s configuration
(m̃i) by k (mi) , where (mi) is the basic configuration designating the class, and the multiplier
k is an additional integer-variable to be solved.
In an economy with population N and available land L there is a model with the clubs

configuration k (mi). A complex in this economy is the optimal solution of a model whose
population size is N

k ,
L

k is its available land, its clubs configuration is the basic (mi) and it has
the same functions (costs, utility) as in the original model. In the solution of the complex, the
common multiplier is 1, the configuration is the basic (mi) and all its land, L

k
, is occupied by N

k

households.
5By this we assume that a market area of a facility is a connected segment. In what follows we prove that, indeed,
the market area of a facility of a club is a connected segment, provided ti (x) , the club’s commuting cost function,
is linear in x (see Lemma 3). In the case of nonlinear transportation costs, connected market areas remain an
assumption.
6By this, we make the assumption that the occupied area is continuous and the unoccupied area is concentrated
at the end of the economy, L, and next to the origin, 0.
7In this model, the focus is on the case in which all available land is occupied, i.e., L = L, which implies that
0 ≡ xi,1 = xi,2m̃i+1 = L = L, ∀i. Therefore, calculations with the location variable x are modulo L (i.e. L+x = x.).
For example, for all i, m̃i and an arbitrary y, 0 < y < L, xi,1 + y = xi,2m̃i+1 + y = L+y = y .
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The optimal solution of the model with the configuration k (mi) can now be described as k
consecutive replications of the complex with the basic configuration (mi) . Each two consecutive
complexes are adjacent and have a joint boundary. L − L ≥ 0 is the vacant land at the edges.
The common multiplier k, is now an integer variable measuring the number of complexes in the
economy. Thus, by determining k and characterizing the complex, we characterize the solution
of the general model.8 In the rest of the paper we use the terms basic configuration and complex
configuration, interchangeably.
Figure 2 depicts the layout of a complex with a basic configuration of (1, 2, 3) . For expositional

purposes, we mark the nodes of each club on a different horizontal axis. Actually, they are all
jointly located on the x axis.

X3,1

X2,1

X1,1

L

X3,5X3,3

0

X3,2 X3,4 X3,6

Market area facility

X3,7

X2,2

X2,3

X2,4

X2,5

X1,2

X1,3

Figure 2: Facility Locations and Market Areas in a Complex with Basic Configuration (1,2,3).

We designate the length (also the area) of the complex by L and the population of the
complex by N. Then kL = L and kN = N . Accordingly, L is also the coordinate of the right
boundary of the first complex (whose left boundary is the origin, 0) and the left boundary of
the second complex, if it exists and so on. Since all complexes are identical, it is sufficient to
solve only for one (the first) complex.
Since all goods are essential, the boundaries of each complex must coincide with the boundaries

of the extreme facilities farthest from the center of each of the I CGs; hence

xi,1 = 0; xi,2mi+1 = L, for all i ∈ {1, . . . , I} and kL = L ≤ L. (1)

Equation (1) implies that, by assumption, the origin is a boundary of all clubs. Similarly, the
relation between the complex and the overall population must be

N = N/k. (2)

8In HPT, a complex is defined as the smallest autonomous area in the economy, i.e., the smallest area in which
its residents and only the residents of the area consume all the CGs in the area. It is clear from the discussion so
far that our complex satisfies this definition.
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In order to use a CG, the household incurs travel costs of a home-facility trip which is given
by ti(

∣∣x− xi,2ji(x)
∣∣), where the argument of the function is the absolute value of the home-

facility distance and ji (x) is the index j of the facility of club i whose residents at x use. The

transportation cost function fulfills ∂ti(y)
∂y

def
= t′i > 0,

∂2ti(y)
∂y2

def
= t′′i ≤ 0, for all y ≥ 0.

The provision cost function, ci(Gij,Nij) (for brevity, hereafter c
i(j)) is the cost to facility i, j

for providing its CG, Gij, to Nij households. The function c
i(j) fulfills,

ci1(j) =
∂ci(j)

∂Gij
> 0, ci2(j) =

∂ci(j)

∂Nij
≥ 0, ci11(j) =

∂2ci(j)

∂G2ij
> 0,

∂

(
ci(j)

Nij

)/
∂Nij

{
< 0 if Nij < N̄ij (Gij) ,
≥ 0 if Nij ≥ N̄ij (Gij) ,

, ∂2
(
ci(j)

Nij

)/
∂ (Nij)

2 > 0

where 0 < N̄ij (Gij) ≤∞, and Gij ≥ 0. (3)

Thus, ci(j)
Nij

is either a U - or L-shaped function of Nij.
9 The scale economies reflected in the

second line of (3) are responsible for the concentration of club goods in facilities. Without these
scale economies, a CG would be provided to a household at home, like z, and not in facilities
where there is joint consumption of households. Each facility i, j is identified by its CG, Gij ,
facility location, xi,2j, market area, (xi,2j−1, xi,2j+1) and the population within its market area,
Nij.

A kind of club that requires special attention is the production club, which we designate
by the index i = 1 . Patrons N1j, of facility 1, j of a production club work in the club’s facility
location x1,2j , reside in the facility’s market area and together with an input of G1j units of
composite good, produce a net positive output

(
−c1 (G1j, N1j) > 0

)
of the composite good.

Thus, [G1j − c1 (G1j, N1j)
′] is the gross output of the j-th facility of club 1 and as such, is its

production function. The general characteristics of a club’s cost functions specified in (3), need
some modification and interpretation in the case of production club. Thus, instead of (3) we
assume,

c1 (G1j , 0) = 0
c111 (j) > 0,

; c11 (j)

{
< 0, if G1j < Ḡ1j (N1j)
≥ 0, if G1j ≥ Ḡ1j (N1j)

,
∂Ḡ1j (N1j)

∂N1j
> 0

c12 (j) ≤ 0,
c122 (j) ≥ 0,

, ∂

(
c1(j)

Nij

)/
∂Nij < 0; ∂

2

(
c1(j)

Nij

)/
∂ (Nij)

2 > 0; (4)

Accordingly, for N1j > 0, the function c
1 (G1j ,N1,j) obtains negative values and is U - shaped

as a function of G1j, while the average,
(
G1j−c

1(G1j ,N1j)
N1j

)
is increasing as a function of N1j . This

last property is a reflection of labor-oriented scale economies in production.10 We also assume
in the production club case that the marginal utility of G1j is zero, i.e., ∂u/∂G1 = 0, which
means that G1j is a production factor that does not affect the household’s well-being.

We adopt here the assumption accepted in urban economics literature of a non-atomic
distribution of population over space. Thus, a household in our model is identified by its
residence at x. In addition, we confine ourselves to allocations in which all households are
identical in the sense that they all have the same utility function, skills, and initial endowment

9Note that ci2(j) = 0 implies that Gij is a pure public good with an L-shaped average cost function. Then
ci(G,N) = ci(G, 1) for all values of N and G. When G is a private good distributed equally to each of the
N residents, ci(G,N) = Nci(G, 1). Accordingly, as long as ci(G,N) fulfils, ci(G, 1)<ci(G,N)<Nci(G, 1), G is a
semi(congestable)-local public good.
10In what follows, results specific to the production club in subsequent sections will be given in footnotes.
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and they all face the same transportation and provision cost structure. In that case, free choice
of the location of residency implies an equal utility level for everyone everywhere, namely:

u(Z(x), H(x), G1,j1(x), . . . , GI,jI(x)) = U, for all x ∈ [0, kL] , (5)

where U is the common utility level for all households in the economy and ji(x) is the index of
the facility providing the i-th CG to households living at x. We designate by ui(x) the derivative
of u(Z(x), H(x), G1,j1(x), . . . , GI,jI(x)) with respect to the i-th variable of the utility function as

specified in (5) , e.g., u2(x) =
∂u(Z(x),H(x),G1,j1(x),...,GI,jI (x))

∂H(x) .

We now turn to housing construction. Let Hs(x) be the amount of housing constructed
per unit land at x. Hs(x) is produced by land and the composite good. The amount of composite

good used in the production per unit of land at x is ch(H
s(x)), with dch(H

s)
dHs

def
= c

′

h(H
s) > 0 and

d2ch(H
s)

d(Hs)2
def
= c”h(H

s) > 0. We term ch(H
s) as the housing cost function. The material balance

for housing implies

n(x)H(x) = Hs(x), (6)

where n(x) is the population density function.

The club membership constraint can be written as:

xi,2j+1∫

xi,2j−1

n(x)dx−Nij = 0 ∀i ∈ {1, . . . , I}, and j ∈ {1, . . . ,mi}, (7)

and

N −
mi∑

j=1

Ni,j = 0 ∀ i ∈ {1, . . . , I}. (8)

The housing price function, ph(x), is defined as:

ph(x)
def
= u2(x) /u1(x), (9)

where the composite good Z is the numeraire. From (9) and (5) we substitute out H(x) and
Z(x) to obtain the compensated demand function for housing, namely

H(x) = h[ph(x), G1,j1(x), . . . , GI,ji(x), U ] (10)

and the compensated demand function for the composite good, which is

Z(x) = z[ph(x),G1,j1(x), . . . ,GI,jIJ(x), U ], (11)

where ph(x) together with the different CGs and the utility level, U, are arguments in both of
the above functions. Let the aggregate expenditure function for the (representative) complex be
given by E(N,U) where

E(N,U) =

L∫

0

[n(x)z(·) + ch(H
s)]dx+

I∑

i=1

mi∑

j=1

ci(j)

+
I∑

i=1

mi∑

j=1

xi,2j+1∫

xi,2j−1

n(x)ti(|x− xi,2j|)dx. (12)
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The three terms of the complex’s aggregate expenditure function in (12) are the expenditures
on consumption and housing production (the first term), the provision cost of all CGs (the
second term), and the total transportation costs (the third term). Accordingly, kE(N,U) is the
economy’s aggregate expenditure function.
Recalling that each individual is endowed with Y units of the composite good, the complex’s

material balance of the composite good requires that

E(N,U)−NY = 0. (13)

In other words, the complex’s aggregate expenditure must equal the complex’s aggregate supply
of the composite good.
The above set of equations (1)-(13) defines the constraints of a feasible spatial resource allo-

cation for the whole economy. Necessary conditions for a Pareto optimal allocation are given in
the next section.

3. The Optimal Solution

The necessary conditions for a Pareto optimal allocation in the economy are obtained by
maximizing the common utility level, U, subject to the constraints (1)-(13). The Lagrangian
and the formal derivation of the first order conditions are specified in Appendix 7.1. In solving the
model, we assume for simplicity that the variable k, the number of complexes in the economy,
is a real variable and not an integer. By making this assumption, we disregard the factual
indivisibility of complexes and allow a fraction of a complex in the solution.11 The necessary
conditions in this section are given for a single complex. In our economy there are k such identical
complexes. Another assumption we make is that the complex configuration, (m1, ...,mI) , is a
given vector of I integers. Therefore, the necessary conditions below are for a local optimum.
Additional conditions for the global optimum, in which the optimal complex configuration is
determined as well, follow in a subsequent section.
The equations in this section are calculated from the necessary conditions derived in Appendix

7.1. The equations here are easier to interpret than the original ones but still constitute a full
set of necessary conditions for a Pareto optimal complex, equivalent in every way to the original
conditions derived in the Appendix.

3.1. Households and Housing

3.1.1. Housing Construction

In (9) Ph (x) is defined as the quotient u2 (x) /u1 (x) . A necessary condition for the efficient
allocation given in (14) below, states that the marginal cost of housing construction, c′h(H

s(x)),
equals Ph (x), i.e.,

Ph (x) (≡ u2 (x) /u1 (x)) = c′h(H
s(x)), for all x (14)

where Hs (x) is the amount of housing constructed per unit land at x and c′h(H
s(x)) is an

abbreviation of ∂ch(H
s(x))

∂Hs(x) . It follows from (14) that Ph (x) is, indeed, the housing price function.

Observe that we can solve equation (14) to obtain Hs(Ph (x)).

11If k is not an integer, there must be a fraction of a complex in the solution. Obviously, an actual allocation
contains only complete complexes, which is the case for an integer k. Thus, in the optimal solution, with an
integer k, each complex is either smaller or larger than the optimal complex of the solution with a real k, and
the utility level is lower as well. The distortion is negligible for a real but relatively large k. The problem of
indivisibilities of economic entities is quite common in the economic literature (e.g. the indivisibility of the firm).
In our case the problem might be more severe since k is likely to be small. Thus, we can see that the subject of
indivisibility of optimal complexes deserves a separate study.
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3.1.2. Rent Function

The rent at x, R (x) , is defined in (15) below as the difference between the revenue and the
cost of construction per unit of land at x. Thus

R (x)
def
= Ph (x)H

s (Ph (x))− ch(H
s (Ph (x))), for all x. (15)

The properties of the rent function are given in Appendix 7.2. Note that even though in general
housing price functions and rent functions are competitive equilibrium tools, they are well defined
in this optimization model and have the same properties as in an equilibrium since housing and
land have no external effects associated with them.
Taking the integral of the rent function over the entire country yields ALR, the aggregate land

rent in the economy, i.e.,

ALR = k

L∫

0

R(x)dx. (16)

Note that the right hand side of the ALR equation above consists of the aggregate land rents
in a complex multiplied by the number of complexes in the economy.

3.1.3. The Optimal ‘Budget Constraint’

Let ji(x) be the index of the facility of club i to which a household residing at x travels. We
define Tr(x) as the travel and recreation expenditure of a household residing at x, commuting
to facilities ji(x) located at xi,2ji(x), paying commuting costs ti

(∣∣x− xi,2ji(x)
∣∣) and congestion

tolls, ci2
(
ji(x)

)
, for i = 1, ..., I.Thus,

Tr (x)
def
=

I∑

i=1

[
ci2
(
ji(x)

)
+ ti

(∣∣x− xi,2ji(x)
∣∣)] . (17)

Note that Tr (x) is a continuous and differentiable function of x everywhere except at facility
locations, xi,2ji(x), where Tr (x) is continuous but not differentiable.
The following equation (18) , the household’s optimal ‘budget constraint’ at x, is a necessary

condition for Pareto optimum.12 The congestion tolls included in Tr (x) are what distinguish
the necessary condition below from an equilibrium budget constraint. We also define in (18) the
household’s optimal expenditure function at x, e(ph(x),G1,j1(x), . . . ,GI,jI(x), Tr (x) , U), in short
e (x).

Y + ν = z(ph(x),G1,j1(x), . . . , GI,jI(x), U) + ph(x)h(ph(x),G1,j1(x), . . . ,GI,ji(x), U)+

+Tr (x)
def
= e(ph(x), G1,j1(x), . . . ,GI,jI(x), Tr (x) , U), for all x. (18)

We see that in (18) , ph(x) indeed serves as the housing price and the household’s income Y +v
is independent of location and consists of the initial endowment of an individual household, Y,
plus ν − an equal share of total alternative -shadow-land- rents in the economy.13 Thus, a

12Note that if i = 1 is a production club, then the expression
(
−c12

)
is the marginal product of labor, which attains

positive values and appears as income in the household’s optimal budget constraint. In this case the model has
a non-zero solution even if Y vanishes.
13Namely, ν = LRA

N
, where RA ≥ 0 and if kL < L than RA = 0. See also (26) , (25) and the discussion that

follows at the end of section 3.
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household behaves in the optimum as a utility maximizer who considers as given: his income;
the location xi,2j of all facilities (i, j); the quantities of CGs, Gij, in these facilities; and the

congestion tolls ci2 (j)
def
=

∂ci(Gij ,Nij)
∂Nij

the household is required to pay when it uses facility i, j.

Each club i ∈ (1, ..., I) has mi facilities spread throughout the complex and a household at x
visits one facility of each club i.

3.2. Clubs

The external effects in the model are concentrated in clubs and therefore most of the equations
in this section are not equilibrium relations.

3.2.1. Samuelson’s Rule

The necessary condition in (19) below, determines Gij , the optimal amount of CG for facility
j in club i. The equation below is a version of Samuelson’s well known rule about public goods.

xi,2j+1∫

xi,2j−1

[
ui+2
u1

n

]
dx = cj1 (j) ,∀i, j, (19)

where ci1 (j) =
∂ci(j)
∂Gij

. On the right-hand side of (19) is the marginal rate of substitution in

production between the CG and the composite good and on the left-hand side of (19) is the
sum of the marginal rates of substitution in consumption of the users of facility i, j, where the
marginal rate of substitution is between the CG and the composite good.14

3.2.2. Optimal Facility Location

The optimal facility location, xi,2j, should satisfy the necessary condition in (20) below, which
is also a necessary condition for the facility location to minimize aggregate transportation costs
of patrons to facility (i, j).

xi,2j∫

xi,2j−1

n (x) t′i (xi,2j − x) dx =

xi,2j+1∫

xi,2j

n (x) t′i (x− xi,2j)dx,∀i, j. (20)

In (20) the aggregate marginal transportation costs of patrons on one side of a facility equal the
aggregate marginal transportation costs on the other side, so that a marginal shift in the facility
location does not change aggregate transportation costs to the facility. It should be noted that
linear ti in (20) implies that on each side of the facility reside an equal number of patrons. The
following lemma can now be proved;

Lemma 1 A club’s facility location is an interior point of the club’s market area, and therefore
of the complex. The market area of a facility is in a bounded segment of the complex.

The proof of the first part of the lemma follows directly from (20) which requires that patrons
should reside on both sides of the facility location. The proof of the second part of the lemma
follows from the finiteness of the household’s income which allows it to travel only a bounded
distance.
14For club 1, the production club, after substituting u3 = 0 in (19) reads, 0 = c11 (j) . Indeed, the left-hand side
of (19) vanishes when i = 1 since u3 = 0. To understand the meaning of (19) when i = 1, consider the production
function G1,j − c1 (j) in perfect competition. The equality between the value of the marginal product of G1,j and
the price of G1,j , which is 1, i.e., ∂

∂G1,j

(
G1,j − c1 (j)

)
= 1, results in 0 = c11 (j) , which is, as we just showed, (19)

for i=1. So in the case of the production club this condition is fulfilled in perfect competition.
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3.3. Bid Price Functions and Nodes

Bid price functions of housing and land are essentially tools of competitive equilibrium analy-
sis. They can be employed in our optimization model since the land and housing markets are free
from external effects. The bid price functions below are defined for given facility locations and
the CGs in them, and for a given optimal utility level. The crucial assumption which allows bid
functions analysis is the assumption of households’ freedom to choose their location of residency,
which implies equal utility level to identical households everywhere. This assumption is, indeed,
part of this model as well as part of other urban competitive models. For a proof that bid
housing price functions analysis is compatible with the necessary conditions of this optimization
model, see sections 7.1.1 and 7.1.2 in the Appendix.

3.3.1. Bid Housing Price Functions

Let Tr
(
x, j1, ..., jI

)
be the sum of the home-facility commuting costs plus the congestion tolls

ci2 (j
i) a household residing at x pays when traveling to each of the I facilities, j1, ..., jI , as

specified in (18) , where ji is the index of facility j of club i, i.e., ji ∈ (1, ...,mi) . The facility j
i

is located at xi,2ji ,with a given quantity of CG, Gi,ji , i.e.,

Tr (x, j1 , ..., jI )
def
=

I∑

i=1

[
ci2
(
ji
)
+ ti

(∣∣x− xi,2ji
∣∣)] , (21)

for all x, j and i s.t., 0 ≤ x ≤ L, ji ∈ (1, ...,mi) , i = 1, ..., I.

For the household to reside at x and travel to the given I facilities (ji), the household’s optimal
budget constraint must fulfill,

Y + ν = z(ph (x) ,
(
Gi,ji

)
, U) + ph (x)h(ph (x) ,

(
Gi,ji

)
, U) + Tr

(
x,
(
ji
))
. (22)

where
(
Gi,ji

)
=G1,j1, ..., GI,ji ;

(
ji
)
= j1, ..., jI ; z(ph (x) ,

(
Gi,ji

)
, U) is the compensated demand

function for the composite good Z, defined in (11) and h(ph (x) ,
(
Gi,ji

)
, U) is the compensated

demand function for housing H, defined in (10).
The vector

((
Gi,ji

)
,
(
ji
)
, U
)
is fixed and given and so is the household’s income Y + v. The

only variable remaining to be determined at a given location x is the price of housing, ph (x) . By
substituting out ph (x) from (22) we obtain the bid housing-pice of a household residing at x and
traveling to facilities at

(
xi,2ji

)
where the household uses the CGs,

(
Gi,ji

)
. We designate this

bid housing-price function by pbh
(
x, j1, ..., jI

)
.What distinguishes one bid housing price function

from another is the set of facilities to which the household travels. Income and utility levels
are the same for everybody everywhere and are known parameters as are the CGs and facility
locations. Therefore, once the facilities’ indices of a bid housing price function are known, all
information is revealed. Each bid housing-price function has a different set of I facilities. In
each of two different sets of indices there is at least one facility that the other lacks. For some
vectors (J i), there may be locations x for which ph, substituted out of (22) , is negative. In such
cases we set the bid housing price equal to zero. We can now prove the following lemma.

Lemma 2 The bid housing price function is a continuous function of the distance x and twice
differentiable, with a positive second derivative everywhere except at the I facility locations
(xi,2ji ) where it is continuous but not differentiable.15

A household at location x, by choosing to travel to facilities that yield the highest bid
housing price is actually choosing to attain the utility level at location x by spending the least

15For proof of Lemma 2 see Appendix 7.2
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of all possible costs other than the cost of housing. Such behavior by all households leads to an
efficient allocation. In competitive markets, a household at x travels to the facilities that yield
the highest bid housing price at x, because he then can outbid others competing for housing at
x. Accordingly, ph (x), the housing price function at x, fulfills

Ph (x) = max
j1,...,ji

pbh
(
x, j1, ..., jI

)
= pbh

(
x, j1 (x) , ..., jI (x)

)
,∀x where ji ∈ (1, ...,mi) , i = 1, ..., I.

(23)

The vector of indexes of facilities
(
j1 (x) , ..., jI (x)

)
to which a household residing in x travels to,

is merely the vector
(
j1, ..., jI

)
that maximizes pbh (x, (j

i)) in (23) . Thus, the upper boundary
curve of all bid housing price functions as defined in (23) , besides being the housing price
function also determines the facility locations to which a household at x travels.

3.3.2. Bid Rent Functions

We define the bid rent functions as

Rb
(
x, j1, ..., jI

)
= pbh

(
x, j1, ..., jI

)
Hs
(
pbh
(
x, j1, ..., jI

))
−Ch

(
Hs
(
pbh(x, j

1, ..., jI)
))

The bid rent is a monotonic increasing function of pbh
(
x, j1, ..., jI

)
and fulfills Rb

(
pbh = 0

)
= 0.

Therefore, in most cases we can use either the bid rent function or the bid price function.

3.3.3. Boundaries and Facility Locations

In the optimal allocation a node xb on the x-axis is a boundary point between club-i market
areas, if there are points xl and xr, xl < xb < xr, such that all residents living in (xl, xb) consume
the i-th CG in a facility to the left of xb, and all residents in (xb, xr) consume the i-th CG in a
facility to the right of xb.
Let xb be a boundary point of clubs i1 , ..., iK , 1 ≤ K ≤ I and of them only (when K = I,

xb is the boundary of the complex). For brevity of notation we also designate by K the set
(ik, k = 1, ...,K) and by I−K, the set ((ik /∈ K) and (ik ∈ (1, ..., I))) . There is a point xl, xl <
xb, (xl can be any point between xb and the next boundary point to the left of xb) that residents
at every point x, xl < x < xb use the I CGs at the same facilities. We designate these facilities
by j1o , ..., j

I
o , i.e.,j

i
o = ji (x) , xl < x < xb. In the same way, there is a point xr, xr > xb, where

all residents in the segment xb < x < xr use the I CGs at the same facilities. In this segment, if
i ∈ K, then jio + 1 is the facility in which residents consume the i-th CG and if i ∈ I −K, jio is
still the facility in which residents of x consume the i-th CG. The necessary condition associated
with the boundary xb now follows,

ph (x) = max
j1,...,jI

pbh
(
x, j1, ..., jI

)





= pbh
(
x, j1

o
, ..., jIo

)
, for x, s.t. x

l
< x ≤ xb,

= pbh
(
x,
(
ji
o
+ 1,∀i ∈ K

)
and

(
jio,∀i ∈ (I −K)

))
,

for x, s.t. xb < x ≤ xr,

and ph (xb) = pbh
(
xb, j

1
o
, ..., jIo

)
= pbh

(
xb;
(
ji
o
+ 1,∀i ∈ K

)
and

(
jio, ∀i ∈ (I −K)

))
. (24)

Equation (24) states that the bid function pbh
(
x;, jio, ..., j

I
o

)
and the bid function pbh

(
x;
[
ji
o
+ 1,∀ i ∈ K

]
∪
[
jio, ∀i ∈

intersect at xb and are equal to the housing price there. Hence, the two bid functions must co-
incide with the housing price function in a neighborhood of xb as well. Note that the lowest line
in (24) is the actual necessary condition. Below, xb is indexed according to the rules set up in
Section 2.

xb = x
i1 ,2j

i1
o +1

=, ..,= x
iK ,2j

iK
o +1

.
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For the proof that (24) is compatible with the necessary conditions, see Appendix 7.1.2.
The location of facility j of club i in our model is a node located at xi,2j . The transportation

cost function, ti (|x− xi,2j|) , is a continuous and differentiable function of x everywhere except
at x = xi,2j where it is not differentiable. Since Tr (x) in (21) contains transportation cost
functions, it is continuous and twice differentiable everywhere except at facility locations where
it is continuous but not differentiable. This property is passed on to pbh solved from (22) and (23)
(see lemma 2). Since ph (x) , the housing price function itself, consists of segments of bid housing
price functions that intersect at boundaries, it must be continuous and twice differentiable too
except at facility locations and boundaries where it is continuous but not differentiable. To sum
up the analysis we write it in the form of a corollary,

Corollary 1 The housing price function, Ph (x) , is a continuous and twice differentiable func-
tion of x with a positive second derivative everywhere, except in nodes where it is continuous but
not differentiable.

Consecutive facilities of the same club may hold different quantities of the CG. Hence, house-
holds residing on different sides of a clubs’ boundary may consume different quantities of one or
more CGs (depending on whether the boundary is of one or more clubs and whether consecutive
clubs have different quantities of their
CG). With discontinuous changes in quantities of CGs consumed in consecutive facilities,

discontinuous changes in households’ consumption of housing and the composite good may be
observed as well when crossing a clubs’ boundary. In Appendix 7.1.1 we show that where housing
is concerned, the quantity of housing consumed and produced as well as the population density,
are continuous functions at a boundary, as stated in the following Proposition.

Proposition 2 The household’s housing consumption, H (x), is continuous everywhere, includ-
ing in boundary and facility locations. Also continuous everywhere are the density of population,
n (x) , and the supply of housing, Hs (x) .

It should be noted that unlike the continuity of the supply and demand of housing, the
household consumption of composite good may be discontinuous in boundaries. For details and
proof of the proposition, see Appendix 7.1.1 and 7.1.2.

3.3.4. Market Areas

In section 2 we assumed that a market area served by a facility is a connected segment of
the x-axis. Thus far we used this assumption only for simplifying the notation. Now we prove
this assumption endogenously in Lemma 3 for clubs with linear transportation cost functions.

Lemma 3 The market area of a club with linear transportation cost function is a connected
segment of the x-axis.

For a proof see Appendix 7.3.1. Lemma 3 and Lemma 1 yield the next Proposition:

Proposition 3 The market area of a club’s facility is a bounded area and the facility is located
in its interior. Market areas of clubs with a linear transportation cost function are connected.

Recall that in this study we investigate only allocations in which market areas are connected.
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3.4. The Henry George Rule

The alternative land rent, RA, is the land rent at the boundaries of a complex, i.e., RA = R (L) .
RA is the lowest land rent anywhere in the complex. A necessary condition for Pareto optimum
of an economy with identical households is the following relation:

ν =
RAL

N
(25)

where v is the household’s income from its share of alternative land rents (see also (18)). The
Kunn-Tucker conditions imply that If L<L ⇒ RA = v = 0 and when L=L ⇒ v,RA ≥ 0.
The last necessary condition for an optimum is the Henry George rule,

DLR ≡
∫ L
0 (R (x)−RA)dx. =

I∑

i=1

mi∑

j=1

(
ci(j)−Nijc

i
2(j)
)
, (26)

The term
∫ L
0 (R (x)−RA)dx > 0, is the differential land rents (DLR) . Since the DLR

on the left hand side of (26) is positive, so is the term on the right hand side of the equa-
tion, i.e., the aggregate provision cost,

∑I
i=1

∑mi

j=1 c
i(j), minus the aggregate congestion tolls,

∑I
i=1

∑mi

j=1Nijci2(j) (See also (17) and (18)). This means that congestion tolls alone cannot be
the sole source of financing the clubs’ operations. In (26) the DLR exactly equals the remaining
deficit of the clubs after congestion tolls are paid to the clubs.16 Therefore, the only net profits in
the economy are the alternative land rents. It follows from (25) that in the optimum the overall
profits in the economy, if any ( i.e., if RA > 0), are distributed among the general population.

4. Decentralization

In this section we deviate from the analysis of agglomeration to discuss briefly the issue of
decentralizing the optimal allocation described in the previous section. A laissez faire allocation
would not be efficient because of the lack of incentive of club owners to provide the optimal
amount of CGs, to impose optimal user charges and to optimally locate the facilities. In actual
fact, each facility owner does possess market power and if left to his own devices, will engage in
monopolistic competition. To achieve the optimum, a local government (of a complex) has to
intervene in the economic operations that take place in its jurisdiction. The government may
intervene either directly by providing by itself the optimal CGs in facilities located optimally and
by taxing land rents which, together with congestion tolls collected from users, can finance its
operations and ensure the fulfillment of the necessary conditions. This type of direct intervention,
however, is problematic since, besides there being a lack of information about optimal quantities
of CGs, locations of facilities and exact corrective taxes, it requires constant management of
facilities. Throughout the ages, governments, especially local ones, have proved themselves to
be highly inefficient in managing economic activities, club facilities being no exception.
Conversely, decentralization of CG provision requires of a local government only the deter-

mination of prices and income transfers between sectors and their imposition by taxation and
subsidization. The Second Fundamental Theorem of Welfare Theory (e.g., see Mas-Colell et
al., (1995) Ch. 16, Proposition 16.D.1) proves that, in general, it is possible to decentralize a

16In the case of the industrial club, the term
(
−N1,jc

1
2(j) > 0

)
is the wages paid to the workers in the facility and(

−c1(j)
)
>0 is the value added over the value of the input of the composite good, G1j . Therefore, c

1(j)−N1jc
1
2(j) >

0 is the deficit of the production club’s facility. Therefore, each facility has to recieve a subsidy from the local
government that can be financed by an optimal taxation of land rents. This result is well-known in the literature.
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Pareto optimal allocation with specifications fitting our model’s assumptions. In Mas-Colell et.
al., it is shown that every Pareto optimal allocation (x∗, y∗) (his notation) has a price vector
p = (p1, ..., pL) �= 0, such that (x∗, y∗, p) is a price quasi-equilibrium with transfers. In other
words, in a sufficiently well-behaved economy if agents are price takers, there exist prices and
income transfers that yield the optimal solution as a market allocation. In practice, however,
the actual determination of these transfers and prices is still an open question that we refrain
from investigating at this time.
In the case of non-spatial clubs, an efficient equilibrium exists that does not require any

government intervention (e.g., see the outset in HPT). However, in the case of spatial clubs,
government intervention is needed to instigate the provision of optimal quantities of CGs at
the optimal nodes, since club operators possess market power and do not have any incentive to
behave competitively.

We first investigate the case in which club operators can locate facilities only in predeter-
mined sites matching optimal facility locations. We will partially relax this restriction later on.
There is no unique way to decentralize our optimum and for different clubs, different methods
may be more suitable. A natural way to decentralize our optimum is to allow each facility
operator to charge each user the congestion toll ci2(j), which ensures the fulfillment of (18). The
facility’s income from user charges is then Nijci2(j) and, in general, this toll is not sufficient to
cover the full cost of running an optimal facility, i.e., the facility’s loss is ci(j)− Nijci2(j) > 0 and
the local government has to provide the missing funds to cover facilities losses.17 The General
Henry George Rule (26) ensures that the differential land rents, taxable by the local government,
are sufficient to cover the total deficit.18

The above decentralization method, in which facility operators charge patrons with conges-
tion tolls and are subsidized by the local government, suffers from lack of incentive to behave
efficiently by facility operators. By doing nothing and acquiring the government’s subsidy, a
facility operator obtains the subsidy as positive profits, while by behaving optimally he only
ends up without losses (see HPT). Another problem with this method is the lack of government
knowledge of how to divide taxed differential land rents into subsidies between different facilities.

Despite the drawbacks of the decentralization method discussed above, there are circum-
stances in which it is the appropriate one. Consider, for example, the case in which the pro-
vision costs are divided into costs of constructing a facility (fixed costs) and marginal costs of
operations increasing with the number of users. In such a case, the government can construct
the facility, thus paying the fixed costs, and then lease the facility to a private operator who
is allowed to charge users the marginal cost while maintaining current operations and paying
the variable costs. Knight (1924) showed that there are circumstances under which user charges
that maximize profits are exactly equal to optimal congestion tolls in a road system. Indeed,
if the facility operator incurs positive profits, the government can obtain these profits as lease
payment and redistribute it to households of users.

Another decentralization method is applicable to cases in which division to fixed and in-
creasing marginal costs are not relevant. We let an asterisk designate optimal values of variables

17Not all facilities must suffer losses and some may even have profits, however, when pulling together all
the clubs there are losses. To see that consider the following Henry George (HG) rule (see also (26)),
0 < DLR ≡

∫ L
0
(R (x)−RA) dx =

∑I

i=1

∑mi
j=1

(
ci(j)−Nijc

i
2(j)

)
. It follows that the double summation in HG

rule above is positive, however, it may contain some individual negative terms, each of which belonging to a club.
Such clubs need to be taxed instead of subsidized.
18In the case of the industrial club,

(
−c12 > 0

)
, is the marginal productivity of labor that equals the wage rate.

Our assumptions imply that
(
−N1jc

1
2

)
, the total wages paid by the industry, are larger than the net production,(

−ci
)
. Therefore, the industrial club has to be subsidized by the local government. This result is well known in

the literature.
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and pd
Gij

, where p
d
Gij

def
≡

ci1(G∗ij ,N∗

ij)
N∗

ij
, be the price a household pays per unit of Gij it consumes

at facility (i, j).19 Let the price, p
Gij
, be the price the facility ij operator receives per unit of

CG he provides, which is p
Gij

def
≡ N∗

ijp
d
Gij

= ci1

(
G∗ij, N

∗
ij

)
. Note that in this case the club has

positive profits since, p
Gij

G∗ij
= ci1

(
G∗ij ,N

∗
ij

)
G∗ij > ci

(
G∗ij, N

∗
ij

)
, where both ci1 and ci11 are

positive (see Section 2). Finally let S (x) be a government subsidy to a household located at x,

S(x)
def
≡
∑

i

[
ci1

(
G∗
i,ji (x)

,N∗

i,ji (x)

)

N∗

i,ji (x)
G∗

i,ji(x) − c
i
2

(
G∗

i,ji(x),N
∗
i,ji(x)

)]

where the summation is over all

the clubs for which this method of decentralization is used. This subsidy compensates house-
holds for those charges which are higher than the congestion tolls. The government can finance
this subsidy by taxing the facilities’ profits. We can now prove the following Proposition,

Proposition 4 The price vector
(
pd
Gij
, p

Gij
, p∗h (x)

)
, the household’s subsidy function S(x), the

model setup in Section 2 for a given basic configuration and the optimal facilities locations con-
stitute a price quasi-equilibrium with transfers that yield the model’s Pareto optimal allocation.

For the proof see section 7.4.1 Note that in this decentralization method, facility operators
are price takers and customers pursue the least expensive facility which fulfills their need.
If all facilities of a club are the same, i.e., they all have the same number of patrons and the

same amount of CG, the subsidies to a household are identical everywhere. However, if there
are clubs with three or more facilities in a complex, some of them may have different amounts of
patronage than others. In this case, when facilities of the same club are not identical, the required
subsidies to households become location-dependent and may differ between neighborhoods. In
practice, local governments do not bother to return the income they tax from clubs to the
particular users and instead add this income to the general municipal income by which they
provide the general population with goods and services.20

So far we have assumed that club managers face predetermined facility locations in a complex,
which to the most extent resembles real life. Club sizes and locations are detailed in city master
plans, their number is regulated and each club requires a permit. As such, no decentralization
of the choice of club locations is really required. The fact that in real life decentralization of the
choice of facility locations does not take place is a clear indication of the complexity of such a
process.

In what follows we investigate the decentralization of locating facilities purely for acad-
emic interest. The optimal facility location is the one that minimizes overall commuting costs

19The price pd
Gij

defined here does not equate with the household’s marginal rate of substitution between the

club good and the composite good consumed by the individual. It is, therefore, not really a (Lindhal) price but
more a lumpsum tax. However, a price-taking individual will consume the correct optimal CG since this is the
quantity of the CG provided by the closest facility and it is the better option of the CG consumption compared
to other facilities of the same type. This lumpsum is preferred over Lindhal pricing since all users of a facility
pay the same.
20Retail stores are facilities of a club with, yet, another method of financing its operations. Stores provide the
service of distributing consumption goods to the general public. They buy goods from producers at gross prices
and sell them at higher prices. Stores differ from each other in the type of goods they sell, their diversity and
prices, accessibility to the store, etc. In practice, although these stores are very competitive, they are not price-
takers and the method of payment for their services is not as in Proposition 4. Yet their allocation could be
optimal if the government would tax the profits of the stores and refund buyers for excess payment. In practice,
taxes on stores are high but the refunding of buyers is practically impossible and, as before, the tax income
becomes part of the government’s general budget.
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from the market area, i.e., (20) has to be fulfilled. If households are left to pay for their own
commuting, facility operators will choose facility locations that maximize their patronage and
profits and disregard the effect the facility location has on commuting costs. This may lead
operators to locate their facilities inefficiently. For example, if two facilities of the same club
are in a complex, both of them will locate in the center of the complex, each trying to add to
its market area the more densely populated areas in the center of the complex while giving up
sparsely populated areas closer to the complex boundary. To induce facility managers to locate
efficiently, their goal function should include the minimization of their patrons’ total commuting
costs, so that (20) is satisfied. To achieve this goal, each facility operator should transport his
patrons by himself, in return for a predetermined lumpsum payment. The lumpsum should be
the same to all residents living on the same side of the facility and equal to the commuting
costs of an individual living at the boundary of the market area. With this method of payment,
a facility manager has an incentive to choose a facility location that minimizes overall trans-
portation costs, since he will be maximizing his profits from transportation. Indeed, a first-order
condition for such a minimization is (20). At the same time, the local government should tax the
additional profits of the club owner and redistribute them among the club’s patrons so that the
lumpsum transportation payment of a household minus the transport subsidy it receives equals
the household’s actual transportation costs. In this case, the redistributed amounts vary from
one location to another even within the market area of the same facility and even if all clubs are
the same. Beside all the above drawbacks which render this decentralization unpractical, this
decentralized method of choosing a facility location, suffers from the inherent problem that the
facility operator can only acquire monetary travel costs. Costs involving the value of travel time
must be borne by the individuals themselves. Thus, the facility operator may only minimize
partial commuting costs and does not locate the facility optimally. In view of these drawbacks,
we would conclude that the determination of potential facility locations should be left to city
planners.

5. Agglomeration of Spatial Clubs and Households

In this section we investigate general agglomeration trends of spatial clubs and households
in optimal allocations and elaborate on allocations of two simple basic configurations, each
of which characterizes a particular type of club’s agglomeration: the first deals with perfect
agglomeration of facilities of different clubs and the second involves imperfect agglomeration of
facilities of different clubs. We give an example in which perfect agglomeration of facilities in
the center of a complex is a unique global optimum. In addition, we show that a local optimum
solution of a basic configurations may have a domain in the functions space, in which it is a
global optimum. As a reminder, a complex configuration is a vector with I integer components
mi, which do not have a common multiplier. Each mi designates the number of facilities of club
i in a complex. The variable k measures the number of complexes in the economy.

5.1. General Characteristics

In a ring-shaped economy that is partially unoccupied, even if we assume that the occupied
land constitutes a single connected segment (0, L), 0 < L (=kL) < L, and all the unoccupied
land is the segment (L,L), there are two edges to the occupied land: L(≡ kL) and O(≡ L).21

Since all CGs are essential, these two edges must be boundary points to all clubs, i.e., the origin,
O, is the left boundary of the first facility of each club and L is the right boundary point of the

21If the occupied land is not connected, there are more than just two edges to the economy, a fact that strengthens
our arguments.
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last facility of each club.
To see that an agglomeration of clubs in an economy with edges and a uniform population

distribution is ineffective, consider the following example of an allocation of I clubs in such an
economy. Each of the clubs has the same number of identical market areas and facilities that
are located in their midst, i.e., mi = 1,∀i, and the number of complexes, k, is also the total
number of facilities of each club. Since the extreme two boundaries of every club coincide, it
follows that all market areas are common to all clubs and the facilities of all I clubs are jointly
located in the center of each market area. In other words, facilities of all clubs agglomerate in
a single location at the center of each complex.

We also assume in this example that the population is uniformly distributed over space
and that the quantity of CG in each of the facilities of a club is the same. Another assumption
is that all households have the same resources and utility level, hence, all households must also
consume the same amount of composite good. In short, in the economy just constructed, all
households have the same utility level and consume identical bundles of housing, composite good
and CGs. Market areas are common to all I clubs and in the center of each market area facilities
of all I clubs are agglomerated.

Now, suppose the economy no longer has edges and kL (≡ L) = O(≡ L). Then the
previous allocation of clubs with common market areas and agglomeration of facilities of the I
clubs exists in the edgeless economy as well, but in this case the last boundary of the last market
area of each club coincide with each other as well as with the first boundary of the first market
area of each club. However, in this edgeless economy, unlike the economy with edges, there
are no points that must be a boundary to all types of clubs. Actually, a club in the edgeless
economy is free to have its boundaries anywhere as long as the distance between two consecutive
boundaries of the same club are constant and equal to L. Therefore, all clubs can be arbitrarily
arranged in a consecutive order and the location of boundaries and hence of facilities of different
clubs, can be arranged so that the distance of a facility of one club from the next consecutive
club’s facility is L/I. The sizes of a club market areas remain unchanged as in the allocation
with agglomeration, the location of each facility remains in the middle of its market area and the
quantity of CG in each facility remains as is. The result of such an allocation is first of all that
there is no agglomeration of facilities; in fact, the facilities are distributed evenly throughout the
ring. Secondly, since the market areas are the same in the two allocations and the distribution
of population is uniform, the number of patrons and travel distances in each market area remain
the same as in the economy with edges. Consequently, total commuting costs in each facility are
unchanged as well as total provision costs. It follows that each household consumes the same
basket as before and therefore has the same utility level, but this time there is no agglomeration
of facilities in the allocation.

The above example implies that an allocation with an agglomeration of facilities of differ-
ent clubs in a second best, edgeless economy, constrained to a uniform population distribution,
is just one of an infinite number of equivalent allocations, all with the same consumption bundle
and utility level but without an agglomeration of clubs. This, in turn, implies that the ag-
glomeration of facilities of different clubs does not contribute to welfare in an economy with a
uniform population distribution and is therefore, an ineffective agglomeration. The fact that in
the above example of an economy with edges, there is a single allocation and in this allocation
facilities agglomerate, is entirely due to the economy’s edges and to the technical coincidence
that all clubs have market areas of the same size. Therefore, in order to avoid confounding the
main issues of this paper and to concentrate on essentials, from here on we restrict our analysis
to solutions of the model that satisfy the following Condition A:
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ConditionA In an optimal allocation investigated here:

(i) The number of complexes, k, is an integer.

(ii) There is no vacant land in the economy, i.e., L (= kL) = L and RA > 0,

where RA is the shadow rent at a complex boundary.

Part (i) of Condition A is intended to avoid the problem of indivisibility of optimal complexes
by dealing only with population sizes that are integer multiplications of an optimal complex
size. In that we follow HPT. Part (ii) is intended to achieve an edgeless economy to avoid the
‘edge-of-the-economy’ effect. Under Condition A, for every area L of the economy we have a
lower bound of N , N (L) , such that every N fulfilling Condition A, also fulfills N >N (L) . Then,
L (≡ kL) = L.

We attribute the term central location pattern (CLP) to a club’s location pattern in
which every market area is common to all clubs and facilities of all clubs are located in the
center of these joint market areas. Thus, in the above example, the initial location pattern with
agglomeration of facilities of all I clubs is a CLP.

We now introduce a new tool to aid in the proof of the next proposition, a rotation of a
club system while keeping the population and all the rest of the clubs unmoved. This tool is
useful in an edgeless, ring shaped, uniform density economy.

Definition: Let a rotation of club i be a shift to the right by a given distance of all
the nodes of club i, while the rest of the economy remains unchanged.

Club i nodes are the boundaries and facility locations of club i of all the facilities in the
economy and in a rotation of club i, the locations of nodes of clubs other than i remain constant
as do the quantities of CGs in the facilities of all clubs, including club i. This rotation maintains
constant distances between club i nodes and keeps the locations of households unchanged.
We now return to the first best allocation to prove the following Proposition:

Proposition 5 In a first-best allocation of a club economy the population density is never uni-
form, i.e., there are segments of the economy in which n (x) �= N/L.22

Proof: The proof is by contradiction and it applies to cases satisfying Condition A. Suppose
there is an optimal allocation in which n (x) = N/L for all x. We show below that this
assumption leads to a contradiction.
We first argue that in an economy with a uniformly distributed population, symmetry con-

siderations alone imply that all the facilities of a club are identical and each household in the
economy has the same consumption basket. The optimality of a club is determined in this
economy, by the choice of three parameters: the size (length), lij , of the market area, which in
turn determines Nij , the patronage of the facility, where Nij = nlij , the second parameter is
the facility location, xi,2j , which is always in the midst of the facility and the third parameter
is the quantity of CG in the facility, Gi,j . These three parameters depend only on the density
and homogeneity of the population that are the same everywhere, which implies that in all the
facilities of a club these three parameters have the same values. Condition A implies that there

22When there is at least one transportation cost function whose second derivative is strictly negative, i.e., there
is at least one io s.t., t

′′

i0<0, we can strengthen the proposition’s result. Actually, if t
′′

i0<0, there is no segment in
the economy in which the density of population is constant. To see this, consider (B2) in Appendix 7.2, in which
we see that if ṗh vanishes at a point x, p̈h must be positive there. Since ṗh = 0 if and only if the gradient of the
density function is zero as well, i.e., ṅ (x) = 0, the assertion follows. �
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are no divisibility problems in the economy. The same symmetry considerations also imply that
housing consumption, H (x) , is the same everywhere, since the demand for housing and con-
struction conditions are the same everywhere. The same amount of CGs everywhere together
with the same utility level to all, u, the consumption of the composite good, z (x) , and with it
the whole consumption basket are identical everywhere. Thus, in such an optimal allocation,
H (x) = H, Z (x) = Z, and Gij = Gi for all i, j and x, where H,Z, Gi and u are constants.

Consider now a rotation of a club; the consumption of any household in the economy does
not change by the rotation: some households may have their relative location changed within
the same market area of a facility and others may have the facility changed as well. However,
since all facilities of a club contain the same amount of CG and each location in the economy
is contained in one of the facilities of the club, all households consume the same amount of CG
before and after the rotation.
Since the rotation keeps the length of the market area unchanged and the density of population

constant, the patronage of a facility remains Ni. The overall commuting costs in a facility of
club i,

∫ l
0 nti (|y − l/2|) dy, is the same both, before and after a rotation. Commuting costs of

a particular household to the nearest facility may increase or decrease, but since the number of
facilities does not change and neither do commuting costs in a facility, overall commuting costs
in a club do not change.
When rotating a club, we are free to determine the location of one of its nodes, all other

nodes are than determined by this choice since the order of and distances between nodes must
be maintained. Accordingly, we rotate each club so that they all share one facility location, say,
x2, i.e., xi2 = x2, for all i = 1, ..., I. Thus, after the rotations, there is a neighborhood of x2 the
size of the smallest market area, in which residents commute only to x2 to consume all types of
CGs.

We now construct two equations describing the optimal ‘price of housing function’ after
the rotations in the neighborhood of x2. From equations (17) and (18) we obtain (i) below and
from the definition of ph (x) in (9) we obtain (ii) below.

puoh (x) =
1

H

[

Y + ν − Z −
I∑

i=1

ci2 (Gi,Ni)−
I∑

i=1

ti (|x− x2|)

]

. (i)

puoh (x) =
u2(x)

u1(x)
. (ii)

∀x, x2 − ε ≤ x ≤ x2 + ε, where ε is the length of the smallest market area.

If we will show that the two expressions of puoh in (i) and (ii) obtain different values in some
locations we could reach the contradiction that the optimal allocation with uniform population
distribution is inconsistent and therefore does not exist. From the discussion above it follows
that the values of H,Z,Gi and Ni are the same constants everywhere and do not vary by
rotations. Transportation costs to all facilities in the neighborhood of x2, however, increase
with the distance from x2, as seen in (i) above. Thus the housing price function after the
rotations and in the neighborhood of x2, i.e., p

uo
h (x) , on the one hand in (i) declines when

the distance from x2 increases and on the other hand in (ii) is a constant, since everywhere,
including the neighborhood of x2, H,Z, and Gi are constants and do not vary with distance.
Since puoh (x) must be the same in (i) and (ii) , this inequality is a contradiction. Therefore our
initial assumption that n (x) = N/L everywhere, is not correct and there are locations in which
the density of population, n (x) , is different from N/L. �
Another property of an optimal solution in a spatial club economy is that the allocation is
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symmetric with respect to the center of the complex. The spatial symmetric structure is as
follows: a club i with an odd number of facilities in a complex, mi, has facility j = mi+1

2
located in the middle of the complex with its market area spread symmetrically around the
facility. The remaining mi−1 facilities, an even number, are arranged consecutively and located
symmetrically with respect to the center of the complex, so that each facility has its mirror image
facility on the other side of the center. Thus, facilities j and j′ are two symmetric facilities if
j+ j′−1 = mi. If mi is an even number there is no facility in the center and instead a boundary
is located there. In this case of an even mi, all the facilities are symmetrically located around
the center so that a facility j is the mirror image of its symmetric facility j′ on the other side of
the center where j + j′ − 1 = mi. The population density is also symmetric around the center
of the complex. It should be reminded that in each complex configuration there is at least one
club with an odd mi otherwise the configuration would have a common multiplier and would
not be basic. Therefore, there is at least one facility in the center of each complex. We can now
prove the existence of the symmetry in an optimal allocation in Proposition 6 below.

Proposition 6 The optimal complex in a solution of the model that satisfies Condition A is
located in a symmetric structure (as described above).

Proof: To prove the Proposition we need to show that the necessary conditions are consistent
with a symmetric structure. We do so by assuming that the first-order conditions are fulfilled in
a symmetric structure and show that it does not lead to any contradiction. When checking the
consistency of the necessary conditions we need to concentrate mainly on their spatial aspects.
Due to Condition A it is sufficient to analyze a representative complex only.
We designate by L the right boundary and length of the representative complex and by o its

left boundary. Accordingly, the center of the representative complex is L/2, it turns out that
L/2 = xi,mi+1 for all i and if mi is odd, xi,mi+1 is the location of the median facility mi+1

2 and
if mi is even, xi,mi+1 is the boundary between the two middle facilities, mi

2 and mi

2 + 1 in the
complex. For each x, o ≤ x ≤ L/2 there is a point x′, symmetric to x with respect to L/2, such
that x′ = L− x , then L/2 ≤ x′ ≤ L.
We start the consistency check with equation (18) by showing that the (bid) housing price

function(s) calculated from the equation is symmetric. We first show that the function Tr (x)
in (17) is symmetric with respect to L/2 . If x, o ≤ x ≤ L/2 , is in the market area of
facility j = mi+1

2 of club i, where mi is odd, then so is x′ and ti (|x− L/2|) = ti (|x′ − L/2|) . If
x, o ≤ x ≤ L/2 is in a facility of club i with an even mi or in facility j, j ≤ mi and j �=

mi+1
2 of

club i that has an odd mi, then(xi,2j − x) =
(
x′ − xi,2j′

)
and ti (|xi,2j − x|) = ti

(∣∣x′ − xi,2j′
∣∣) ,

where j + j′ − 1 = mi, xi,2j′ = L− xi,2j and x = L− x′. So far we have shown that commuting
costs of a household at x to facilities of all I clubs are the same as they are to a household at
x′, where x′ = L− x.
Symmetry also implies equality of patronage in symmetric facilities, i.e., Ni,j = Ni,j′ , as well

as equality between the CGs. Hence Gi,j = Gi,j′, where j + j′ − 1 = mi. The equalities of
the patronage and CGs between symmetric facilities imply that so are the congestion tolls, i.e.,
ci2 (Gi,j, Ni,j) =c

i
2

(
Gi,j′ , Ni,j′

)
. If x is a point in the market area of facility j = mi+1

2 of club
i that has an odd mi, then so is its symmetric point x′ = L − x, and households in the two
locations pay the same congestion toll in facility j = mi+1

2 of club i.
The implications from the arguments above are that two households, one residing at x and

the other at x′, travel to symmetric facilities, consume the same amounts of CGs and pay the
same commuting costs and congestion tolls. This implies that Tr (·) in (17) fulfills

Tr (x) = Tr
(
x′
)
, ∀x, x′, s.t. x+ x′ = L (27)
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We are now able to show that (18) is consistent with a symmetric structure. From (27) it
follows that Y + v -Tr (x) = Y + v -Tr (x′) . Therefore, ph (x)h (ph (x)) + z (ph (x)) , the term
equal to Y + v -Tr (x) in (18) after moving Tr (x) to the other side of the equation, must also
be equal to ph (x

′)h (ph (x
′)) + z (ph (x

′)) . The term ph (·)h (·) + z (·) is a monotonic increasing
function of ph (·), its only independent argument once all the CGs are given.23 It follows that
the bid housing price function solved from ph (·)h (·)+z (·) are symmetric, i.e., pbh

(
x, j1, .., jI

)
=

pbh
(
x′, j1′, .., jI′

)
, where ji + ji′ − 1 = mi; and x + x

′ = L , ji′, ji ∈ (1, ...,mi) , 0 ≤ x ≤ L/2
,L/2 ≤ x′ ≤ L. This in turn implies that the housing price function itself is symmetric, i.e.,
ph (x) = ph (x

′) , where x + x′ = L. The symmetry of ph (·) implies that n (x) (= n (ph (x))) is
also symmetric around L/2, since it too is a monotonic increasing function of ph (·) when the
facility locations are given (see Appendix 7.2). For given facility locations we can obtain from
(24) the boundaries of symmetric facilities by using bid housing price functions. The symmetry
of these functions together with the symmetry of facility locations imply the symmetry of the
boundaries. When the boundaries are given, (20) implies the symmetry of facility locations. The
consistency of a symmetric complex with the rest of the necessary conditions and constraints
follows immediately. �

Propositions 5 and 6 state that a first-best allocation is symmetric and that its popu-
lation density is never uniform. The question is whether agglomerations of facilities of various
clubs actually take place in an optimal allocation. To answer this question we characterize two
optimal allocations, each with a simple yet different complex configuration, where we show that
the concentration of households and agglomeration of clubs’ facilities do occur in an edgeless
economy.

5.2. Perfect Agglomeration

The term perfect agglomeration refers to an agglomeration of facilities of different clubs
located at the same place.24 An allocation with a central location pattern (CLP) in which all
the facilities in a complex are located in the center of the complex is an example of perfect

agglomeration. In what follows we show that our model with the configuration

I︷ ︸︸ ︷
(1, ..., 1) has an

optimal solution with a CLP that satisfies the necessary conditions specified in Section 3. From
Proposition 6 we know that all the facilities in a CLP allocation are located in the center of a
symmetric complex. By the superscript c we designate the optimal values of variables of the

model with the configuration

I︷ ︸︸ ︷
(1, ..., 1). In the Proposition below we investigate properties of the

model’s solution.

Proposition 7 The optimal allocation of a spatial clubs economy with the configuration

I(︷ ︸︸ ︷
1, ..., 1

)

that satisfies Condition A consists of k complexes, each with a CLP, in which facilities of all
the clubs are located in the center of the complex and the population is distributed symmetrically
around the complex center. The population density function and the price of housing function
are both symmetrical around the complex’s center, continuous and differentiable everywhere ex-
cept at the nodes where both functions are continuous but not differential. Both functions are
declining with distance from the center and the housing price function has a positive second

23To see this, note that since h and z are compensated demand functions, ph
∂h
∂ph

+ ∂z
∂ph

= 0. When we substitute

the above expression into the differential of the term phh+ z with respect to ph we obtain ∂(phh+z)
∂ph

= h > 0.
24In a model where facilities occupy space, perfect agglomeration means that the areas occupied by the facilities
are adjacent to each other with no households in between.
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derivative.

Proof: In a CLP xi,2j = xc2j, ∀i, since all facilities are located in the center of the j-th complex,
for all j = 1, ..., k. Substituting xc2j into equation (B1) in Appendix 7.2 yields,

ṗh(x) = −
1

h(x)

I∑

i=1

t′i(|x− x
c
2j |)sign(x− x2j);

∀x, xc2j−1 < x < xc2j+1, and ∀j, j ∈ (1, ..., k) , (28)

where a dot above a function designates differentiation with respect to distance and xc2j−1 and

xc2j+1 are the boundaries of complex j and of all the facilities in the complex. Let yj
def
= |x−xc2j |;

s.t., xc2j−1 ≤ x ≤ xc2j+1,∀j, j ∈ (1, ..., k), be the distance of a point x in complex j from the
center of the complex, xc2j . Then 0 ≤ yj ≤ L/2, ∀j. If we designate points in complex j by yj
then yj = 0 is the center of complex j, and yj = L/2 are the boundaries of the complex. Note
that each yj, 0 < yj ≤ L/2, stands for two symmetric points in the complex. In what follows
we avoid using the index j or superscript c, unless there is a possibility of confusion. From (28),
after substituting into it y for |x− xc2j |, we obtain

∂ph(y)

∂y
= −

1

h(y)

I∑

i=1

t′i(y). (29)

Equation (29) implies that the first derivative of ph(y) is negative. This means that ph(y) is
monotonically decreasing, its highest value is at the center where y = 0 and its lowest value at
the boundaries where y = L/2. The second derivative of ph(y) is always positive (see (B2) in
Appendix 7.2), which means that the rate of decline decreases with distance from the center.
From (B4) in Appendix 7.2, we learn that n (ph) for a given set of CGs, (Gi) , is a monotonic
increasing function of ph. This implies that nc, like pch, is monotonically decreasing with y, and
attains its highest value in the center of the complex where y = 0, and its lowest value at the
boundaries where y = L/2. �

Corollary 8 In an optimal allocation with a CLP, the agglomeration of facilities of different
clubs in the center of each complex is accompanied by a concentration of households around the
center.

The proof follows directly from Proposition 7.
Definition: An optimal allocation of the model with a given set of functions and the basic

configuration M , is a global optimum if any optimal allocation of the model with the same
functions but with a basic configuration other than M has a lower value of the goal function.
In the example below we present additional specifications to the model’s general functions

introduced in Section 2. The allocation with the CLP of Proposition 7 together with the complex

configuration

I(︷ ︸︸ ︷
1, ..., 1

)
is the global optimum solution of the model whose functions fulfill the

specifications in the example below.
EXAMPLE: Functions Specifications For A Global Perfect Agglomeration
Consider a model of an economy with spatial clubs which in addition to the conditions on the

functions set in Section 2, satisfies the following more specific conditions;
1. The utility function is of the form u = U(H,Z,ψ(G1, . . . ,GI)), where ψ(G1, . . . ,GI) is

invariant for permutations of the set (G1, . . . , GI), e.g., ψ(G1, . . . , GI) =
∏I

i=1Gi.
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2. All clubs share the same transportation cost function, i.e., ti(y) = t(y), ∀i an the same
provision cost function, i.e., ci(Gij ,Nij) = c(Gij ,Nij), ∀i, j.
The housing price function of a CLP in an optimal complex is depicted in Figure 3.

Ph(L)

Ph

0 X2
L

The Housing Price Function

Figure 3: The Housing Price Function of an Optimal Complex with the Configuration (1,...,1).

Lemma 4 An optimal CLP allocation as described in Proposition 7 is a global optimum solution
to the model with functions from the above Example.

Proof: To show that the global optimum with functions from the Example has a CLP, we show

that such a global optimum has the configuration

I(︷ ︸︸ ︷
1, ..., 1

)
. If in a global optimum solution to

the model with functions in the Example above, the sizes of a particular club’s market areas, the
quantity of CGs in each of the club’s facilities and the club’s facility locations and boundaries
satisfy the necessary conditions specified in section 3 and are therefore optimal for this one club.
These same values also satisfy the necessary conditions of all other clubs and the same values
are optimal for all clubs. The reason for this is that all clubs have the same cost functions and
utility function. This implies that every market area is common to all clubs, which in turn,
implies that each market area is a separate complex. The configuration of such a complex is

I(︷ ︸︸ ︷
1, ..., 1

)
and an allocation with a CLP is, according to 7, its optimal solution.�

It should be noted that a marginal change in the number of facilities in a complex is
impossible and the smallest change is of one more (or less) facility. Therefore, sufficiently small
variations in the specifications of the functions would leave the basic configuration of the global
optimum unchanged. For example, if instead of using the utility function u = H · Z ·

∏I
i=1Gi
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in the Example, the utility function used is u = H · Z ·
∏I

i=1G
1+αi
i , where |αi| are sufficiently

small yet different from each other, the global optimum allocation would still be a CLP. The
same is true for small variations in the transportation cost functions of the different clubs or
small differences in their provision cost functions. However, while the basic configuration of the
global optimum may not change due to small variations, all other variables change continuously.

5.3. Imperfect Agglomeration

In this section we characterize the optimal allocation of the model with the basic configuration
given below,

(mi = 1, ∀i = 1, ..., I1 & mi = 2 , ∀i = I1 + 1, ..., I) ; 1 ≤ I1 < I <∞. (30)

While in perfect agglomeration we investigate the agglomeration of facilities of all clubs in
a single location at the center of the complex, in this section we investigate an example of an
imperfect agglomeration. Such an agglomeration takes place when facilities of different clubs
agglomerate in clusters around the center of the complex but steer clear of it. By saying that
the agglomeration is imperfect we mean that the clusters may contain dwellings between the
facilities.
We first introduce the symmetric structure of the allocation with the configuration given in

(30) as specified in Proposition 6. The symmetric structure possesses the following properties:
(1) Each of the clubs i ∈ 1, ..., I1, (henceforth SF clubs) have one facility located in the middle
of the complex and its market area is the whole complex. (2) The two facilities of each of the
clubs i ∈ (I1 + 1, ..., I) (henceforth DF clubs), are symmetrically located on each side of the
center of the complex and each of their market areas is extended between a complex boundary
and the center. Altogether, the complex has I1 facilities of SF clubs and 2 (I − I1) facilities of
DF clubs, (I − I1) facilities of DF clubs on each side of the complex center. The properties of
the allocation with the configuration (30) are depicted in the series of lemmas presented in the
rest of this section.

Lemma 5 In the optimal allocation of the model with the configuration (30) discussed above, all
the facility locations of the DF clubs are in the second and third quarters of the complex area.25

The average density of the population residing between the two facilities of the DF club located
farthest from the center (one facility to the left and one to the right of the center), is higher
than it is between these two DF facilities and the boundaries.

Proof: Without loss of generality, we consider only the first half of the representative complex,
namely the segment (0, L/2) (an equivalent analysis would apply to the other half (L/2, L)).
Let x2 in (0, L/2) be the facility location of the DF club closest to the origin, 0, and farthest
from the center L/2 (if there is more than one such club, one of them is chosen arbitrarily).
This means that all facility locations of the DF clubs in (0, L/2) are located between x2 and the
center, L/2. We show below that x2 is in the second quarter of the complex area and therefore
so are the rest of the DF locations.
To see that x2 is in the second quarter, consider a location x that is to the left of x2, i.e.,

0 ≤ x < x2. The point x has a point x′, x2 ≤ x′ ≤ L/2, symmetric to x with respect to x2, so
that x2 − x = x′ − x2. Note that all the individuals residing in the segment (0, L/2) travel to

25By the term ‘quarter’ we refer to a segment which results from a division of the complex’s length into four
equal consecutive segments. The first quarter is the segment farthest to the left and the other three quarters are
numbered consecutively in the clockwise direction.
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the same facilities. An individual residing in x′ travels to the same facilities as the individual
at x, however, the distances from x′ to all the facilities that are not located in x2 are shorter
than from x, because all the facilities are located to the right of x2. Even if all the DF clubs
are located in x2, the distance to travel from x′ = 2x2 − x to the SF-clubs in the center is still
shorter. Accordingly, commuting costs from x′ to all facilities are lower than from x, while all
other arguments of piah (x) are the same. In (B1) in Appendix 7.2 it is shown that an increase
in transportation costs, while all arguments of ph (x) are kept constant, causes ph (x) to decline.
Therefore, piah (x) , the housing price at x, 0 ≤ x < x2, must be lower than piah (x

′) , the housing
price at x′. Consequently, because n (ph) is monotonic increasing in ph while the rest of the
variables remain constant it follows that nia (x) < nia (x′) . Consider now (20) with respect
to facility (i,1) located in x2. On the left-hand side of the equation, for every x which has a
symmetric x′, t′i (x2 − x) is equal to t

′
i (x

′ − x2) on the right-hand side. However, t′i (x2 − x) on

the left-hand side of the equation is weighted by nia (x) , which is lower than nia (x′), the weight
of t′i

(
x′ − x2

)
on the right-hand side. This implies that for the equality in (20) to hold, the

interval (0, x2) , in which the weights are lower, must be longer than the interval (x2, L/2) in
which the weights are higher. This, in turn, implies that x2 − 0 > L/2− x2, which means that
x2 > L/4 (see Figure 4). This is the first item we have to prove in the lemma.
We just proved that nia (x′) > nia (x) for all x located to the left of x2 and having a symmetric

point x′ with respect to x2 . Additionally, there are points between the origin and the point
(2x2 − L/2), the point symmetric to L/2 with respect to x2, which is located to the left of x2.
These points left of (2x2 − L/2) have no matching symmetric points and since the transportation
costs of residents in these locations are higher than in any point x that has a matching symmetric
point, the value of piah (x) for x < (2x2 − L/2) must be lower than it is for any x>(2x2 − L/2).
Furthermore, as x < (2x2 − L/2) approaches the origin, p

ia
h (x) continues to decline. To see this,

consider equation (B1) in Appendix 7.2. In this equation, Ṫ r (x) is positive (negative) when x

increases (declines) since sign(x−xi,2ji ) is negative for all i. Therefore, ṗiah = −
Ṫ r
h(x) is positive,

i.e., piah (x) declines when x approaches zero. In turn, it follows from (B4) in Appendix 7.2 that
the density of population at the unmatched points to the left of (2xi2 − L/2) is lower than at
any other point to the right of (2xi2 − L/2) . Thus, the average density of population between
x2 and the origin must be lower than between x2 and L/2.�
In what follows we show that all the DF clubs agglomerate in two clusters, one in the second

quarter of the complex and the other in the third. Let x2 designate the facility location of the
DF club in (0, L/2) , which is located closest to L/2. At the DF club closest to the center of
the complex (20) is satisfied with the point x2 as the location of the facility. This means that
there is a positive distance between x2 and the boundary at L/2, equal to the short side of the
market area of the facility closest to the center. It follows that all the facilities of the DF clubs
in the first half of the complex are located between x2 (< L/2) and x2 (> L/4) and are clustered
together close to each other in the second quarter of the complex (and consequently, the DF
clubs in the second half of the complex are clustered in the third quarter of the complex). We
term such close grouping of facility locations, a cluster of DF facilities. In the lemma above we
showed that such clusters of DF clubs are located closer to the center of the complex than to
the boundaries. In such cases we say that the DF clusters gravitate towards the center of the
complex.
To clarify the role of transportation costs in an imperfect agglomeration of DF clubs, consider

the following Lemma;

Lemma 6 In an allocation with the basic configuration specified in (30), different DF clubs with
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proportional transportation cost functions share the same facility locations.26

Proof: Suppose that i and i′ are two clubs with proportional transportation costs, i.e.,
ti (x) /ti′ (x) = αii′ , ∀x, where αii′ , the factor of proportionality, is constant. Then the pro-
portionality is retained by the derivatives as well as the functions and t′i (x) = αii′t

′
i′ (x) .Thus, if

(20) holds for club i it holds for its proportional club i′ at the same facility location as well. To
see this consider (20) for club i, in which we substitute αii′t

′
i′ (x) for t

′
i (x) and then we eliminate

the proportionality factor αii′ from the equation to obtain (20) for club i′ at the same facility
location as club i. �
Note that all linear transportation cost functions are proportional and therefore DF clubs with

linear transportation cost functions agglomerate perfectly at a single location. Examples can be
constructed of non-proportional transportation cost functions of DF clubs that yield different
facility locations for each club.
Figure 4 depicts the housing price function in an optimal complex with the configuration (1,2).

Ph(L)

O                         L/4                        L/2                       3 L/4                       L       X
X1,1                                               X1,2                      X1,3                      X1,4                                               X1,5 

X2,1                                                                                                            X2,2                                                                          X2,3

Ph

The Housing 

Price Function

Figure 4: The Housing Price Function in a Complex with the Configuration (1,2)

We can now summarize the analysis of imperfect agglomeration performed in this section by
the following Proposition;

Proposition 9 In an optimal allocation with the basic configuration specified in (30)
(i)The facilities of SF clubs in the complex, i.e., of clubs i ∈ (1, ..., I1) , are all perfectly

agglomerated in the center of the complex;
(ii)The facilities of DF clubs, i.e., of clubs i ∈ (I1 + 1, ..., I) , agglomerate imperfectly in

clusters that gravitate towards the center of the complex, i.e., the clusters agglomerate in the
second and third quarters of the complex.

26Recall that in our model, if two facilities of different club types share the same location, it means that they are
adjacent to each other with no residential area between them.
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(iii)The average density of population between the clusters of the DF clubs and the center of
the complex is higher than the average density between these clusters and the boundaries of the
complex.
(iv) If, in a cluster, two DF clubs have proportional transportation cost functions, they share

the same facility location.

6. Summary and Concluding Remarks

The purpose of this paper was to characterize optimal allocations of an economy with
spatial clubs and to investigate agglomeration trends of households and club facilities in it. Our
results showed that each local optimum could be decentralized, sometimes in more than one
way, although most were difficult, if not impossible, to implement. In an optimal allocation
of clubs, the primary agglomeration was of club goods into facilities due to scale economies in
their provision to the population. The primary agglomeration led to a secondary agglomeration
of population which, in turn, led to the tertiary agglomeration of facilities of different clubs in
centers. The three types of agglomerations occurred simultaneously and their ordering is due
to causality not timing: Without the primary agglomeration there would not be a secondary
one, and without the secondary one there would not be a tertiary agglomeration. Furthermore,
an optimal allocation would never have a uniform population distribution and neither would an
allocation with a uniform distribution of population have an efficient agglomeration of facilities.
We then showed that the price of housing as well as the supply and demand for housing functions
were continuous functions of the distance, x, as was the density of population function. We also
showed that the optimum complex was symmetric with respect to its center.

We characterized two allocations, each with a specific complex configuration: in the first
allocation, each complex contained one facility of each club and in the second allocation each
complex contained both: clubs that had one facility per complex and clubs that had two fa-
cilities per complex. We identified two distinct types of agglomerations of club facilities: the
perfect agglomeration and the imperfect one. In the perfect agglomeration, facilities of differ-
ent clubs agglomerated perfectly in the center of the complex, where they are adjacent to each
other without residential activity between them. In the second allocation, besides the perfect
agglomeration of facilities of some of the clubs in the center of the complex, facilities of the
rest of the clubs agglomerated imperfectly in clusters, but households still may were residing
between them. While the clusters as a whole were away from the center of the complex, but
drawn towards it.

In respect to the issue of global optimum solutions of the model, the solutions specified
were mostly to the model with a predetermined complex configuration. We termed such an
allocation a local optimum since the global optimum included a solution to the configuration
variables as well. The only global optimum was the solution to the model with functions specified
in the Example in section 5.2 together with the configuration (1, ..., 1).
The purposes of this paper were completely satisfied so far. One avenue for future research

may focus on the relation between certain costs and utility functions and their global optimal
configuration. Such a research may shade light on questions like what functions would result in
a hierarchy of clubs in a global optimum or what causes certain types of clubs to be imbedded
in other club facilities.
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7. Appendices

7.1. Deriving the Necessary Conditions for a Pareto Optimum

The Lagrangian, L, of the problem set up in Section 2 is given below in (A1) . The Lagrange
multipliers are: [λ (x) , α (x) , δij , γi, ρ, ω, η, >i, θi] . The constraints multiplied by ω, >i, θi in the
Lagrangian are effective equalities and their multipliers can obtain any sign. The rest of the
constraints are inequalities and their multipliers must be non-negative. When these multipliers
are positive the constraint they multiply is effective and when a constraint is not effective, its
multiplier vanishes. Thus,



32

L = U −

∫ L

0
λ (x)

(
U − u(Z(x),H(x),G1,j1(x), . . . ,GI,jI(x))

)
dx−

∑

i

γi



N −
mi∑

j=1

Ni,j





−

∫
L

0
α (x) (n(x)H(x)−Hs(x)) dx−

∑

i

∑

j

δij




Nij −

xi,2j+1∫

xi,2j−1

n(x)dx






−η






L∫

0

[n(x)Z(x) + ch(H
s)]dx+

I∑

i=1

mi∑

j=1

xi,2j+1∫

xi,2j−1

n(x)ti(|x− xi,2j |)dx+
I∑

i=1

mi∑

j=1

ci(i, j)−NY






−
∑

i

>i (xi,2mi+1 − L)−
∑

i

θixi,1 − ρ (L−L/k)− ω (N /k −N) . (A1)

The following equations are first-order conditions for the maximization of the model. To obtain
a first-order condition we differentiate the Lagrangian with respect to a variable of the model
and equate the result to zero. In each of the first-order conditions, the particular derivative is
written at the beginning of each equation and to the left of the double slashes.

∂L

∂xi,2mi+1

∥∥∥∥n (L)
δi,mi

η
− n(L) [ti(|L− xi,2mi |)] =

>i
η
. (A2)

∂L

∂L

∥∥∥∥
∑

i

>i
η
− [n(L)Z(L) + ch(H

s (L))] =
ρ

η
. (A3)

∂L

∂Nij

∥∥∥∥
γi
η
− ci2(Gij ,Nij) =

δij
η

(A4)

Substituting (A4) for j = mi into (A2) and the result into (A3) , yields

n (L)
∑

i

γi
η
−
ρ

η
= n(L)

I∑

i=1

[
ti(|L− xi,2mi

|) + ci2(i,mi)
]
+ n(L)z(L) + ch(H

s (L)). (A5)

∂L

∂n(x)

∥∥∥∥
∑

i

δiji(x)
η

−
α (x)

η
H(x)− z(x)−

I∑

i=1

ti(|x− xi,2ji(x)|) = 0. (A6)

Substituting (A4) into (A6) yields

∑

i

γi
η
−

[

z(x) +
α (x)

η
H(x) +

∑

i

ci2(i, ji (x)) +
I∑

i=1

ti(|x− xi,2ji(x)|)

]

= 0, ∀x, 0 ≤ x ≤ L. (A7)

∂L

∂Z (x)

∥∥∥∥λ (x) =
ηn(x)

u1(x)
. (A8)
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∂L

∂H(x)

∥∥∥∥
λ (x)u2(x)− α (x)n(x) = 0

=⇒ n(x)
[
α(x)
η
− u2(x)

u1(x)

]
= 0.

(A9)

∂L

∂Hs (x)

∥∥∥∥
α (x)

η
− c′h(H

s) = 0. (A10)

We multiply (A7) for x = L by n (L) and then substitute the result together with (A10) and
n (L)H (L) = Hs (L) into (A5) , to obtain;

Hs (L) c′h(H
s (L))− ch(H

s (L)) =
ρ

η
. (A11)

Equation (A7) implies that ρ
η
, the shadow price of the occupied land constraint, is also the land

rent at L, the boundary of the complex. By applying the Kunn-Tucker rule to (A11) we obtain:
ρ
η
> 0 =⇒ L = L/k and L < L /k =⇒ ρ

η
= 0. This, in turn, implies that ρ

η
is the alternative land

rent (RA in the text proper). We continue now with the derivation of the rest of the first-order
conditions

∂L

∂Gi,j

∥∥∥∥

∫ xi,2j+1

xi,2j−1

n(x) [ui+2(x)/u1(x)] dx− c
i
1(i, j) = 0. (A12)

∂L

∂xi,2j

∥∥∥∥

xi,2j∫

xi,2j−1

n(x)t′i(xi,2j − x)dx =

xi,2j+1∫

xi,2j

n(x)t′i(x− xi,2j)dx. (A13)

∂L

∂N

∥∥∥∥Y +
ω

η
−
∑

i

γi
η
= 0. (A14)

∂L

∂k

∥∥∥∥ ρL = ωN . (A15)

Since ρ is non-negative according to (A15), so must ω be non-negative. We now substitute (A14)
into (A7) to obtain:

Y +
ω

η
−

[

z(x) +
α (x)

η
H(x) +

∑

i

ci2(i, ji (x)) +
I∑

i=1

ti(|x− xi,2ji(x)|)

]

= 0. (A16)

Note that (A9) and (A10) imply that α(x)
η

is equal to ph (x) , the housing price function in the
text proper, and equation (A16) is the so-called ‘household’s optimal budget constraint’, where∑

i c
i
2(i, ji (x)) is the sum of all ‘congestion tolls’ to be paid by the household at x to each of

the I facilities it patronizes. The term ω
η is the household’s share in the overall alternative land

rents, as can be verified from (A11) and (A15) .
Now we substitute (A11) into (A15) to replace ρ with ω, and substitute the result into (A16)

to eliminate ω. We multiply the result by n (x) , integrate between [0, L] and into the result we
add the resource constraint (12) with (13) substituted into it. We then substitute (A10) and
(A11) into the result to obtain

∫ L

0

[
c′h(H

s(x))Hs(x)− ch(H
s(x))−

ρ

η

]
dx+

∑

i

∑

j

[
Ni,jc

i
2(Gi,j, Ni,j)− c

i(Gi,j ,Ni,j)
]
= 0.

(A17)

This is the Henry George rule for the complex.
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7.1.1. Continuity of Functions at Boundaries

The derivations below concern variables at the boundaries of clubs. In the text we use bid
rent functions to derive these relations. In this Appendix we use direct differentiation and show
that the technique of bid functions used in the text satisfies the necessary conditions derived in
this Appendix.
First we note that households residing to the left of a boundary travel to the left in order to

consume the CG, while residents to the right of a boundary travel to the right. This implies
residents in a neighborhood of a boundary consume each CG whose market areas are separated
by the boundary, at one of two different facilities. These two facilities provide the same CG but
they may be located at different distances from the boundary and contain different quantities
of the CG. Therefore the quantity of housing and composite good consumed by households at
the vicinity of a boundary may be discontinuous and when approaching a boundary from the
left the consumption basket may differ from the one when approaching the boundary from the
right. Consider such a boundary point xo between facilities jk& jk + 1 ∈ (1, ...,mik) , of clubs
ik ∈ (1, ..., I), k = 1, ...,K; 1 ≤ K < I , i.e., xo = xi1,2j1+1 = ... = xiK ,2jK+1 and xo is an interior
point to all clubs i, s.t., i �= ik&i ∈ (1, ..., I) . In the Lagrangian (A1), every integral which
contains xo in its domain can be split at xo into two integrals: in one integral xo is the upper limit
and in the other integral xo is the lower limit, i.e.,

∫ L
0 f (x)dx =

∫ xo
0 f (x)dx+

∫ L
xo
f (x)dx.When

the integrand is continuous at xo, splitting the integral does not affect the outcome. However,
there are control variables that may be discontinuous at such a boundary point, xo. Households
residing at x0 may commute either to the left of x0 or to its right to consume the CGs for
which x0 is a boundary. These two types of households, in addition to possibly using different
quantities of CGs, may differ in commuting costs and congestion tolls as well as in the amounts
of housing and composite good they consume. Thus, the variables that may be discontinuous
at xo besides Gik , are H (xo), H

s (xo), n (xo) and Z (xo). We designate by the superscript +
the limit at xoof these variables when approaching xo from the left and by the superscript −
the limit of the variables when approaching xo from the right. Accordingly, at xo the variables
H+ (xo) , Z

+ (xo) , n
+ (xo) and H

s+ (xo) are each left-continuous and H− (x0) , Z
− (x0) , n

− (xo)
and Hs− (x0) are each right-continuous. Note that Lagrange multipliers that are functions of
x, such as λ (x) and α (x) , may also split at the boundaries.

We now introduce these split variables into the Lagrangian at boundary points and then
derive the necessary conditions associated with them. First, note that the differentiation with
respect to the split variables themselves yields the same equations as the derivation with respect
to the same continuous variables but with the split variables replacing the continuous ones. New
necessary conditions are obtained only when differentiating with respect to the location of the
boundary, xo. In the Lagrangian, besides the integrals with limits in boundaries such as xi,2j±1,
there are three additional places where these split variables may appear: one is in the integrals
of the resource constraint that are multiplied by η; the second is in the utility constraint that
is multiplied by λ (x) ; and the third is in the equality of demand and supply of housing at each
location that is multiplied by α (x).

When differentiating with respect to xo either the utility constraint or the equality be-
tween the demand and supply of housing, we obtain the constraint multiplied by the Lagrange
multiplier at the boundary. This expression vanishes and therefore can be ignored. It should
be noted that households at a boundary xo = xik,jk+1, may either commute to their left or to
their right. If a household commutes to his left to facility ik, jk at xik,2jk he bears commuting

costs of tik(xo−xik,2jk), congestion tolls cik2 (ik, jk) and the variables associated with it at xo are
right-continuous (with superscript +). If, however, a household commutes to his right to facility
ik, jk+1 at xik,2(jk+1), his commuting costs are tik(xik ,2jk+1−xo), congestion tolls cik2 (ik, jk+1)
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and the variables associated with the household at xo are left-continuous (with superscript -).
Accordingly, the differentiation of the Lagrangian with respect to xo (= xik,2jk+1) is given below,

−n+(xo)

∑
k δik ,jk
η

+ n+(xo)Z
+(xo) + ch(H

s+ (xo)) + n
+(xo)

∑

k

tik(xo − xik,2jk) =

−n−(xo)

∑
k δik ,jk+1
η

+ n−(xo)Z
−(xo) + ch(H

s− (xo) + n
−(x0)

∑

k

tik(|xik,2(jk+1) − xo).

After substituting (A4) into the above equation and rearranging terms, we obtain the following
necessary condition for efficiency,

n+(xo)

[
∑

k

(
cik2 (ik, jk) + tik(xo − xik,2jk)−

γik
η

)
+ Z+(xo)

]

+ ch(H
s+(xo)) =

n−(xo)

[
∑

k

(
cik2 (ik, jk + 1) + tik(xik,2(jk+1) − xo)−

γik
η

)
+ Z−(xo)

]

+ ch(H
s−(xo)). (A18)

Ph (x) in the text is a continuous function of x (see Corollary 1) and in this Appendix it

is equal to α(x)
η (see (A9)), hence α(x)

η is continuous as well. Condition (A10) here, implies

that Hs (xo) is also continuous, i.e., Hs (xo) = (c′h)
−1
(
α(xo)
η

)
. This, in turn, implies that

i) ch(H
s± (xo)) = ch(H

s (xo)). and ii) n± (xo)H
± (xo) = Hs (xo) .

We now subtract from the square brackets in the left-hand side of (A18) the null-valued left-
hand side of (A7) for the variables at xo with the superscript + . With these right-continuous
variables the commuting is to the left to clubs ik, jk, k = 1, ...,K. Next, we subtract from the
square brackets on the right-hand side of (A18) , the null-valued left-hand side of (A7) for the
variables at xo with the superscript − , where commuting to clubs ik, jk + 1 is to the right of
xo to xik,2(jk+1). Since xo is an interior point of all clubs other than ik, commuting costs to and
congestion tolls at any club i, (i ∈ 1, ..., I ∩ i �= ik, k = 1, ...,K) , are the same for all households
at xo. In addition, we substitute i) and ii) above into the result to obtain, after rearranging
terms

n− (xo)




∑

i�=io

γi
η
−
∑

i�=io

ci2(i, j
i (xo))−

I∑

i�=io

ti(|xo − xi,2ji(xo)|)



+ ch(Hs (xo))−
α (xo)

η
Hs(xo) =

n+ (xo)




∑

i�=ik

γi
η
−
∑

i�=ik

ci2(i, j
i (xo))−

I∑

i�=ik

ti(|xo − xi,2ji(xo)|)



+ ch(Hs (xo))−
α (xo)

η
Hs(xo).

By reducing equal terms from both sides of the above equation we obtain n+ (xo) = n− (xo) ,
i.e., the density of the population is a continuous function of x in the boundary xo. This implies
that H (xo) =

Hs(xo)
n(xo)

is continuous as well at xo.
To summarize, in this section we proved that the continuity of the housing price function at a

boundary implies the continuity of the population density function, the housing supply function
and the housing demand function at the boundary. �
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7.1.2. Necessary Conditions for Boundaries and Bid Housing Price Functions

We now substitute the equality between the variables n (x0) , H
s (x0) and H (x0) with super-

script + to their counterparts with superscript − into (A18) and after reducing equal terms we
obtain,

∑

k

[
cik2 (ik, jk) + tik(xo − xik,2jk)

]
+Z+ (xo) =

∑

k

[
cik2 (ik, jk + 1) + tik(xik,2(jk+1) − xo)

]
+Z− (xo) .

(A19)

Condition (A19) is the necessary condition for xo to be a boundary point between facilities
jk and jk + 1 of club ik, for all k = 1, ...,K, i.e., xo = xi1,2j1+1 = ... = xiK ,2jK+1 and an interior
point in all other clubs. In the Lemma below we prove that this condition is equivalent to the
determination of boundary points by the intersection of bid rent functions (see section 3.3.3).

Lemma 7 Equation (A19) holds for xo if and only if (A20) below holds.

P b
h

(
xo;
[
jikk ,∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) , ∀i ∈ (1, ..., I)

)
∩ (i �= ik,∀k)

])
=

P b
h

(
xo;
[
jikk + 1, ∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) ,∀i ∈ (1, ..., I)

)
∩ (i �= ik, ∀k)

])
. ((A20))

It should be noted that the indexes jikk above are identical to the pairs ik, jk.

Proof: First we show that (A20) implies (A19) . From (22) we obtain at xo for facilities j
ik
k :

H (xo)P
b
h

(
xo;
[
jikk ,∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) , ∀i ∈ (1, ..., I)

)
∩ (i �= ik,∀k)

])
= Y + v−





Z+ (xo) +

∑

k

[
cik2 (j

ik
k ) + tik(xo − xik,2jk)

]
+
∑

i�=ik

[
ci2
(
ji (xo)

)
+ ti

(∣∣xo − xi,2j(xo)
∣∣)]




, (i)

whereas for facilities jikk + 1 we obtain,

H (xo)P
b
h

(
xo;
[
jikk + 1,∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) ,∀i ∈ (1, ..., I)

)
∩ (i �= ik,∀k)

])
= Y + v−





Z− (xo) +

∑

k

[
cik2 (jk + 1) + tik(xik,2(jk+1) − xo)

]
+
∑

i�=ik

[
ci2
(
ji (xo)

)
+ ti

(∣∣xo − xi,2j(xo)
∣∣)]




,(ii)

We now multiply (A20) by H (xo) and then substitute into its left-hand side the right-hand
side of (i) above, and into the right-hand side of the extended (A20) , we substitute the right-
hand side of (ii) above. Then by reducing identical terms from both sides of the equation we
obtain (A19) . Thus we showed that (A20) implies (A19p) .
To show that (A19) implies (A20) we claim the following : from the right-hand side of (22) for

facilities jikk at the boundary xo, we subtract the left-hand side of (A19) for ik and jikk .We then

equate the result to the right-hand side of (22) for facilities jikk + 1 at the boundary xo, from

which we subtracted the right-hand side of (A19) for ik and jikk . By reducing identical terms
from both sides of the resulting equality, we obtain (A20) .�
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7.1.3. Prices and Shadow Prices

The prices we used in all sections of the paper and their shadow counterparts in this Appendix
are presented in the following table.

Variable in text Variable in Appendix Description of variable

RA
ρ
η The alternative land rent

ph (x)
α(x)
η The housing price function

υ ω
η

The share of a household in alternative land rents

7.2. Characterizing the Bid Housing Price and Other Related Functions

The following differentiation of the (bid) housing price function proves Lemma 2. Differenti-
ating (22) with respect to distance, bearing in mind that no facility is located in x, yields the
Muthian spatial equilibrium condition,27

h(x, pbh)ṗ
b
h(x, j

1 , ..., jI ) + Ṫ r (x, j1 , ..., jI ) ≡ 0 where Ṫ r (x, j1 , ..., jI ) =

=
I∑

i=1

t′i(|x− xi,2ji |)sign(x− xi,2ji ). ((B1))

A dot above a function designates differentiation with respect to x. The reader should bear in

mind that according to our assumptions t′i (y) =
dti(y)
dy > 0 and t′′i (y) =

d2ti(y)
dy2

≤ 0.

Equation (B1) implies that a marginal displacement at a given location causes a marginal
change in the bid-housing-price function proportional to the sum of all marginal changes in the
home-facility commuting costs to the facilities of clubs j1, ..., jI . The factor of proportionality is
−1/h(x| pbh (x)), i.e., minus the reciprocal of the amount of housing consumed by a household at
x, provided pbh (x) is the price of housing. Note that since ti (|y|) is not differentiable at y = 0, at
the facility locations, xi,2ji , p

b
h

(
x/
(
ji
))

is continuous but not differentiable. For an x that is not
a facility location, the second derivative of the bid housing price is obtained by differentiating
(B1) with respect to distance, thus

p̈bh = −

∂h
∂pb

h

(
ṗbh
)2
+

I∑

i=1
t′′i (|x− xi,2ji |)

h(·)
≥ 0. (B2)

Thus, (B2) implies that pbh(x) is a concave function of x.
Since the housing price function, ph (x) , at a location x that is not a node coincides with

one of the bid rent functions, it has all the properties of a bid housing price function, except at
boundaries and facility locations where it is continuous but not differentiable. We now turn to
other continuous functions that depend on ph(x) (see Appendix 7.1.1). By differentiating (14)
we obtain

dHs

dph
=

1

c
′′

h(H
s)
> 0⇒ Ḣs =

dHs

dph
ṗh = sign (ṗh)

dHs

dph
|ṗh| (B3)

Equation (B3) implies that the supply of housing at a given location is an increasing function
of its product’s price there, and that Ḣs has the same sign as ṗh.

27The function sign(x) is given by sign(x) =






1 for x > 0
0 for x = 0
−1 for x < 0

.

The function sign(x) is differentiable everywhere except at x = 0. Furthermore, |x| = x ·sign(x) and ∂|x|/∂x =
sign(x), except atr x = 0, where it is not defined.
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The density function, n (ph) = Hs (ph (x)) /h(ph (x)) (defined as the number of households
per unit of land) increases with the price of housing. To see this, we make the following differ-
entiation:

∂n (x)

dph
=
d(Hs/h)

dph
=
h∂Hs/∂ph −H

s∂h/∂ph
h2

> 0. (B4)

The sign of (B4) follows from (B3) and from the substitution effect which implies that ∂h (·) /∂ph (·) < 0
in (10) . It follows from (B4) that the density n(x) = Hs (x) /h (x) increases with distance the
same way that ph (x) does.
By differentiating the land rent function in (15) and using (B1) as well as (14), we obtain

·
R(x) = Hs(x)

·
ph(x), (B5)

which implies that R(x) varies with distance in the same way that ph(x) does. By differentiating
Ṙ(x), we obtain

··
R(x) =

·

Hs ·ph +H
s ··ph ≥ 0 (B6)

Together, equations (B6) and (B2) imply that, in the general case, R, like ph, is a concave
function of x.
The functions pbh (x) and ph (x) , are also functions of the parameters U, Y and Gij. By dif-

ferentiation of (18) as well as (5) , with respect to Y, taking into account that only variables
controlled by the consumer may be indirectly affected, namely H (x) and Z (x), we obtain

∂ph (x)

∂Y
=

1

h (x)
≥ 0 (B7)

In the same way we obtain for Gij

∂ph (x)

∂Gij
=

1

h (x)

Ui+2

U1
> 0, xi,2j−1 ≤ x ≤ xi,2j+1 (B8)

7.3. Proof for Section 3

7.3.1. Proof of Lemma 3

The proof is by contradiction. We assume that the market area is not connected and show
that this assumption leads to a contradiction. Without loss of generality, let the disconnected
market area be of club 1(not necessarily the industrial club).

⋅

⋅

⋅ ⋅⋅2,1x 3,1x 4,1x ax

( )Ioo

b

h jjxp ,...,,1, 2

( )Ib

h jjxp 1

2

1 ,...,,2,

( )Ib

h jjxp 1

2

1 ,...,,1,

Figure 5: Bid housing price functions in a disconnected market area.
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In Figure 5, facility 1, 1 (facility 1 of club 1) providing G1,1 of the CG of club 1 is located in
x1,2, and facility 1, 2 providing G1,2 is located in x1,4 . The locations x1,3 and xa are boundaries
between the market areas of facility 1, 1 and facility 1, 2. There are two parts of the market area
of facility 1, 1: the first lies to the left of x1,3 and includes x1,2 and the second is spread to the
right of xa. The market area of facility 1, 2 is between x1,3 and xa. Thus, the market area of
facility 1, 1 is disconnected and we show here that such a layout leads to a contradiction when
transportation costs are linear. To avoid the question of where people residing in a boundary
use the CGs, n what follows we assume that market areas consist of half-closed segments, e.g.,
(xi,2j−1,xi,2j+1] .

The proof is divided into two parts. In the first part, the housing price function in
the connected segment of the market area

(
x1,3, xα

)
coincides with a single bid housing price

function. In the second part, we extend the proof to the more general case.
The function pbh

(
x, 1, j2o , ..., j

I
o

)
(see Figure 5) is the bid housing price of residents who travel

to x1,2 to consume G1,1 and to xi,2jio , i = 2, ..., I (the points are not depicted in Figure 5) to

consume the rest of the CGs. pbh
(
x, 1, j2o , ..., j

I
o

)
coincide with the housing price function in the

segment (x1,2 , x1,3 ]. The function p
b
h

(
x, 2, j21 , ..., j

I
1

)
is the bid of residents at x who travel to x1,4 ,

as well as to xi,2ji1 , i = 2, ..., I (these points are also not depicted in Figure 5) and this bid function

coincides with the housing price function in the segment (x1,3 , xa]. In addition to the above two
bid housing price functions, we consider the bid housing price function, pbh

(
x, 1, j21 , ..., j

I
1

)
. In

the segment (x1,3, xa] this function is the highest bid for housing that residents are willing to pay
for housing while patronizing facility (1, 1). The reason is that the optimal vector of facilities of
all clubs other than 1 at (x1,3, xa] is j

2
1 , ..., j

I
1 , the same vector as is in the housing price function

in the segment (x1,3, xa]. In other words, among all bid housing price functions with households
that patronize facility (1, 1), the bid function pbh

(
x, 1, j21 , ..., j

I
1

)
is the highest in (x1,3, xa] . In

this case the market area of facility (1, 1) would exist to the right of xa only if the functions
pbh
(
x, 1, j21 , ..., j

I
1

)
and pbh

(
x, 2, j21 , ..., j

I
1

)
intersect at xa.

From (21) we learn that the only difference between Tr
(
x, 1, j21 , ..., j

I
1

)
and Tr

(
x, 2, j21 , ..., j

I
1

)
,

is the cost terms associated with facilities of club 1.At the point x1,4, the function Tr
(
x1,4 , 1, j

2
1 , ..., j

I
1

)

must be higher than Tr
(
x1,4, 2, j

2
1 , ..., j

I
1

)
otherwise no one would travel to facility (1, 2) and the

market area of facility (1, 1) would be connected. From equation (B1) in Appendix 7.2, it follows
that in locations to the right of x1,4, the equality Ṫ r

(
x, 2, j21 , ..., j

I
1

)
= Ṫ r

(
x, 1, j21 , ..., j

I
1

)
must

hold. The reason for the equality of the two Ṫ r-s is that since from all locations to the right
of x1,4 households commute in both cases to the same facilities of clubs i, t′i (x) for i > 1 is the
same in both the above Tr functions. In addition, sign (x− x1,2) = sign (x− x1,4) ,∀x > x1,4,
and by assumption, t′1 (y) =Constant. Hence, the two bid functions, pbh

(
x, 2, j21 , ..., j

I
1

)
and

pbh
(
x, 1, j21 , ..., j

I
1

)
at xa have the same slopes as is shown below in (D1) and calculated from

equation (B1) in Appendix 7.2.

ṗbh
(
xa, 1, j

2
1 , ..., j

I
1

)
= −

Ṫ r
(
xa, 1, j21 , ..., j

I
1

)

H(xa)
= −

Ṫ r
(
xa, 2, j21 , ..., j

I
1

)

H(xa)
= ṗbh

(
xa, 2, j

2
1 , ..., j

I
1

)
..

((D1))

In the middle of (D1), the two Ṫ r-functions in the numerators above are equal, due to the
linearity of the transportation cost functions and so is H(xa) (the two pbh functions in the
compensated demand for housing in the denominator are the same at their intersection point).
Thus, at xa both pbh functions, as well as their derivatives, are the same. This means that the
two bid functions do not intersect at xa but are tangent to each other. This is a contradiction,
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which means that facility 1,1 is connected. This completes the first part of the proof.
In the second stage we prove the lemma for the case in which the housing price function

ph (x) , x1,3 < x < xa consists of segments of different bid functions, each with a different vector(
J2, ..., jI

)
. All of these bid functions of which ph consists, have j1 = 2, i.e., in all of them

residents travel to facility 2 of club 1. In this case, let p̄bh
(
x, 2, j21 , ..., j

I
1

)
be the bid function

that in (x1,4, xa) coincides with the last segment of the price function, namely, the segment that
ends in xa. By p̄

b
h

(
x, 1, j21 , ..., j

I
1

)
we designate the bid function of a household that patronizes(

1, j21 , ..., j
I
1

)
. This function is the highest bid of patrons of (1, 1) in a sufficiently small segment

to the left of xa. The two bid functions, p̄bh
(
x, 2, j21 , ..., j

I
1

)
and p̄bh

(
x, 1, j21 , ..., j

I
1

)
intersect at xa.

From here on the proof proceeds exactly as the proof in part one. This completes the proof of
the Lemma.�

7.4. Proofs for Section 4

7.4.1. Proof of Proposition 4

The profit function of a contractor at x facing the given price of housing p∗h (x) is π (x) =
p∗h (x)H

s (x)−ch (Hs (x)) . Hence, contractors maximizing their profits at x by choosing Hs (x) ,
lead to the fulfillment of p∗h (x) = c′h (H

s (x)) . Thus causes Hs (x) to equal Hs∗ (x) . The subsidy
S(x) ensures that a household at x can purchase the optimal consumption basket at the given
prices. The price of housing being optimal implies that so is H (x) . Together H∗ (x) and Hs∗ (x)

imply in turn that n (x) = n∗ (x) = Hs∗(x)
H∗(x) and upon integration that indeed, Nij = N∗

ij.

Let πij = p
Gij
Gij−ci

(
Gij, N

∗
ij

)
be the profit function that an operator of facility ij maximizes

by choosing Gij for given p
Gij

and N∗
ij. The necessary condition for this maximization is =

ci1

(
Gij ,N∗

ij

)
and since p

Gij

def
= ci1(G

∗
ij,N

∗
ij), this condition yields Gij = G∗ij. Each individual

pays pd
Gij
=

p
Gij

N∗

ij
. This ensures that the overall payments paid for Gi,j by residents of the market

area of facility (i, j), i.e., N∗
ijp

d
Gij

= p
Gij

(
= ci1(G

∗
ij, N

∗
ij)
)
, are sufficient to induce the facility

operator to provide the optimal CG.
The Henry George rule ensures that aggregate land rents, in addition to aggregate clubs’

profits, that are all within the complex’s jurisdiction, exactly match the funds needed to finance
the required transfers to residents. �
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The literature on agglomeration has focused largely on primary agglomeration caused by di-
rect attraction effects. Here we focus on secondary and tertiary agglomerations caused by a
primary agglomeration. Initially, scale economies in the provision of club goods (CGs) lead
each CG to agglomerate in facilities of a club. This primary agglomeration causes a secondary
concentration of population around these facilities, which in turn brings about a tertiary ag-
glomeration of facilities of different clubs into centers. The agglomeration of facilities occurs
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1. Introduction

The purpose of this paper is threefold: the first is to introduce an optimization model of an
economy with spatial clubs, the second is to identify those forces in the economy that lead to the
agglomeration of facilities of various clubs into multi-club centers and the last is to characterize
these centers.

To facilitate the exposition we first introduce some terminology related to the theory of
spatial clubs. A spatial club consists of facilities spread throughout the economy, each of which
contains a concentration of the good provided by the club. A club-good (CG) is a good or
service provided by each of the club facilities to their patrons. The provision of a CG by its
club’s facility is subject to scale economies. The patrons of a facility are a group of households
who jointly consume the CG provided by the facility and are distinct from patrons of other
facilities of the same club. In order to consume a particular CG a household has to commute to
one of the facilities of the spatial club that provides this good. The market area of a facility is
the area of residency of the facility’s patrons.

Many local public goods are CGs as are many private consumption goods and services whose
provision is subject to scale economies and therefore are provided collectively by spatial clubs.
Real-life clubs such as country clubs, parks, museums, churches, etc. are also relevant to our
model. In addition other institutions, not necessarily known as clubs, satisfy our specifications,
for example, schools, police stations, theater and movie halls, restaurants, government offices,
courthouses, shops and stores, and many more.. Notable among these various clubs is the
‘production club’ whose facilities include industrial areas and employment centers.
Three main reasons are typically offered to explain why both residential and non-residential

activities agglomerate. One is reciprocal informational exchange, the second is increasing returns
to scale and the last is spatial competition (see Fujita and Thisse (1996) for a comprehensive
survey and Fujita and Thisse (2002) for recent theories on agglomeration). Most of these ex-
planations are based on direct attraction forces such as the mutual attraction of units of an
industry because their activity is enhanced when located close to each other.

In this paper, the primary agglomeration of CGs into facilities, is, similarly to other studies, a
result of a direct attraction between units of a CG whose provision is subject to scale economies.
Each CG agglomerates into its own facilities in order to provide the CG to households throughout
the economy. We focus here, however, mainly on the secondary agglomerations of population
around facilities and on the tertiary agglomerations of facilities of different clubs in centers in
the midst of population concentrations.

The primary agglomeration of a CG in facilities attracts households to locate close
to a facility in order to save commuting costs. The desire to save commuting costs is offset
by congestion costs due to the limited supply of land in the proximity of the facility. The
indirect attraction and the subsequent congestion cause secondary concentration of population
around facilities, where the density of population decreases with its distance from the facility.
In turn, the concentration of population around a facility causes facilities of different clubs to
locate in the same vicinity in order to increase accessibility even further, thus creating tertiary
agglomerations of facilities into centers in the midst of densely populated areas. All three
stages of agglomeration, namely the primary agglomeration of CGs, the secondary concentration
of population and the tertiary agglomeration of facilities into centers, occur simultaneously
and the stages indicate the order of causality rather than the timing. Indeed, we show that
tertiary agglomeration does not occur without a secondary concentration of population and
that secondary agglomeration of population does not occur without the primary agglomeration
of CGs into facilities.
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In the 1960’s urban economics models have dealt mainly with the secondary agglomeration
of households in a residential ring surrounding a predetermined central business district (CBD),
where all employment takes place. The concentration of industry in the CBD was exogenously
assumed, the rationale being that the industry must be located in proximity to a sea port,
train depot or other shipping facility through which the city’s basic products can be exported
to the rest of the world (e.g., Muth (1969)). Mills (1967) argued that the agglomeration of
industry in a CBD is the result of the industry being subject to scale economies but he still
assumed exogenous agglomeration. Instead of focusing on an endogenous CBD, Mills and his
contemporaries concentrated on the residential ring. Henderson (1974) was the first to introduce
a model in which an industry agglomerates endogenously into a CBD, however he still imposed on
the model a single employment location surrounded by a residential ring. In the 1980’s, Ogawa
and Fujita (1980), Fujita and Ogawa (1982), and Fujita (1989) constructed simulation models of
the agglomeration of an industry based on direct attraction effects. These simulations resulted
in a variety of primary agglomerations. However, no secondary agglomeration of population
and hence no tertiary agglomeration were possible, since a uniform density of population was
everywhere assumed.
Recently, Lucas and Rosi-Hansberg (2002) incorporated both direct and indirect agglomera-

tion engines into a single simulation model of an agglomerating industry and population/workers.
But contrary to our model, in which facilities of different clubs agglomerate into centers, in their
model only one type of facility exists and therefore no tertiary agglomeration can occur. Actually,
none of the above models address the tertiary agglomeration of different primary agglomerations
into centers in the midst of population concentrations as described in this paper.
Some studies in the literature (e.g., Fujita and Thisse (1986), Thisse and Wildasin (1992),

Papageorgiou and Pines (1998) and papers surveyed by Berliant and ten Raa (1994)) investigate
the agglomeration of facilities while imposing a uniform distribution of population. In this paper
we show that effective agglomeration of facilities cannot occur without a secondary concentration
of population and the agglomerations of facilities in the above studies are due to either the ‘edge-
of-economy effect’, to indivisibility problems and/or to random technological effects. Therefore,
to avoid confounding our own results we assume herein an economy without edges, i.e., our
economy’s territory is ring-shaped and fully occupied. In addition we investigate here only cases
of full divisibility.
On this ring-shaped area of homogeneous land, we construct a model of an economy with

spatial clubs using the conceptual framework of Hochman, Pines and Thisse (1995) (HPT here-
after).2 In this economy there are many types of essential collective goods that require a wide
variety of spatial clubs that a household must visit in order to consume the goods. The agglom-
eration of each CG into a separate facility results from scale economies in the provision of the
good. Without such scale economies, each household would consume the CG privately in its own
premises in order to avoid commuting costs. Since the direct attraction forces between units of
a CG caused by scale economies are assumed to be internal to the facility, they are reflected
only in the size of the facilities and not in their number. Thus, at any given site no more than
one facility per club exists. We demonstrate that the population density is never uniform in a
first-best allocation and that there are always areas in the economy in which population and
facilities agglomerate.
Our model’s results specify that in an optimal allocation the economy’s territory is partitioned

into identical complexes, where a complex is the smallest autonomous area in the economy, i.e.,
the smallest area in which all residents, and they alone, consume all the types of CGs in facilities

2While HPT focused on the finance of services rendered by the facilities, they disregarded spatial aspects and
questions of agglomeration of facilities on which the present paper focuses.
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located inside the complex. Thus, nobody commutes in or out of a complex. In a sense, this
fact makes the complex the ideal municipality. In this paper we characterize an allocation by
characterizing its representative complex.
A complex configuration is a vector of integers without a common multiplier that specifies the

number of facilities of each club in the complex. Thus, the first entry in the vector is the number
of facilities of club one in a complex, the second entry is the number of facilities of club two
and so forth. Each model with a given set of functions which consists of feasible transportation
cost functions and feasible provision cost functions, both for each club type, as well as of a
utility function and a given complex configuration, have an optimal solution with identical and
symmetric complexes. We refer to such a solution as a local optimum. In a global optimum the
complex configuration is also chosen optimally.
Next, we characterize the spatial pattern of two local optimum solutions with two specific

complex configurations.3 In the first configuration, each club has a single facility per complex.
With this configuration, the model results in monocentric complexes (cities) in which facilities
of all clubs agglomerate perfectly in the center of the complex and share the whole complex
as a common market area.4 The population density and the housing price function in each of
the complexes of this configuration increase with proximity to the complex’s center, where both
functions reach their peak. In addition, we provide specifications of a functions domain in which
this solution is the unique global (over all possible configurations) optimum.
The second configuration that we investigate has two groups of clubs. Each club in the first

group has a single facility per complex and each club in the second group has two facilities
per complex. In the optimal allocation all the facilities of clubs of the first group agglomerate
perfectly in the middle of each complex and the whole complex is their market area. The facilities
of clubs of the second group are divided into two clusters each of which contains one facility of
each club of the second group. The complex area is divided in the middle into two equal market
areas, one for each cluster of facilities of the clubs of the second group. One cluster is located in
the second quarter of the complex’s area and the other in the third quarter. Thus, the clusters
of the second group (DF clubs hereafter) are closer to the middle of the complex than to its
boundaries. In other words, these clusters gravitate towards the center of the complex. The
facilities in a cluster are close to each other but residential areas may exist between the facilities
in the cluster, depending on whether or not the transportation cost functions of the different
DF clubs are proportional to each other. Facilities with proportional transportation costs share
the same facility location. Thus, while clubs of the second group do not necessarily agglomerate
perfectly, they are drawn to each other and the cluster as a whole is drawn towards the facilities
located in the middle of the complex. The complex is symmetric around its middle with a
higher density of population between the clusters of DF clubs and the center of the complex
than between the clusters and the boundaries.
Contrary to non-spatial clubs (e.g., Berglas (1976), Scotchmer and Wooders (1987); see also

the survey by Scotchmer (2002) of spatial and non-spatial clubs), our optimal solution cannot
be attained by a laissez faire allocation and sometimes not even by decentralization. In a
laissez faire situation club owners are free to operate without restrictions, so they engage in
spatial monopolistic competition, which, in general, does not yield an optimal allocation. We
also show that for an economy with price taking agents there sometimes is a limited number of
decentralization methods, each of which may fit under different conditions. Most decentralization
methods involve subsidizing households and taxing facilities. However, such a decentralized

3These complex configurations are: (1,. . . ,1) and (1,. . . ,1,2,. . . ,2).
4By perfect agglomeration we mean that facilities are adjacent to each other without having any residential area
between them.
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solution may entail different subsidies to identical households that are located in different places
and is, therefore, difficult to implement.

Five additional sections follow this introduction. Section 2 describes the setup of the model.
The necessary conditions for Pareto optimum are described in section 3 and the decentralization
of the optimal allocation is depicted in section 4. Section 5 contains our main results. First, in
subsection 5.1, we present general characteristics of the solution. Then we proceed to describe
a perfect agglomeration in subsection 5.2 and an imperfect agglomeration in 5.3. We conclude
with a short summary and a few pointers for future research of global optimum solutions.

2. The Model Setup

The country’s geography is designated by a ring of unit width, with a circle running through
the middle of the ring being the axis (see Figure 1).

 

X

 

L,O

Figure 1: A Ring-Shaped Economy
We assume the circle’s circumference is L. Note that the total area of the ring in this case is

also L. An arbitrary point on the ring’s axis is referred to as the origin. The location of any
point on the axis of the ring is uniquely defined by its distance x from the origin in a clockwise
direction (henceforth also the positive or the right direction). All points on the line segment
perpendicular to the axis are designated as the same location because travel between these points
involves no costs. The country accommodates N households (each time we introduce a concept
it is italicized) which are identical to each other in all respects. We assume that these households
are free to choose their residential location in the economy. Hence, all households must have
the same utility level everywhere; otherwise they will migrate to the location with the higher
utility. Each individual household derives utility from the consumption of a composite good, Z,
and from housing, H, both of which the household consumes at its location of residency.
The household also derives utility from I types of collective goods (CGs hereafter), where Gi,

is the quantity of the ith CG the household consumes, i = 1, ..., I, according to a well-behaved
utility function, u(Z,H,G1, . . . , GI). All goods are essential, and each CG is consumed at a
special facility to which the household has to travel. Each individual is endowed with Y units
of the composite good which can be used for private consumption and for the production of
housing, CGs and transportation.
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The economy contains I different clubs, one for each type of CG . A club of type i supplies
units of the i-th CG through its m̃i facilities which are located throughout the economy. Each
facility is identified by i, j, where j ∈ (1, . . . , m̃i) is the index of the specific facility of club i, and
i ∈ (1, . . . , I) refers to the club type. Facility i, j, whose location is designated by xi,2j , provides
Gij units of the i-th CG to Nij patrons, i.e., to individual households consuming the i-th CG in
facility ij and residing within itsmarket area, where a market area of a facility is a segment of the
x-axis where all and only the facility’s patrons live.5 We also make the simplifying assumption
that a facility does not occupy land and since, in practice, club facilities occupy only a small
fraction of the total land available compared to residential land, the distortion caused by this
assumption is negligible when considering the simplification involved. We represent facility ij’s
market area by the interval [xi,2j−1, xi,2j+1]. The union of the market areas of the m̃i facilities
supplying the i-th CG coincides with the residential area [0, L] where L, the boundary of the
residential area, fulfills the condition that L ≤ L.6 Accordingly, the spatial characteristics of
each facility ij are fully specified by the following triplet of nodes (see Figure 2):

xi,2j−1 = the left boundary of the ij-th facility’s market area and the right boundary
of the i(j − 1)-th facility’s market area,

xi,2j = the location of the ij-th facility, and

xi,2j+1 = the right boundary of the ij-th facility’s market area and the left boundary
of the i(j + 1)—th facility’s market area.

Since each resident must consume all the types of club goods, the extreme boundaries
must fulfill, xi,2m̃i+1 = L, and xi,1 = 0, for all i.

7

We define the clubs configuration as the vector of integers {m̃1, ..., m̃I} , where m̃i is the
number of facilities of type i in the economy. Thus, the clubs configuration is a vector of I
integer variables.
To facilitate the analysis, we sort the clubs
configurations into classes, where each class is represented by a vector (m1 , ...,mI) ((mi) for

brevity) of I integers which have no common multiplier other than 1, i.e., for every λ ≥ 2, at
least one of the quotientsmi/λ, i = 1, ..., I, is not an integer. We term the configuration without
a common multiplier a basic configuration. From here on we designate a club’s configuration
(m̃i) by k (mi) , where (mi) is the basic configuration designating the class, and the multiplier
k is an additional integer-variable to be solved.
In an economy with population N and available land L there is a model with the clubs

configuration k (mi). A complex in this economy is the optimal solution of a model whose
population size is N

k ,
L

k is its available land, its clubs configuration is the basic (mi) and it has
the same functions (costs, utility) as in the original model. In the solution of the complex, the
common multiplier is 1, the configuration is the basic (mi) and all its land, L

k
, is occupied by N

k

households.
5By this we assume that a market area of a facility is a connected segment. In what follows we prove that, indeed,
the market area of a facility of a club is a connected segment, provided ti (x) , the club’s commuting cost function,
is linear in x (see Lemma 3). In the case of nonlinear transportation costs, connected market areas remain an
assumption.
6By this, we make the assumption that the occupied area is continuous and the unoccupied area is concentrated
at the end of the economy, L, and next to the origin, 0.
7In this model, the focus is on the case in which all available land is occupied, i.e., L = L, which implies that
0 ≡ xi,1 = xi,2m̃i+1 = L = L, ∀i. Therefore, calculations with the location variable x are modulo L (i.e. L+x = x.).
For example, for all i, m̃i and an arbitrary y, 0 < y < L, xi,1 + y = xi,2m̃i+1 + y = L+y = y .
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The optimal solution of the model with the configuration k (mi) can now be described as k
consecutive replications of the complex with the basic configuration (mi) . Each two consecutive
complexes are adjacent and have a joint boundary. L − L ≥ 0 is the vacant land at the edges.
The common multiplier k, is now an integer variable measuring the number of complexes in the
economy. Thus, by determining k and characterizing the complex, we characterize the solution
of the general model.8 In the rest of the paper we use the terms basic configuration and complex
configuration, interchangeably.
Figure 2 depicts the layout of a complex with a basic configuration of (1, 2, 3) . For expositional

purposes, we mark the nodes of each club on a different horizontal axis. Actually, they are all
jointly located on the x axis.

X3,1

X2,1

X1,1

L

X3,5X3,3

0

X3,2 X3,4 X3,6

Market area facility

X3,7

X2,2

X2,3

X2,4

X2,5

X1,2

X1,3

Figure 2: Facility Locations and Market Areas in a Complex with Basic Configuration (1,2,3).

We designate the length (also the area) of the complex by L and the population of the
complex by N. Then kL = L and kN = N . Accordingly, L is also the coordinate of the right
boundary of the first complex (whose left boundary is the origin, 0) and the left boundary of
the second complex, if it exists and so on. Since all complexes are identical, it is sufficient to
solve only for one (the first) complex.
Since all goods are essential, the boundaries of each complex must coincide with the boundaries

of the extreme facilities farthest from the center of each of the I CGs; hence

xi,1 = 0; xi,2mi+1 = L, for all i ∈ {1, . . . , I} and kL = L ≤ L. (1)

Equation (1) implies that, by assumption, the origin is a boundary of all clubs. Similarly, the
relation between the complex and the overall population must be

N = N/k. (2)

8In HPT, a complex is defined as the smallest autonomous area in the economy, i.e., the smallest area in which
its residents and only the residents of the area consume all the CGs in the area. It is clear from the discussion so
far that our complex satisfies this definition.
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In order to use a CG, the household incurs travel costs of a home-facility trip which is given
by ti(

∣∣x− xi,2ji(x)
∣∣), where the argument of the function is the absolute value of the home-

facility distance and ji (x) is the index j of the facility of club i whose residents at x use. The

transportation cost function fulfills ∂ti(y)
∂y

def
= t′i > 0,

∂2ti(y)
∂y2

def
= t′′i ≤ 0, for all y ≥ 0.

The provision cost function, ci(Gij,Nij) (for brevity, hereafter c
i(j)) is the cost to facility i, j

for providing its CG, Gij, to Nij households. The function c
i(j) fulfills,

ci1(j) =
∂ci(j)

∂Gij
> 0, ci2(j) =

∂ci(j)

∂Nij
≥ 0, ci11(j) =

∂2ci(j)

∂G2ij
> 0,

∂

(
ci(j)

Nij

)/
∂Nij

{
< 0 if Nij < N̄ij (Gij) ,
≥ 0 if Nij ≥ N̄ij (Gij) ,

, ∂2
(
ci(j)

Nij

)/
∂ (Nij)

2 > 0

where 0 < N̄ij (Gij) ≤∞, and Gij ≥ 0. (3)

Thus, ci(j)
Nij

is either a U - or L-shaped function of Nij.
9 The scale economies reflected in the

second line of (3) are responsible for the concentration of club goods in facilities. Without these
scale economies, a CG would be provided to a household at home, like z, and not in facilities
where there is joint consumption of households. Each facility i, j is identified by its CG, Gij ,
facility location, xi,2j, market area, (xi,2j−1, xi,2j+1) and the population within its market area,
Nij.

A kind of club that requires special attention is the production club, which we designate
by the index i = 1 . Patrons N1j, of facility 1, j of a production club work in the club’s facility
location x1,2j , reside in the facility’s market area and together with an input of G1j units of
composite good, produce a net positive output

(
−c1 (G1j, N1j) > 0

)
of the composite good.

Thus, [G1j − c1 (G1j, N1j)
′] is the gross output of the j-th facility of club 1 and as such, is its

production function. The general characteristics of a club’s cost functions specified in (3), need
some modification and interpretation in the case of production club. Thus, instead of (3) we
assume,

c1 (G1j , 0) = 0
c111 (j) > 0,

; c11 (j)

{
< 0, if G1j < Ḡ1j (N1j)
≥ 0, if G1j ≥ Ḡ1j (N1j)

,
∂Ḡ1j (N1j)

∂N1j
> 0

c12 (j) ≤ 0,
c122 (j) ≥ 0,

, ∂

(
c1(j)

Nij

)/
∂Nij < 0; ∂

2

(
c1(j)

Nij

)/
∂ (Nij)

2 > 0; (4)

Accordingly, for N1j > 0, the function c
1 (G1j ,N1,j) obtains negative values and is U - shaped

as a function of G1j, while the average,
(
G1j−c

1(G1j ,N1j)
N1j

)
is increasing as a function of N1j . This

last property is a reflection of labor-oriented scale economies in production.10 We also assume
in the production club case that the marginal utility of G1j is zero, i.e., ∂u/∂G1 = 0, which
means that G1j is a production factor that does not affect the household’s well-being.

We adopt here the assumption accepted in urban economics literature of a non-atomic
distribution of population over space. Thus, a household in our model is identified by its
residence at x. In addition, we confine ourselves to allocations in which all households are
identical in the sense that they all have the same utility function, skills, and initial endowment

9Note that ci2(j) = 0 implies that Gij is a pure public good with an L-shaped average cost function. Then
ci(G,N) = ci(G, 1) for all values of N and G. When G is a private good distributed equally to each of the
N residents, ci(G,N) = Nci(G, 1). Accordingly, as long as ci(G,N) fulfils, ci(G, 1)<ci(G,N)<Nci(G, 1), G is a
semi(congestable)-local public good.
10In what follows, results specific to the production club in subsequent sections will be given in footnotes.
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and they all face the same transportation and provision cost structure. In that case, free choice
of the location of residency implies an equal utility level for everyone everywhere, namely:

u(Z(x), H(x), G1,j1(x), . . . , GI,jI(x)) = U, for all x ∈ [0, kL] , (5)

where U is the common utility level for all households in the economy and ji(x) is the index of
the facility providing the i-th CG to households living at x. We designate by ui(x) the derivative
of u(Z(x), H(x), G1,j1(x), . . . , GI,jI(x)) with respect to the i-th variable of the utility function as

specified in (5) , e.g., u2(x) =
∂u(Z(x),H(x),G1,j1(x),...,GI,jI (x))

∂H(x) .

We now turn to housing construction. Let Hs(x) be the amount of housing constructed
per unit land at x. Hs(x) is produced by land and the composite good. The amount of composite

good used in the production per unit of land at x is ch(H
s(x)), with dch(H

s)
dHs

def
= c

′

h(H
s) > 0 and

d2ch(H
s)

d(Hs)2
def
= c”h(H

s) > 0. We term ch(H
s) as the housing cost function. The material balance

for housing implies

n(x)H(x) = Hs(x), (6)

where n(x) is the population density function.

The club membership constraint can be written as:

xi,2j+1∫

xi,2j−1

n(x)dx−Nij = 0 ∀i ∈ {1, . . . , I}, and j ∈ {1, . . . ,mi}, (7)

and

N −
mi∑

j=1

Ni,j = 0 ∀ i ∈ {1, . . . , I}. (8)

The housing price function, ph(x), is defined as:

ph(x)
def
= u2(x) /u1(x), (9)

where the composite good Z is the numeraire. From (9) and (5) we substitute out H(x) and
Z(x) to obtain the compensated demand function for housing, namely

H(x) = h[ph(x), G1,j1(x), . . . , GI,ji(x), U ] (10)

and the compensated demand function for the composite good, which is

Z(x) = z[ph(x),G1,j1(x), . . . ,GI,jIJ(x), U ], (11)

where ph(x) together with the different CGs and the utility level, U, are arguments in both of
the above functions. Let the aggregate expenditure function for the (representative) complex be
given by E(N,U) where

E(N,U) =

L∫

0

[n(x)z(·) + ch(H
s)]dx+

I∑

i=1

mi∑

j=1

ci(j)

+
I∑

i=1

mi∑

j=1

xi,2j+1∫

xi,2j−1

n(x)ti(|x− xi,2j|)dx. (12)
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The three terms of the complex’s aggregate expenditure function in (12) are the expenditures
on consumption and housing production (the first term), the provision cost of all CGs (the
second term), and the total transportation costs (the third term). Accordingly, kE(N,U) is the
economy’s aggregate expenditure function.
Recalling that each individual is endowed with Y units of the composite good, the complex’s

material balance of the composite good requires that

E(N,U)−NY = 0. (13)

In other words, the complex’s aggregate expenditure must equal the complex’s aggregate supply
of the composite good.
The above set of equations (1)-(13) defines the constraints of a feasible spatial resource allo-

cation for the whole economy. Necessary conditions for a Pareto optimal allocation are given in
the next section.

3. The Optimal Solution

The necessary conditions for a Pareto optimal allocation in the economy are obtained by
maximizing the common utility level, U, subject to the constraints (1)-(13). The Lagrangian
and the formal derivation of the first order conditions are specified in Appendix 7.1. In solving the
model, we assume for simplicity that the variable k, the number of complexes in the economy,
is a real variable and not an integer. By making this assumption, we disregard the factual
indivisibility of complexes and allow a fraction of a complex in the solution.11 The necessary
conditions in this section are given for a single complex. In our economy there are k such identical
complexes. Another assumption we make is that the complex configuration, (m1, ...,mI) , is a
given vector of I integers. Therefore, the necessary conditions below are for a local optimum.
Additional conditions for the global optimum, in which the optimal complex configuration is
determined as well, follow in a subsequent section.
The equations in this section are calculated from the necessary conditions derived in Appendix

7.1. The equations here are easier to interpret than the original ones but still constitute a full
set of necessary conditions for a Pareto optimal complex, equivalent in every way to the original
conditions derived in the Appendix.

3.1. Households and Housing

3.1.1. Housing Construction

In (9) Ph (x) is defined as the quotient u2 (x) /u1 (x) . A necessary condition for the efficient
allocation given in (14) below, states that the marginal cost of housing construction, c′h(H

s(x)),
equals Ph (x), i.e.,

Ph (x) (≡ u2 (x) /u1 (x)) = c′h(H
s(x)), for all x (14)

where Hs (x) is the amount of housing constructed per unit land at x and c′h(H
s(x)) is an

abbreviation of ∂ch(H
s(x))

∂Hs(x) . It follows from (14) that Ph (x) is, indeed, the housing price function.

Observe that we can solve equation (14) to obtain Hs(Ph (x)).

11If k is not an integer, there must be a fraction of a complex in the solution. Obviously, an actual allocation
contains only complete complexes, which is the case for an integer k. Thus, in the optimal solution, with an
integer k, each complex is either smaller or larger than the optimal complex of the solution with a real k, and
the utility level is lower as well. The distortion is negligible for a real but relatively large k. The problem of
indivisibilities of economic entities is quite common in the economic literature (e.g. the indivisibility of the firm).
In our case the problem might be more severe since k is likely to be small. Thus, we can see that the subject of
indivisibility of optimal complexes deserves a separate study.
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3.1.2. Rent Function

The rent at x, R (x) , is defined in (15) below as the difference between the revenue and the
cost of construction per unit of land at x. Thus

R (x)
def
= Ph (x)H

s (Ph (x))− ch(H
s (Ph (x))), for all x. (15)

The properties of the rent function are given in Appendix 7.2. Note that even though in general
housing price functions and rent functions are competitive equilibrium tools, they are well defined
in this optimization model and have the same properties as in an equilibrium since housing and
land have no external effects associated with them.
Taking the integral of the rent function over the entire country yields ALR, the aggregate land

rent in the economy, i.e.,

ALR = k

L∫

0

R(x)dx. (16)

Note that the right hand side of the ALR equation above consists of the aggregate land rents
in a complex multiplied by the number of complexes in the economy.

3.1.3. The Optimal ‘Budget Constraint’

Let ji(x) be the index of the facility of club i to which a household residing at x travels. We
define Tr(x) as the travel and recreation expenditure of a household residing at x, commuting
to facilities ji(x) located at xi,2ji(x), paying commuting costs ti

(∣∣x− xi,2ji(x)
∣∣) and congestion

tolls, ci2
(
ji(x)

)
, for i = 1, ..., I.Thus,

Tr (x)
def
=

I∑

i=1

[
ci2
(
ji(x)

)
+ ti

(∣∣x− xi,2ji(x)
∣∣)] . (17)

Note that Tr (x) is a continuous and differentiable function of x everywhere except at facility
locations, xi,2ji(x), where Tr (x) is continuous but not differentiable.
The following equation (18) , the household’s optimal ‘budget constraint’ at x, is a necessary

condition for Pareto optimum.12 The congestion tolls included in Tr (x) are what distinguish
the necessary condition below from an equilibrium budget constraint. We also define in (18) the
household’s optimal expenditure function at x, e(ph(x),G1,j1(x), . . . ,GI,jI(x), Tr (x) , U), in short
e (x).

Y + ν = z(ph(x),G1,j1(x), . . . , GI,jI(x), U) + ph(x)h(ph(x),G1,j1(x), . . . ,GI,ji(x), U)+

+Tr (x)
def
= e(ph(x), G1,j1(x), . . . ,GI,jI(x), Tr (x) , U), for all x. (18)

We see that in (18) , ph(x) indeed serves as the housing price and the household’s income Y +v
is independent of location and consists of the initial endowment of an individual household, Y,
plus ν − an equal share of total alternative -shadow-land- rents in the economy.13 Thus, a

12Note that if i = 1 is a production club, then the expression
(
−c12

)
is the marginal product of labor, which attains

positive values and appears as income in the household’s optimal budget constraint. In this case the model has
a non-zero solution even if Y vanishes.
13Namely, ν = LRA

N
, where RA ≥ 0 and if kL < L than RA = 0. See also (26) , (25) and the discussion that

follows at the end of section 3.
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household behaves in the optimum as a utility maximizer who considers as given: his income;
the location xi,2j of all facilities (i, j); the quantities of CGs, Gij, in these facilities; and the

congestion tolls ci2 (j)
def
=

∂ci(Gij ,Nij)
∂Nij

the household is required to pay when it uses facility i, j.

Each club i ∈ (1, ..., I) has mi facilities spread throughout the complex and a household at x
visits one facility of each club i.

3.2. Clubs

The external effects in the model are concentrated in clubs and therefore most of the equations
in this section are not equilibrium relations.

3.2.1. Samuelson’s Rule

The necessary condition in (19) below, determines Gij , the optimal amount of CG for facility
j in club i. The equation below is a version of Samuelson’s well known rule about public goods.

xi,2j+1∫

xi,2j−1

[
ui+2
u1

n

]
dx = cj1 (j) ,∀i, j, (19)

where ci1 (j) =
∂ci(j)
∂Gij

. On the right-hand side of (19) is the marginal rate of substitution in

production between the CG and the composite good and on the left-hand side of (19) is the
sum of the marginal rates of substitution in consumption of the users of facility i, j, where the
marginal rate of substitution is between the CG and the composite good.14

3.2.2. Optimal Facility Location

The optimal facility location, xi,2j, should satisfy the necessary condition in (20) below, which
is also a necessary condition for the facility location to minimize aggregate transportation costs
of patrons to facility (i, j).

xi,2j∫

xi,2j−1

n (x) t′i (xi,2j − x) dx =

xi,2j+1∫

xi,2j

n (x) t′i (x− xi,2j)dx,∀i, j. (20)

In (20) the aggregate marginal transportation costs of patrons on one side of a facility equal the
aggregate marginal transportation costs on the other side, so that a marginal shift in the facility
location does not change aggregate transportation costs to the facility. It should be noted that
linear ti in (20) implies that on each side of the facility reside an equal number of patrons. The
following lemma can now be proved;

Lemma 1 A club’s facility location is an interior point of the club’s market area, and therefore
of the complex. The market area of a facility is in a bounded segment of the complex.

The proof of the first part of the lemma follows directly from (20) which requires that patrons
should reside on both sides of the facility location. The proof of the second part of the lemma
follows from the finiteness of the household’s income which allows it to travel only a bounded
distance.
14For club 1, the production club, after substituting u3 = 0 in (19) reads, 0 = c11 (j) . Indeed, the left-hand side
of (19) vanishes when i = 1 since u3 = 0. To understand the meaning of (19) when i = 1, consider the production
function G1,j − c1 (j) in perfect competition. The equality between the value of the marginal product of G1,j and
the price of G1,j , which is 1, i.e., ∂

∂G1,j

(
G1,j − c1 (j)

)
= 1, results in 0 = c11 (j) , which is, as we just showed, (19)

for i=1. So in the case of the production club this condition is fulfilled in perfect competition.
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3.3. Bid Price Functions and Nodes

Bid price functions of housing and land are essentially tools of competitive equilibrium analy-
sis. They can be employed in our optimization model since the land and housing markets are free
from external effects. The bid price functions below are defined for given facility locations and
the CGs in them, and for a given optimal utility level. The crucial assumption which allows bid
functions analysis is the assumption of households’ freedom to choose their location of residency,
which implies equal utility level to identical households everywhere. This assumption is, indeed,
part of this model as well as part of other urban competitive models. For a proof that bid
housing price functions analysis is compatible with the necessary conditions of this optimization
model, see sections 7.1.1 and 7.1.2 in the Appendix.

3.3.1. Bid Housing Price Functions

Let Tr
(
x, j1, ..., jI

)
be the sum of the home-facility commuting costs plus the congestion tolls

ci2 (j
i) a household residing at x pays when traveling to each of the I facilities, j1, ..., jI , as

specified in (18) , where ji is the index of facility j of club i, i.e., ji ∈ (1, ...,mi) . The facility j
i

is located at xi,2ji ,with a given quantity of CG, Gi,ji , i.e.,

Tr (x, j1 , ..., jI )
def
=

I∑

i=1

[
ci2
(
ji
)
+ ti

(∣∣x− xi,2ji
∣∣)] , (21)

for all x, j and i s.t., 0 ≤ x ≤ L, ji ∈ (1, ...,mi) , i = 1, ..., I.

For the household to reside at x and travel to the given I facilities (ji), the household’s optimal
budget constraint must fulfill,

Y + ν = z(ph (x) ,
(
Gi,ji

)
, U) + ph (x)h(ph (x) ,

(
Gi,ji

)
, U) + Tr

(
x,
(
ji
))
. (22)

where
(
Gi,ji

)
=G1,j1, ..., GI,ji ;

(
ji
)
= j1, ..., jI ; z(ph (x) ,

(
Gi,ji

)
, U) is the compensated demand

function for the composite good Z, defined in (11) and h(ph (x) ,
(
Gi,ji

)
, U) is the compensated

demand function for housing H, defined in (10).
The vector

((
Gi,ji

)
,
(
ji
)
, U
)
is fixed and given and so is the household’s income Y + v. The

only variable remaining to be determined at a given location x is the price of housing, ph (x) . By
substituting out ph (x) from (22) we obtain the bid housing-pice of a household residing at x and
traveling to facilities at

(
xi,2ji

)
where the household uses the CGs,

(
Gi,ji

)
. We designate this

bid housing-price function by pbh
(
x, j1, ..., jI

)
.What distinguishes one bid housing price function

from another is the set of facilities to which the household travels. Income and utility levels
are the same for everybody everywhere and are known parameters as are the CGs and facility
locations. Therefore, once the facilities’ indices of a bid housing price function are known, all
information is revealed. Each bid housing-price function has a different set of I facilities. In
each of two different sets of indices there is at least one facility that the other lacks. For some
vectors (J i), there may be locations x for which ph, substituted out of (22) , is negative. In such
cases we set the bid housing price equal to zero. We can now prove the following lemma.

Lemma 2 The bid housing price function is a continuous function of the distance x and twice
differentiable, with a positive second derivative everywhere except at the I facility locations
(xi,2ji ) where it is continuous but not differentiable.15

A household at location x, by choosing to travel to facilities that yield the highest bid
housing price is actually choosing to attain the utility level at location x by spending the least

15For proof of Lemma 2 see Appendix 7.2
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of all possible costs other than the cost of housing. Such behavior by all households leads to an
efficient allocation. In competitive markets, a household at x travels to the facilities that yield
the highest bid housing price at x, because he then can outbid others competing for housing at
x. Accordingly, ph (x), the housing price function at x, fulfills

Ph (x) = max
j1,...,ji

pbh
(
x, j1, ..., jI

)
= pbh

(
x, j1 (x) , ..., jI (x)

)
,∀x where ji ∈ (1, ...,mi) , i = 1, ..., I.

(23)

The vector of indexes of facilities
(
j1 (x) , ..., jI (x)

)
to which a household residing in x travels to,

is merely the vector
(
j1, ..., jI

)
that maximizes pbh (x, (j

i)) in (23) . Thus, the upper boundary
curve of all bid housing price functions as defined in (23) , besides being the housing price
function also determines the facility locations to which a household at x travels.

3.3.2. Bid Rent Functions

We define the bid rent functions as

Rb
(
x, j1, ..., jI

)
= pbh

(
x, j1, ..., jI

)
Hs
(
pbh
(
x, j1, ..., jI

))
−Ch

(
Hs
(
pbh(x, j

1, ..., jI)
))

The bid rent is a monotonic increasing function of pbh
(
x, j1, ..., jI

)
and fulfills Rb

(
pbh = 0

)
= 0.

Therefore, in most cases we can use either the bid rent function or the bid price function.

3.3.3. Boundaries and Facility Locations

In the optimal allocation a node xb on the x-axis is a boundary point between club-i market
areas, if there are points xl and xr, xl < xb < xr, such that all residents living in (xl, xb) consume
the i-th CG in a facility to the left of xb, and all residents in (xb, xr) consume the i-th CG in a
facility to the right of xb.
Let xb be a boundary point of clubs i1 , ..., iK , 1 ≤ K ≤ I and of them only (when K = I,

xb is the boundary of the complex). For brevity of notation we also designate by K the set
(ik, k = 1, ...,K) and by I−K, the set ((ik /∈ K) and (ik ∈ (1, ..., I))) . There is a point xl, xl <
xb, (xl can be any point between xb and the next boundary point to the left of xb) that residents
at every point x, xl < x < xb use the I CGs at the same facilities. We designate these facilities
by j1o , ..., j

I
o , i.e.,j

i
o = ji (x) , xl < x < xb. In the same way, there is a point xr, xr > xb, where

all residents in the segment xb < x < xr use the I CGs at the same facilities. In this segment, if
i ∈ K, then jio + 1 is the facility in which residents consume the i-th CG and if i ∈ I −K, jio is
still the facility in which residents of x consume the i-th CG. The necessary condition associated
with the boundary xb now follows,

ph (x) = max
j1,...,jI

pbh
(
x, j1, ..., jI

)





= pbh
(
x, j1

o
, ..., jIo

)
, for x, s.t. x

l
< x ≤ xb,

= pbh
(
x,
(
ji
o
+ 1,∀i ∈ K

)
and

(
jio,∀i ∈ (I −K)

))
,

for x, s.t. xb < x ≤ xr,

and ph (xb) = pbh
(
xb, j

1
o
, ..., jIo

)
= pbh

(
xb;
(
ji
o
+ 1,∀i ∈ K

)
and

(
jio, ∀i ∈ (I −K)

))
. (24)

Equation (24) states that the bid function pbh
(
x;, jio, ..., j

I
o

)
and the bid function pbh

(
x;
[
ji
o
+ 1,∀ i ∈ K

]
∪
[
jio, ∀i ∈

intersect at xb and are equal to the housing price there. Hence, the two bid functions must co-
incide with the housing price function in a neighborhood of xb as well. Note that the lowest line
in (24) is the actual necessary condition. Below, xb is indexed according to the rules set up in
Section 2.

xb = x
i1 ,2j

i1
o +1

=, ..,= x
iK ,2j

iK
o +1

.
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For the proof that (24) is compatible with the necessary conditions, see Appendix 7.1.2.
The location of facility j of club i in our model is a node located at xi,2j . The transportation

cost function, ti (|x− xi,2j|) , is a continuous and differentiable function of x everywhere except
at x = xi,2j where it is not differentiable. Since Tr (x) in (21) contains transportation cost
functions, it is continuous and twice differentiable everywhere except at facility locations where
it is continuous but not differentiable. This property is passed on to pbh solved from (22) and (23)
(see lemma 2). Since ph (x) , the housing price function itself, consists of segments of bid housing
price functions that intersect at boundaries, it must be continuous and twice differentiable too
except at facility locations and boundaries where it is continuous but not differentiable. To sum
up the analysis we write it in the form of a corollary,

Corollary 1 The housing price function, Ph (x) , is a continuous and twice differentiable func-
tion of x with a positive second derivative everywhere, except in nodes where it is continuous but
not differentiable.

Consecutive facilities of the same club may hold different quantities of the CG. Hence, house-
holds residing on different sides of a clubs’ boundary may consume different quantities of one or
more CGs (depending on whether the boundary is of one or more clubs and whether consecutive
clubs have different quantities of their
CG). With discontinuous changes in quantities of CGs consumed in consecutive facilities,

discontinuous changes in households’ consumption of housing and the composite good may be
observed as well when crossing a clubs’ boundary. In Appendix 7.1.1 we show that where housing
is concerned, the quantity of housing consumed and produced as well as the population density,
are continuous functions at a boundary, as stated in the following Proposition.

Proposition 2 The household’s housing consumption, H (x), is continuous everywhere, includ-
ing in boundary and facility locations. Also continuous everywhere are the density of population,
n (x) , and the supply of housing, Hs (x) .

It should be noted that unlike the continuity of the supply and demand of housing, the
household consumption of composite good may be discontinuous in boundaries. For details and
proof of the proposition, see Appendix 7.1.1 and 7.1.2.

3.3.4. Market Areas

In section 2 we assumed that a market area served by a facility is a connected segment of
the x-axis. Thus far we used this assumption only for simplifying the notation. Now we prove
this assumption endogenously in Lemma 3 for clubs with linear transportation cost functions.

Lemma 3 The market area of a club with linear transportation cost function is a connected
segment of the x-axis.

For a proof see Appendix 7.3.1. Lemma 3 and Lemma 1 yield the next Proposition:

Proposition 3 The market area of a club’s facility is a bounded area and the facility is located
in its interior. Market areas of clubs with a linear transportation cost function are connected.

Recall that in this study we investigate only allocations in which market areas are connected.
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3.4. The Henry George Rule

The alternative land rent, RA, is the land rent at the boundaries of a complex, i.e., RA = R (L) .
RA is the lowest land rent anywhere in the complex. A necessary condition for Pareto optimum
of an economy with identical households is the following relation:

ν =
RAL

N
(25)

where v is the household’s income from its share of alternative land rents (see also (18)). The
Kunn-Tucker conditions imply that If L<L ⇒ RA = v = 0 and when L=L ⇒ v,RA ≥ 0.
The last necessary condition for an optimum is the Henry George rule,

DLR ≡
∫ L
0 (R (x)−RA)dx. =

I∑

i=1

mi∑

j=1

(
ci(j)−Nijc

i
2(j)
)
, (26)

The term
∫ L
0 (R (x)−RA)dx > 0, is the differential land rents (DLR) . Since the DLR

on the left hand side of (26) is positive, so is the term on the right hand side of the equa-
tion, i.e., the aggregate provision cost,

∑I
i=1

∑mi

j=1 c
i(j), minus the aggregate congestion tolls,

∑I
i=1

∑mi

j=1Nijci2(j) (See also (17) and (18)). This means that congestion tolls alone cannot be
the sole source of financing the clubs’ operations. In (26) the DLR exactly equals the remaining
deficit of the clubs after congestion tolls are paid to the clubs.16 Therefore, the only net profits in
the economy are the alternative land rents. It follows from (25) that in the optimum the overall
profits in the economy, if any ( i.e., if RA > 0), are distributed among the general population.

4. Decentralization

In this section we deviate from the analysis of agglomeration to discuss briefly the issue of
decentralizing the optimal allocation described in the previous section. A laissez faire allocation
would not be efficient because of the lack of incentive of club owners to provide the optimal
amount of CGs, to impose optimal user charges and to optimally locate the facilities. In actual
fact, each facility owner does possess market power and if left to his own devices, will engage in
monopolistic competition. To achieve the optimum, a local government (of a complex) has to
intervene in the economic operations that take place in its jurisdiction. The government may
intervene either directly by providing by itself the optimal CGs in facilities located optimally and
by taxing land rents which, together with congestion tolls collected from users, can finance its
operations and ensure the fulfillment of the necessary conditions. This type of direct intervention,
however, is problematic since, besides there being a lack of information about optimal quantities
of CGs, locations of facilities and exact corrective taxes, it requires constant management of
facilities. Throughout the ages, governments, especially local ones, have proved themselves to
be highly inefficient in managing economic activities, club facilities being no exception.
Conversely, decentralization of CG provision requires of a local government only the deter-

mination of prices and income transfers between sectors and their imposition by taxation and
subsidization. The Second Fundamental Theorem of Welfare Theory (e.g., see Mas-Colell et
al., (1995) Ch. 16, Proposition 16.D.1) proves that, in general, it is possible to decentralize a

16In the case of the industrial club, the term
(
−N1,jc

1
2(j) > 0

)
is the wages paid to the workers in the facility and(

−c1(j)
)
>0 is the value added over the value of the input of the composite good, G1j . Therefore, c

1(j)−N1jc
1
2(j) >

0 is the deficit of the production club’s facility. Therefore, each facility has to recieve a subsidy from the local
government that can be financed by an optimal taxation of land rents. This result is well-known in the literature.
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Pareto optimal allocation with specifications fitting our model’s assumptions. In Mas-Colell et.
al., it is shown that every Pareto optimal allocation (x∗, y∗) (his notation) has a price vector
p = (p1, ..., pL) �= 0, such that (x∗, y∗, p) is a price quasi-equilibrium with transfers. In other
words, in a sufficiently well-behaved economy if agents are price takers, there exist prices and
income transfers that yield the optimal solution as a market allocation. In practice, however,
the actual determination of these transfers and prices is still an open question that we refrain
from investigating at this time.
In the case of non-spatial clubs, an efficient equilibrium exists that does not require any

government intervention (e.g., see the outset in HPT). However, in the case of spatial clubs,
government intervention is needed to instigate the provision of optimal quantities of CGs at
the optimal nodes, since club operators possess market power and do not have any incentive to
behave competitively.

We first investigate the case in which club operators can locate facilities only in predeter-
mined sites matching optimal facility locations. We will partially relax this restriction later on.
There is no unique way to decentralize our optimum and for different clubs, different methods
may be more suitable. A natural way to decentralize our optimum is to allow each facility
operator to charge each user the congestion toll ci2(j), which ensures the fulfillment of (18). The
facility’s income from user charges is then Nijci2(j) and, in general, this toll is not sufficient to
cover the full cost of running an optimal facility, i.e., the facility’s loss is ci(j)− Nijci2(j) > 0 and
the local government has to provide the missing funds to cover facilities losses.17 The General
Henry George Rule (26) ensures that the differential land rents, taxable by the local government,
are sufficient to cover the total deficit.18

The above decentralization method, in which facility operators charge patrons with conges-
tion tolls and are subsidized by the local government, suffers from lack of incentive to behave
efficiently by facility operators. By doing nothing and acquiring the government’s subsidy, a
facility operator obtains the subsidy as positive profits, while by behaving optimally he only
ends up without losses (see HPT). Another problem with this method is the lack of government
knowledge of how to divide taxed differential land rents into subsidies between different facilities.

Despite the drawbacks of the decentralization method discussed above, there are circum-
stances in which it is the appropriate one. Consider, for example, the case in which the pro-
vision costs are divided into costs of constructing a facility (fixed costs) and marginal costs of
operations increasing with the number of users. In such a case, the government can construct
the facility, thus paying the fixed costs, and then lease the facility to a private operator who
is allowed to charge users the marginal cost while maintaining current operations and paying
the variable costs. Knight (1924) showed that there are circumstances under which user charges
that maximize profits are exactly equal to optimal congestion tolls in a road system. Indeed,
if the facility operator incurs positive profits, the government can obtain these profits as lease
payment and redistribute it to households of users.

Another decentralization method is applicable to cases in which division to fixed and in-
creasing marginal costs are not relevant. We let an asterisk designate optimal values of variables

17Not all facilities must suffer losses and some may even have profits, however, when pulling together all
the clubs there are losses. To see that consider the following Henry George (HG) rule (see also (26)),
0 < DLR ≡

∫ L
0
(R (x)−RA) dx =

∑I

i=1

∑mi
j=1

(
ci(j)−Nijc

i
2(j)

)
. It follows that the double summation in HG

rule above is positive, however, it may contain some individual negative terms, each of which belonging to a club.
Such clubs need to be taxed instead of subsidized.
18In the case of the industrial club,

(
−c12 > 0

)
, is the marginal productivity of labor that equals the wage rate.

Our assumptions imply that
(
−N1jc

1
2

)
, the total wages paid by the industry, are larger than the net production,(

−ci
)
. Therefore, the industrial club has to be subsidized by the local government. This result is well known in

the literature.
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and pd
Gij

, where p
d
Gij

def
≡

ci1(G∗ij ,N∗

ij)
N∗

ij
, be the price a household pays per unit of Gij it consumes

at facility (i, j).19 Let the price, p
Gij
, be the price the facility ij operator receives per unit of

CG he provides, which is p
Gij

def
≡ N∗

ijp
d
Gij

= ci1

(
G∗ij, N

∗
ij

)
. Note that in this case the club has

positive profits since, p
Gij

G∗ij
= ci1

(
G∗ij ,N

∗
ij

)
G∗ij > ci

(
G∗ij, N

∗
ij

)
, where both ci1 and ci11 are

positive (see Section 2). Finally let S (x) be a government subsidy to a household located at x,

S(x)
def
≡
∑

i

[
ci1

(
G∗
i,ji (x)

,N∗

i,ji (x)

)

N∗

i,ji (x)
G∗

i,ji(x) − c
i
2

(
G∗

i,ji(x),N
∗
i,ji(x)

)]

where the summation is over all

the clubs for which this method of decentralization is used. This subsidy compensates house-
holds for those charges which are higher than the congestion tolls. The government can finance
this subsidy by taxing the facilities’ profits. We can now prove the following Proposition,

Proposition 4 The price vector
(
pd
Gij
, p

Gij
, p∗h (x)

)
, the household’s subsidy function S(x), the

model setup in Section 2 for a given basic configuration and the optimal facilities locations con-
stitute a price quasi-equilibrium with transfers that yield the model’s Pareto optimal allocation.

For the proof see section 7.4.1 Note that in this decentralization method, facility operators
are price takers and customers pursue the least expensive facility which fulfills their need.
If all facilities of a club are the same, i.e., they all have the same number of patrons and the

same amount of CG, the subsidies to a household are identical everywhere. However, if there
are clubs with three or more facilities in a complex, some of them may have different amounts of
patronage than others. In this case, when facilities of the same club are not identical, the required
subsidies to households become location-dependent and may differ between neighborhoods. In
practice, local governments do not bother to return the income they tax from clubs to the
particular users and instead add this income to the general municipal income by which they
provide the general population with goods and services.20

So far we have assumed that club managers face predetermined facility locations in a complex,
which to the most extent resembles real life. Club sizes and locations are detailed in city master
plans, their number is regulated and each club requires a permit. As such, no decentralization
of the choice of club locations is really required. The fact that in real life decentralization of the
choice of facility locations does not take place is a clear indication of the complexity of such a
process.

In what follows we investigate the decentralization of locating facilities purely for acad-
emic interest. The optimal facility location is the one that minimizes overall commuting costs

19The price pd
Gij

defined here does not equate with the household’s marginal rate of substitution between the

club good and the composite good consumed by the individual. It is, therefore, not really a (Lindhal) price but
more a lumpsum tax. However, a price-taking individual will consume the correct optimal CG since this is the
quantity of the CG provided by the closest facility and it is the better option of the CG consumption compared
to other facilities of the same type. This lumpsum is preferred over Lindhal pricing since all users of a facility
pay the same.
20Retail stores are facilities of a club with, yet, another method of financing its operations. Stores provide the
service of distributing consumption goods to the general public. They buy goods from producers at gross prices
and sell them at higher prices. Stores differ from each other in the type of goods they sell, their diversity and
prices, accessibility to the store, etc. In practice, although these stores are very competitive, they are not price-
takers and the method of payment for their services is not as in Proposition 4. Yet their allocation could be
optimal if the government would tax the profits of the stores and refund buyers for excess payment. In practice,
taxes on stores are high but the refunding of buyers is practically impossible and, as before, the tax income
becomes part of the government’s general budget.



19

from the market area, i.e., (20) has to be fulfilled. If households are left to pay for their own
commuting, facility operators will choose facility locations that maximize their patronage and
profits and disregard the effect the facility location has on commuting costs. This may lead
operators to locate their facilities inefficiently. For example, if two facilities of the same club
are in a complex, both of them will locate in the center of the complex, each trying to add to
its market area the more densely populated areas in the center of the complex while giving up
sparsely populated areas closer to the complex boundary. To induce facility managers to locate
efficiently, their goal function should include the minimization of their patrons’ total commuting
costs, so that (20) is satisfied. To achieve this goal, each facility operator should transport his
patrons by himself, in return for a predetermined lumpsum payment. The lumpsum should be
the same to all residents living on the same side of the facility and equal to the commuting
costs of an individual living at the boundary of the market area. With this method of payment,
a facility manager has an incentive to choose a facility location that minimizes overall trans-
portation costs, since he will be maximizing his profits from transportation. Indeed, a first-order
condition for such a minimization is (20). At the same time, the local government should tax the
additional profits of the club owner and redistribute them among the club’s patrons so that the
lumpsum transportation payment of a household minus the transport subsidy it receives equals
the household’s actual transportation costs. In this case, the redistributed amounts vary from
one location to another even within the market area of the same facility and even if all clubs are
the same. Beside all the above drawbacks which render this decentralization unpractical, this
decentralized method of choosing a facility location, suffers from the inherent problem that the
facility operator can only acquire monetary travel costs. Costs involving the value of travel time
must be borne by the individuals themselves. Thus, the facility operator may only minimize
partial commuting costs and does not locate the facility optimally. In view of these drawbacks,
we would conclude that the determination of potential facility locations should be left to city
planners.

5. Agglomeration of Spatial Clubs and Households

In this section we investigate general agglomeration trends of spatial clubs and households
in optimal allocations and elaborate on allocations of two simple basic configurations, each
of which characterizes a particular type of club’s agglomeration: the first deals with perfect
agglomeration of facilities of different clubs and the second involves imperfect agglomeration of
facilities of different clubs. We give an example in which perfect agglomeration of facilities in
the center of a complex is a unique global optimum. In addition, we show that a local optimum
solution of a basic configurations may have a domain in the functions space, in which it is a
global optimum. As a reminder, a complex configuration is a vector with I integer components
mi, which do not have a common multiplier. Each mi designates the number of facilities of club
i in a complex. The variable k measures the number of complexes in the economy.

5.1. General Characteristics

In a ring-shaped economy that is partially unoccupied, even if we assume that the occupied
land constitutes a single connected segment (0, L), 0 < L (=kL) < L, and all the unoccupied
land is the segment (L,L), there are two edges to the occupied land: L(≡ kL) and O(≡ L).21

Since all CGs are essential, these two edges must be boundary points to all clubs, i.e., the origin,
O, is the left boundary of the first facility of each club and L is the right boundary point of the

21If the occupied land is not connected, there are more than just two edges to the economy, a fact that strengthens
our arguments.
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last facility of each club.
To see that an agglomeration of clubs in an economy with edges and a uniform population

distribution is ineffective, consider the following example of an allocation of I clubs in such an
economy. Each of the clubs has the same number of identical market areas and facilities that
are located in their midst, i.e., mi = 1,∀i, and the number of complexes, k, is also the total
number of facilities of each club. Since the extreme two boundaries of every club coincide, it
follows that all market areas are common to all clubs and the facilities of all I clubs are jointly
located in the center of each market area. In other words, facilities of all clubs agglomerate in
a single location at the center of each complex.

We also assume in this example that the population is uniformly distributed over space
and that the quantity of CG in each of the facilities of a club is the same. Another assumption
is that all households have the same resources and utility level, hence, all households must also
consume the same amount of composite good. In short, in the economy just constructed, all
households have the same utility level and consume identical bundles of housing, composite good
and CGs. Market areas are common to all I clubs and in the center of each market area facilities
of all I clubs are agglomerated.

Now, suppose the economy no longer has edges and kL (≡ L) = O(≡ L). Then the
previous allocation of clubs with common market areas and agglomeration of facilities of the I
clubs exists in the edgeless economy as well, but in this case the last boundary of the last market
area of each club coincide with each other as well as with the first boundary of the first market
area of each club. However, in this edgeless economy, unlike the economy with edges, there
are no points that must be a boundary to all types of clubs. Actually, a club in the edgeless
economy is free to have its boundaries anywhere as long as the distance between two consecutive
boundaries of the same club are constant and equal to L. Therefore, all clubs can be arbitrarily
arranged in a consecutive order and the location of boundaries and hence of facilities of different
clubs, can be arranged so that the distance of a facility of one club from the next consecutive
club’s facility is L/I. The sizes of a club market areas remain unchanged as in the allocation
with agglomeration, the location of each facility remains in the middle of its market area and the
quantity of CG in each facility remains as is. The result of such an allocation is first of all that
there is no agglomeration of facilities; in fact, the facilities are distributed evenly throughout the
ring. Secondly, since the market areas are the same in the two allocations and the distribution
of population is uniform, the number of patrons and travel distances in each market area remain
the same as in the economy with edges. Consequently, total commuting costs in each facility are
unchanged as well as total provision costs. It follows that each household consumes the same
basket as before and therefore has the same utility level, but this time there is no agglomeration
of facilities in the allocation.

The above example implies that an allocation with an agglomeration of facilities of differ-
ent clubs in a second best, edgeless economy, constrained to a uniform population distribution,
is just one of an infinite number of equivalent allocations, all with the same consumption bundle
and utility level but without an agglomeration of clubs. This, in turn, implies that the ag-
glomeration of facilities of different clubs does not contribute to welfare in an economy with a
uniform population distribution and is therefore, an ineffective agglomeration. The fact that in
the above example of an economy with edges, there is a single allocation and in this allocation
facilities agglomerate, is entirely due to the economy’s edges and to the technical coincidence
that all clubs have market areas of the same size. Therefore, in order to avoid confounding the
main issues of this paper and to concentrate on essentials, from here on we restrict our analysis
to solutions of the model that satisfy the following Condition A:
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ConditionA In an optimal allocation investigated here:

(i) The number of complexes, k, is an integer.

(ii) There is no vacant land in the economy, i.e., L (= kL) = L and RA > 0,

where RA is the shadow rent at a complex boundary.

Part (i) of Condition A is intended to avoid the problem of indivisibility of optimal complexes
by dealing only with population sizes that are integer multiplications of an optimal complex
size. In that we follow HPT. Part (ii) is intended to achieve an edgeless economy to avoid the
‘edge-of-the-economy’ effect. Under Condition A, for every area L of the economy we have a
lower bound of N , N (L) , such that every N fulfilling Condition A, also fulfills N >N (L) . Then,
L (≡ kL) = L.

We attribute the term central location pattern (CLP) to a club’s location pattern in
which every market area is common to all clubs and facilities of all clubs are located in the
center of these joint market areas. Thus, in the above example, the initial location pattern with
agglomeration of facilities of all I clubs is a CLP.

We now introduce a new tool to aid in the proof of the next proposition, a rotation of a
club system while keeping the population and all the rest of the clubs unmoved. This tool is
useful in an edgeless, ring shaped, uniform density economy.

Definition: Let a rotation of club i be a shift to the right by a given distance of all
the nodes of club i, while the rest of the economy remains unchanged.

Club i nodes are the boundaries and facility locations of club i of all the facilities in the
economy and in a rotation of club i, the locations of nodes of clubs other than i remain constant
as do the quantities of CGs in the facilities of all clubs, including club i. This rotation maintains
constant distances between club i nodes and keeps the locations of households unchanged.
We now return to the first best allocation to prove the following Proposition:

Proposition 5 In a first-best allocation of a club economy the population density is never uni-
form, i.e., there are segments of the economy in which n (x) �= N/L.22

Proof: The proof is by contradiction and it applies to cases satisfying Condition A. Suppose
there is an optimal allocation in which n (x) = N/L for all x. We show below that this
assumption leads to a contradiction.
We first argue that in an economy with a uniformly distributed population, symmetry con-

siderations alone imply that all the facilities of a club are identical and each household in the
economy has the same consumption basket. The optimality of a club is determined in this
economy, by the choice of three parameters: the size (length), lij , of the market area, which in
turn determines Nij , the patronage of the facility, where Nij = nlij , the second parameter is
the facility location, xi,2j , which is always in the midst of the facility and the third parameter
is the quantity of CG in the facility, Gi,j . These three parameters depend only on the density
and homogeneity of the population that are the same everywhere, which implies that in all the
facilities of a club these three parameters have the same values. Condition A implies that there

22When there is at least one transportation cost function whose second derivative is strictly negative, i.e., there
is at least one io s.t., t

′′

i0<0, we can strengthen the proposition’s result. Actually, if t
′′

i0<0, there is no segment in
the economy in which the density of population is constant. To see this, consider (B2) in Appendix 7.2, in which
we see that if ṗh vanishes at a point x, p̈h must be positive there. Since ṗh = 0 if and only if the gradient of the
density function is zero as well, i.e., ṅ (x) = 0, the assertion follows. �
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are no divisibility problems in the economy. The same symmetry considerations also imply that
housing consumption, H (x) , is the same everywhere, since the demand for housing and con-
struction conditions are the same everywhere. The same amount of CGs everywhere together
with the same utility level to all, u, the consumption of the composite good, z (x) , and with it
the whole consumption basket are identical everywhere. Thus, in such an optimal allocation,
H (x) = H, Z (x) = Z, and Gij = Gi for all i, j and x, where H,Z, Gi and u are constants.

Consider now a rotation of a club; the consumption of any household in the economy does
not change by the rotation: some households may have their relative location changed within
the same market area of a facility and others may have the facility changed as well. However,
since all facilities of a club contain the same amount of CG and each location in the economy
is contained in one of the facilities of the club, all households consume the same amount of CG
before and after the rotation.
Since the rotation keeps the length of the market area unchanged and the density of population

constant, the patronage of a facility remains Ni. The overall commuting costs in a facility of
club i,

∫ l
0 nti (|y − l/2|) dy, is the same both, before and after a rotation. Commuting costs of

a particular household to the nearest facility may increase or decrease, but since the number of
facilities does not change and neither do commuting costs in a facility, overall commuting costs
in a club do not change.
When rotating a club, we are free to determine the location of one of its nodes, all other

nodes are than determined by this choice since the order of and distances between nodes must
be maintained. Accordingly, we rotate each club so that they all share one facility location, say,
x2, i.e., xi2 = x2, for all i = 1, ..., I. Thus, after the rotations, there is a neighborhood of x2 the
size of the smallest market area, in which residents commute only to x2 to consume all types of
CGs.

We now construct two equations describing the optimal ‘price of housing function’ after
the rotations in the neighborhood of x2. From equations (17) and (18) we obtain (i) below and
from the definition of ph (x) in (9) we obtain (ii) below.

puoh (x) =
1

H

[

Y + ν − Z −
I∑

i=1

ci2 (Gi,Ni)−
I∑

i=1

ti (|x− x2|)

]

. (i)

puoh (x) =
u2(x)

u1(x)
. (ii)

∀x, x2 − ε ≤ x ≤ x2 + ε, where ε is the length of the smallest market area.

If we will show that the two expressions of puoh in (i) and (ii) obtain different values in some
locations we could reach the contradiction that the optimal allocation with uniform population
distribution is inconsistent and therefore does not exist. From the discussion above it follows
that the values of H,Z,Gi and Ni are the same constants everywhere and do not vary by
rotations. Transportation costs to all facilities in the neighborhood of x2, however, increase
with the distance from x2, as seen in (i) above. Thus the housing price function after the
rotations and in the neighborhood of x2, i.e., p

uo
h (x) , on the one hand in (i) declines when

the distance from x2 increases and on the other hand in (ii) is a constant, since everywhere,
including the neighborhood of x2, H,Z, and Gi are constants and do not vary with distance.
Since puoh (x) must be the same in (i) and (ii) , this inequality is a contradiction. Therefore our
initial assumption that n (x) = N/L everywhere, is not correct and there are locations in which
the density of population, n (x) , is different from N/L. �
Another property of an optimal solution in a spatial club economy is that the allocation is
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symmetric with respect to the center of the complex. The spatial symmetric structure is as
follows: a club i with an odd number of facilities in a complex, mi, has facility j = mi+1

2
located in the middle of the complex with its market area spread symmetrically around the
facility. The remaining mi−1 facilities, an even number, are arranged consecutively and located
symmetrically with respect to the center of the complex, so that each facility has its mirror image
facility on the other side of the center. Thus, facilities j and j′ are two symmetric facilities if
j+ j′−1 = mi. If mi is an even number there is no facility in the center and instead a boundary
is located there. In this case of an even mi, all the facilities are symmetrically located around
the center so that a facility j is the mirror image of its symmetric facility j′ on the other side of
the center where j + j′ − 1 = mi. The population density is also symmetric around the center
of the complex. It should be reminded that in each complex configuration there is at least one
club with an odd mi otherwise the configuration would have a common multiplier and would
not be basic. Therefore, there is at least one facility in the center of each complex. We can now
prove the existence of the symmetry in an optimal allocation in Proposition 6 below.

Proposition 6 The optimal complex in a solution of the model that satisfies Condition A is
located in a symmetric structure (as described above).

Proof: To prove the Proposition we need to show that the necessary conditions are consistent
with a symmetric structure. We do so by assuming that the first-order conditions are fulfilled in
a symmetric structure and show that it does not lead to any contradiction. When checking the
consistency of the necessary conditions we need to concentrate mainly on their spatial aspects.
Due to Condition A it is sufficient to analyze a representative complex only.
We designate by L the right boundary and length of the representative complex and by o its

left boundary. Accordingly, the center of the representative complex is L/2, it turns out that
L/2 = xi,mi+1 for all i and if mi is odd, xi,mi+1 is the location of the median facility mi+1

2 and
if mi is even, xi,mi+1 is the boundary between the two middle facilities, mi

2 and mi

2 + 1 in the
complex. For each x, o ≤ x ≤ L/2 there is a point x′, symmetric to x with respect to L/2, such
that x′ = L− x , then L/2 ≤ x′ ≤ L.
We start the consistency check with equation (18) by showing that the (bid) housing price

function(s) calculated from the equation is symmetric. We first show that the function Tr (x)
in (17) is symmetric with respect to L/2 . If x, o ≤ x ≤ L/2 , is in the market area of
facility j = mi+1

2 of club i, where mi is odd, then so is x′ and ti (|x− L/2|) = ti (|x′ − L/2|) . If
x, o ≤ x ≤ L/2 is in a facility of club i with an even mi or in facility j, j ≤ mi and j �=

mi+1
2 of

club i that has an odd mi, then(xi,2j − x) =
(
x′ − xi,2j′

)
and ti (|xi,2j − x|) = ti

(∣∣x′ − xi,2j′
∣∣) ,

where j + j′ − 1 = mi, xi,2j′ = L− xi,2j and x = L− x′. So far we have shown that commuting
costs of a household at x to facilities of all I clubs are the same as they are to a household at
x′, where x′ = L− x.
Symmetry also implies equality of patronage in symmetric facilities, i.e., Ni,j = Ni,j′ , as well

as equality between the CGs. Hence Gi,j = Gi,j′, where j + j′ − 1 = mi. The equalities of
the patronage and CGs between symmetric facilities imply that so are the congestion tolls, i.e.,
ci2 (Gi,j, Ni,j) =c

i
2

(
Gi,j′ , Ni,j′

)
. If x is a point in the market area of facility j = mi+1

2 of club
i that has an odd mi, then so is its symmetric point x′ = L − x, and households in the two
locations pay the same congestion toll in facility j = mi+1

2 of club i.
The implications from the arguments above are that two households, one residing at x and

the other at x′, travel to symmetric facilities, consume the same amounts of CGs and pay the
same commuting costs and congestion tolls. This implies that Tr (·) in (17) fulfills

Tr (x) = Tr
(
x′
)
, ∀x, x′, s.t. x+ x′ = L (27)
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We are now able to show that (18) is consistent with a symmetric structure. From (27) it
follows that Y + v -Tr (x) = Y + v -Tr (x′) . Therefore, ph (x)h (ph (x)) + z (ph (x)) , the term
equal to Y + v -Tr (x) in (18) after moving Tr (x) to the other side of the equation, must also
be equal to ph (x

′)h (ph (x
′)) + z (ph (x

′)) . The term ph (·)h (·) + z (·) is a monotonic increasing
function of ph (·), its only independent argument once all the CGs are given.23 It follows that
the bid housing price function solved from ph (·)h (·)+z (·) are symmetric, i.e., pbh

(
x, j1, .., jI

)
=

pbh
(
x′, j1′, .., jI′

)
, where ji + ji′ − 1 = mi; and x + x

′ = L , ji′, ji ∈ (1, ...,mi) , 0 ≤ x ≤ L/2
,L/2 ≤ x′ ≤ L. This in turn implies that the housing price function itself is symmetric, i.e.,
ph (x) = ph (x

′) , where x + x′ = L. The symmetry of ph (·) implies that n (x) (= n (ph (x))) is
also symmetric around L/2, since it too is a monotonic increasing function of ph (·) when the
facility locations are given (see Appendix 7.2). For given facility locations we can obtain from
(24) the boundaries of symmetric facilities by using bid housing price functions. The symmetry
of these functions together with the symmetry of facility locations imply the symmetry of the
boundaries. When the boundaries are given, (20) implies the symmetry of facility locations. The
consistency of a symmetric complex with the rest of the necessary conditions and constraints
follows immediately. �

Propositions 5 and 6 state that a first-best allocation is symmetric and that its popu-
lation density is never uniform. The question is whether agglomerations of facilities of various
clubs actually take place in an optimal allocation. To answer this question we characterize two
optimal allocations, each with a simple yet different complex configuration, where we show that
the concentration of households and agglomeration of clubs’ facilities do occur in an edgeless
economy.

5.2. Perfect Agglomeration

The term perfect agglomeration refers to an agglomeration of facilities of different clubs
located at the same place.24 An allocation with a central location pattern (CLP) in which all
the facilities in a complex are located in the center of the complex is an example of perfect

agglomeration. In what follows we show that our model with the configuration

I︷ ︸︸ ︷
(1, ..., 1) has an

optimal solution with a CLP that satisfies the necessary conditions specified in Section 3. From
Proposition 6 we know that all the facilities in a CLP allocation are located in the center of a
symmetric complex. By the superscript c we designate the optimal values of variables of the

model with the configuration

I︷ ︸︸ ︷
(1, ..., 1). In the Proposition below we investigate properties of the

model’s solution.

Proposition 7 The optimal allocation of a spatial clubs economy with the configuration

I(︷ ︸︸ ︷
1, ..., 1

)

that satisfies Condition A consists of k complexes, each with a CLP, in which facilities of all
the clubs are located in the center of the complex and the population is distributed symmetrically
around the complex center. The population density function and the price of housing function
are both symmetrical around the complex’s center, continuous and differentiable everywhere ex-
cept at the nodes where both functions are continuous but not differential. Both functions are
declining with distance from the center and the housing price function has a positive second

23To see this, note that since h and z are compensated demand functions, ph
∂h
∂ph

+ ∂z
∂ph

= 0. When we substitute

the above expression into the differential of the term phh+ z with respect to ph we obtain ∂(phh+z)
∂ph

= h > 0.
24In a model where facilities occupy space, perfect agglomeration means that the areas occupied by the facilities
are adjacent to each other with no households in between.



25

derivative.

Proof: In a CLP xi,2j = xc2j, ∀i, since all facilities are located in the center of the j-th complex,
for all j = 1, ..., k. Substituting xc2j into equation (B1) in Appendix 7.2 yields,

ṗh(x) = −
1

h(x)

I∑

i=1

t′i(|x− x
c
2j |)sign(x− x2j);

∀x, xc2j−1 < x < xc2j+1, and ∀j, j ∈ (1, ..., k) , (28)

where a dot above a function designates differentiation with respect to distance and xc2j−1 and

xc2j+1 are the boundaries of complex j and of all the facilities in the complex. Let yj
def
= |x−xc2j |;

s.t., xc2j−1 ≤ x ≤ xc2j+1,∀j, j ∈ (1, ..., k), be the distance of a point x in complex j from the
center of the complex, xc2j . Then 0 ≤ yj ≤ L/2, ∀j. If we designate points in complex j by yj
then yj = 0 is the center of complex j, and yj = L/2 are the boundaries of the complex. Note
that each yj, 0 < yj ≤ L/2, stands for two symmetric points in the complex. In what follows
we avoid using the index j or superscript c, unless there is a possibility of confusion. From (28),
after substituting into it y for |x− xc2j |, we obtain

∂ph(y)

∂y
= −

1

h(y)

I∑

i=1

t′i(y). (29)

Equation (29) implies that the first derivative of ph(y) is negative. This means that ph(y) is
monotonically decreasing, its highest value is at the center where y = 0 and its lowest value at
the boundaries where y = L/2. The second derivative of ph(y) is always positive (see (B2) in
Appendix 7.2), which means that the rate of decline decreases with distance from the center.
From (B4) in Appendix 7.2, we learn that n (ph) for a given set of CGs, (Gi) , is a monotonic
increasing function of ph. This implies that nc, like pch, is monotonically decreasing with y, and
attains its highest value in the center of the complex where y = 0, and its lowest value at the
boundaries where y = L/2. �

Corollary 8 In an optimal allocation with a CLP, the agglomeration of facilities of different
clubs in the center of each complex is accompanied by a concentration of households around the
center.

The proof follows directly from Proposition 7.
Definition: An optimal allocation of the model with a given set of functions and the basic

configuration M , is a global optimum if any optimal allocation of the model with the same
functions but with a basic configuration other than M has a lower value of the goal function.
In the example below we present additional specifications to the model’s general functions

introduced in Section 2. The allocation with the CLP of Proposition 7 together with the complex

configuration

I(︷ ︸︸ ︷
1, ..., 1

)
is the global optimum solution of the model whose functions fulfill the

specifications in the example below.
EXAMPLE: Functions Specifications For A Global Perfect Agglomeration
Consider a model of an economy with spatial clubs which in addition to the conditions on the

functions set in Section 2, satisfies the following more specific conditions;
1. The utility function is of the form u = U(H,Z,ψ(G1, . . . ,GI)), where ψ(G1, . . . ,GI) is

invariant for permutations of the set (G1, . . . , GI), e.g., ψ(G1, . . . , GI) =
∏I

i=1Gi.



26

2. All clubs share the same transportation cost function, i.e., ti(y) = t(y), ∀i an the same
provision cost function, i.e., ci(Gij ,Nij) = c(Gij ,Nij), ∀i, j.
The housing price function of a CLP in an optimal complex is depicted in Figure 3.

Ph(L)

Ph

0 X2
L

The Housing Price Function

Figure 3: The Housing Price Function of an Optimal Complex with the Configuration (1,...,1).

Lemma 4 An optimal CLP allocation as described in Proposition 7 is a global optimum solution
to the model with functions from the above Example.

Proof: To show that the global optimum with functions from the Example has a CLP, we show

that such a global optimum has the configuration

I(︷ ︸︸ ︷
1, ..., 1

)
. If in a global optimum solution to

the model with functions in the Example above, the sizes of a particular club’s market areas, the
quantity of CGs in each of the club’s facilities and the club’s facility locations and boundaries
satisfy the necessary conditions specified in section 3 and are therefore optimal for this one club.
These same values also satisfy the necessary conditions of all other clubs and the same values
are optimal for all clubs. The reason for this is that all clubs have the same cost functions and
utility function. This implies that every market area is common to all clubs, which in turn,
implies that each market area is a separate complex. The configuration of such a complex is

I(︷ ︸︸ ︷
1, ..., 1

)
and an allocation with a CLP is, according to 7, its optimal solution.�

It should be noted that a marginal change in the number of facilities in a complex is
impossible and the smallest change is of one more (or less) facility. Therefore, sufficiently small
variations in the specifications of the functions would leave the basic configuration of the global
optimum unchanged. For example, if instead of using the utility function u = H · Z ·

∏I
i=1Gi
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in the Example, the utility function used is u = H · Z ·
∏I

i=1G
1+αi
i , where |αi| are sufficiently

small yet different from each other, the global optimum allocation would still be a CLP. The
same is true for small variations in the transportation cost functions of the different clubs or
small differences in their provision cost functions. However, while the basic configuration of the
global optimum may not change due to small variations, all other variables change continuously.

5.3. Imperfect Agglomeration

In this section we characterize the optimal allocation of the model with the basic configuration
given below,

(mi = 1, ∀i = 1, ..., I1 & mi = 2 , ∀i = I1 + 1, ..., I) ; 1 ≤ I1 < I <∞. (30)

While in perfect agglomeration we investigate the agglomeration of facilities of all clubs in
a single location at the center of the complex, in this section we investigate an example of an
imperfect agglomeration. Such an agglomeration takes place when facilities of different clubs
agglomerate in clusters around the center of the complex but steer clear of it. By saying that
the agglomeration is imperfect we mean that the clusters may contain dwellings between the
facilities.
We first introduce the symmetric structure of the allocation with the configuration given in

(30) as specified in Proposition 6. The symmetric structure possesses the following properties:
(1) Each of the clubs i ∈ 1, ..., I1, (henceforth SF clubs) have one facility located in the middle
of the complex and its market area is the whole complex. (2) The two facilities of each of the
clubs i ∈ (I1 + 1, ..., I) (henceforth DF clubs), are symmetrically located on each side of the
center of the complex and each of their market areas is extended between a complex boundary
and the center. Altogether, the complex has I1 facilities of SF clubs and 2 (I − I1) facilities of
DF clubs, (I − I1) facilities of DF clubs on each side of the complex center. The properties of
the allocation with the configuration (30) are depicted in the series of lemmas presented in the
rest of this section.

Lemma 5 In the optimal allocation of the model with the configuration (30) discussed above, all
the facility locations of the DF clubs are in the second and third quarters of the complex area.25

The average density of the population residing between the two facilities of the DF club located
farthest from the center (one facility to the left and one to the right of the center), is higher
than it is between these two DF facilities and the boundaries.

Proof: Without loss of generality, we consider only the first half of the representative complex,
namely the segment (0, L/2) (an equivalent analysis would apply to the other half (L/2, L)).
Let x2 in (0, L/2) be the facility location of the DF club closest to the origin, 0, and farthest
from the center L/2 (if there is more than one such club, one of them is chosen arbitrarily).
This means that all facility locations of the DF clubs in (0, L/2) are located between x2 and the
center, L/2. We show below that x2 is in the second quarter of the complex area and therefore
so are the rest of the DF locations.
To see that x2 is in the second quarter, consider a location x that is to the left of x2, i.e.,

0 ≤ x < x2. The point x has a point x′, x2 ≤ x′ ≤ L/2, symmetric to x with respect to x2, so
that x2 − x = x′ − x2. Note that all the individuals residing in the segment (0, L/2) travel to

25By the term ‘quarter’ we refer to a segment which results from a division of the complex’s length into four
equal consecutive segments. The first quarter is the segment farthest to the left and the other three quarters are
numbered consecutively in the clockwise direction.
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the same facilities. An individual residing in x′ travels to the same facilities as the individual
at x, however, the distances from x′ to all the facilities that are not located in x2 are shorter
than from x, because all the facilities are located to the right of x2. Even if all the DF clubs
are located in x2, the distance to travel from x′ = 2x2 − x to the SF-clubs in the center is still
shorter. Accordingly, commuting costs from x′ to all facilities are lower than from x, while all
other arguments of piah (x) are the same. In (B1) in Appendix 7.2 it is shown that an increase
in transportation costs, while all arguments of ph (x) are kept constant, causes ph (x) to decline.
Therefore, piah (x) , the housing price at x, 0 ≤ x < x2, must be lower than piah (x

′) , the housing
price at x′. Consequently, because n (ph) is monotonic increasing in ph while the rest of the
variables remain constant it follows that nia (x) < nia (x′) . Consider now (20) with respect
to facility (i,1) located in x2. On the left-hand side of the equation, for every x which has a
symmetric x′, t′i (x2 − x) is equal to t

′
i (x

′ − x2) on the right-hand side. However, t′i (x2 − x) on

the left-hand side of the equation is weighted by nia (x) , which is lower than nia (x′), the weight
of t′i

(
x′ − x2

)
on the right-hand side. This implies that for the equality in (20) to hold, the

interval (0, x2) , in which the weights are lower, must be longer than the interval (x2, L/2) in
which the weights are higher. This, in turn, implies that x2 − 0 > L/2− x2, which means that
x2 > L/4 (see Figure 4). This is the first item we have to prove in the lemma.
We just proved that nia (x′) > nia (x) for all x located to the left of x2 and having a symmetric

point x′ with respect to x2 . Additionally, there are points between the origin and the point
(2x2 − L/2), the point symmetric to L/2 with respect to x2, which is located to the left of x2.
These points left of (2x2 − L/2) have no matching symmetric points and since the transportation
costs of residents in these locations are higher than in any point x that has a matching symmetric
point, the value of piah (x) for x < (2x2 − L/2) must be lower than it is for any x>(2x2 − L/2).
Furthermore, as x < (2x2 − L/2) approaches the origin, p

ia
h (x) continues to decline. To see this,

consider equation (B1) in Appendix 7.2. In this equation, Ṫ r (x) is positive (negative) when x

increases (declines) since sign(x−xi,2ji ) is negative for all i. Therefore, ṗiah = −
Ṫ r
h(x) is positive,

i.e., piah (x) declines when x approaches zero. In turn, it follows from (B4) in Appendix 7.2 that
the density of population at the unmatched points to the left of (2xi2 − L/2) is lower than at
any other point to the right of (2xi2 − L/2) . Thus, the average density of population between
x2 and the origin must be lower than between x2 and L/2.�
In what follows we show that all the DF clubs agglomerate in two clusters, one in the second

quarter of the complex and the other in the third. Let x2 designate the facility location of the
DF club in (0, L/2) , which is located closest to L/2. At the DF club closest to the center of
the complex (20) is satisfied with the point x2 as the location of the facility. This means that
there is a positive distance between x2 and the boundary at L/2, equal to the short side of the
market area of the facility closest to the center. It follows that all the facilities of the DF clubs
in the first half of the complex are located between x2 (< L/2) and x2 (> L/4) and are clustered
together close to each other in the second quarter of the complex (and consequently, the DF
clubs in the second half of the complex are clustered in the third quarter of the complex). We
term such close grouping of facility locations, a cluster of DF facilities. In the lemma above we
showed that such clusters of DF clubs are located closer to the center of the complex than to
the boundaries. In such cases we say that the DF clusters gravitate towards the center of the
complex.
To clarify the role of transportation costs in an imperfect agglomeration of DF clubs, consider

the following Lemma;

Lemma 6 In an allocation with the basic configuration specified in (30), different DF clubs with
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proportional transportation cost functions share the same facility locations.26

Proof: Suppose that i and i′ are two clubs with proportional transportation costs, i.e.,
ti (x) /ti′ (x) = αii′ , ∀x, where αii′ , the factor of proportionality, is constant. Then the pro-
portionality is retained by the derivatives as well as the functions and t′i (x) = αii′t

′
i′ (x) .Thus, if

(20) holds for club i it holds for its proportional club i′ at the same facility location as well. To
see this consider (20) for club i, in which we substitute αii′t

′
i′ (x) for t

′
i (x) and then we eliminate

the proportionality factor αii′ from the equation to obtain (20) for club i′ at the same facility
location as club i. �
Note that all linear transportation cost functions are proportional and therefore DF clubs with

linear transportation cost functions agglomerate perfectly at a single location. Examples can be
constructed of non-proportional transportation cost functions of DF clubs that yield different
facility locations for each club.
Figure 4 depicts the housing price function in an optimal complex with the configuration (1,2).

Ph(L)

O                         L/4                        L/2                       3 L/4                       L       X
X1,1                                               X1,2                      X1,3                      X1,4                                               X1,5 

X2,1                                                                                                            X2,2                                                                          X2,3

Ph

The Housing 

Price Function

Figure 4: The Housing Price Function in a Complex with the Configuration (1,2)

We can now summarize the analysis of imperfect agglomeration performed in this section by
the following Proposition;

Proposition 9 In an optimal allocation with the basic configuration specified in (30)
(i)The facilities of SF clubs in the complex, i.e., of clubs i ∈ (1, ..., I1) , are all perfectly

agglomerated in the center of the complex;
(ii)The facilities of DF clubs, i.e., of clubs i ∈ (I1 + 1, ..., I) , agglomerate imperfectly in

clusters that gravitate towards the center of the complex, i.e., the clusters agglomerate in the
second and third quarters of the complex.

26Recall that in our model, if two facilities of different club types share the same location, it means that they are
adjacent to each other with no residential area between them.
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(iii)The average density of population between the clusters of the DF clubs and the center of
the complex is higher than the average density between these clusters and the boundaries of the
complex.
(iv) If, in a cluster, two DF clubs have proportional transportation cost functions, they share

the same facility location.

6. Summary and Concluding Remarks

The purpose of this paper was to characterize optimal allocations of an economy with
spatial clubs and to investigate agglomeration trends of households and club facilities in it. Our
results showed that each local optimum could be decentralized, sometimes in more than one
way, although most were difficult, if not impossible, to implement. In an optimal allocation
of clubs, the primary agglomeration was of club goods into facilities due to scale economies in
their provision to the population. The primary agglomeration led to a secondary agglomeration
of population which, in turn, led to the tertiary agglomeration of facilities of different clubs in
centers. The three types of agglomerations occurred simultaneously and their ordering is due
to causality not timing: Without the primary agglomeration there would not be a secondary
one, and without the secondary one there would not be a tertiary agglomeration. Furthermore,
an optimal allocation would never have a uniform population distribution and neither would an
allocation with a uniform distribution of population have an efficient agglomeration of facilities.
We then showed that the price of housing as well as the supply and demand for housing functions
were continuous functions of the distance, x, as was the density of population function. We also
showed that the optimum complex was symmetric with respect to its center.

We characterized two allocations, each with a specific complex configuration: in the first
allocation, each complex contained one facility of each club and in the second allocation each
complex contained both: clubs that had one facility per complex and clubs that had two fa-
cilities per complex. We identified two distinct types of agglomerations of club facilities: the
perfect agglomeration and the imperfect one. In the perfect agglomeration, facilities of differ-
ent clubs agglomerated perfectly in the center of the complex, where they are adjacent to each
other without residential activity between them. In the second allocation, besides the perfect
agglomeration of facilities of some of the clubs in the center of the complex, facilities of the
rest of the clubs agglomerated imperfectly in clusters, but households still may were residing
between them. While the clusters as a whole were away from the center of the complex, but
drawn towards it.

In respect to the issue of global optimum solutions of the model, the solutions specified
were mostly to the model with a predetermined complex configuration. We termed such an
allocation a local optimum since the global optimum included a solution to the configuration
variables as well. The only global optimum was the solution to the model with functions specified
in the Example in section 5.2 together with the configuration (1, ..., 1).
The purposes of this paper were completely satisfied so far. One avenue for future research

may focus on the relation between certain costs and utility functions and their global optimal
configuration. Such a research may shade light on questions like what functions would result in
a hierarchy of clubs in a global optimum or what causes certain types of clubs to be imbedded
in other club facilities.
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7. Appendices

7.1. Deriving the Necessary Conditions for a Pareto Optimum

The Lagrangian, L, of the problem set up in Section 2 is given below in (A1) . The Lagrange
multipliers are: [λ (x) , α (x) , δij , γi, ρ, ω, η, >i, θi] . The constraints multiplied by ω, >i, θi in the
Lagrangian are effective equalities and their multipliers can obtain any sign. The rest of the
constraints are inequalities and their multipliers must be non-negative. When these multipliers
are positive the constraint they multiply is effective and when a constraint is not effective, its
multiplier vanishes. Thus,
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L = U −

∫ L

0
λ (x)

(
U − u(Z(x),H(x),G1,j1(x), . . . ,GI,jI(x))

)
dx−

∑

i

γi



N −
mi∑

j=1

Ni,j





−

∫
L

0
α (x) (n(x)H(x)−Hs(x)) dx−

∑

i

∑

j

δij




Nij −

xi,2j+1∫

xi,2j−1

n(x)dx






−η






L∫

0

[n(x)Z(x) + ch(H
s)]dx+

I∑

i=1

mi∑

j=1

xi,2j+1∫

xi,2j−1

n(x)ti(|x− xi,2j |)dx+
I∑

i=1

mi∑

j=1

ci(i, j)−NY






−
∑

i

>i (xi,2mi+1 − L)−
∑

i

θixi,1 − ρ (L−L/k)− ω (N /k −N) . (A1)

The following equations are first-order conditions for the maximization of the model. To obtain
a first-order condition we differentiate the Lagrangian with respect to a variable of the model
and equate the result to zero. In each of the first-order conditions, the particular derivative is
written at the beginning of each equation and to the left of the double slashes.

∂L

∂xi,2mi+1

∥∥∥∥n (L)
δi,mi

η
− n(L) [ti(|L− xi,2mi |)] =

>i
η
. (A2)

∂L

∂L

∥∥∥∥
∑

i

>i
η
− [n(L)Z(L) + ch(H

s (L))] =
ρ

η
. (A3)

∂L

∂Nij

∥∥∥∥
γi
η
− ci2(Gij ,Nij) =

δij
η

(A4)

Substituting (A4) for j = mi into (A2) and the result into (A3) , yields

n (L)
∑

i

γi
η
−
ρ

η
= n(L)

I∑

i=1

[
ti(|L− xi,2mi

|) + ci2(i,mi)
]
+ n(L)z(L) + ch(H

s (L)). (A5)

∂L

∂n(x)

∥∥∥∥
∑

i

δiji(x)
η

−
α (x)

η
H(x)− z(x)−

I∑

i=1

ti(|x− xi,2ji(x)|) = 0. (A6)

Substituting (A4) into (A6) yields

∑

i

γi
η
−

[

z(x) +
α (x)

η
H(x) +

∑

i

ci2(i, ji (x)) +
I∑

i=1

ti(|x− xi,2ji(x)|)

]

= 0, ∀x, 0 ≤ x ≤ L. (A7)

∂L

∂Z (x)

∥∥∥∥λ (x) =
ηn(x)

u1(x)
. (A8)
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∂L

∂H(x)

∥∥∥∥
λ (x)u2(x)− α (x)n(x) = 0

=⇒ n(x)
[
α(x)
η
− u2(x)

u1(x)

]
= 0.

(A9)

∂L

∂Hs (x)

∥∥∥∥
α (x)

η
− c′h(H

s) = 0. (A10)

We multiply (A7) for x = L by n (L) and then substitute the result together with (A10) and
n (L)H (L) = Hs (L) into (A5) , to obtain;

Hs (L) c′h(H
s (L))− ch(H

s (L)) =
ρ

η
. (A11)

Equation (A7) implies that ρ
η
, the shadow price of the occupied land constraint, is also the land

rent at L, the boundary of the complex. By applying the Kunn-Tucker rule to (A11) we obtain:
ρ
η
> 0 =⇒ L = L/k and L < L /k =⇒ ρ

η
= 0. This, in turn, implies that ρ

η
is the alternative land

rent (RA in the text proper). We continue now with the derivation of the rest of the first-order
conditions

∂L

∂Gi,j

∥∥∥∥

∫ xi,2j+1

xi,2j−1

n(x) [ui+2(x)/u1(x)] dx− c
i
1(i, j) = 0. (A12)

∂L

∂xi,2j

∥∥∥∥

xi,2j∫

xi,2j−1

n(x)t′i(xi,2j − x)dx =

xi,2j+1∫

xi,2j

n(x)t′i(x− xi,2j)dx. (A13)

∂L

∂N

∥∥∥∥Y +
ω

η
−
∑

i

γi
η
= 0. (A14)

∂L

∂k

∥∥∥∥ ρL = ωN . (A15)

Since ρ is non-negative according to (A15), so must ω be non-negative. We now substitute (A14)
into (A7) to obtain:

Y +
ω

η
−

[

z(x) +
α (x)

η
H(x) +

∑

i

ci2(i, ji (x)) +
I∑

i=1

ti(|x− xi,2ji(x)|)

]

= 0. (A16)

Note that (A9) and (A10) imply that α(x)
η

is equal to ph (x) , the housing price function in the
text proper, and equation (A16) is the so-called ‘household’s optimal budget constraint’, where∑

i c
i
2(i, ji (x)) is the sum of all ‘congestion tolls’ to be paid by the household at x to each of

the I facilities it patronizes. The term ω
η is the household’s share in the overall alternative land

rents, as can be verified from (A11) and (A15) .
Now we substitute (A11) into (A15) to replace ρ with ω, and substitute the result into (A16)

to eliminate ω. We multiply the result by n (x) , integrate between [0, L] and into the result we
add the resource constraint (12) with (13) substituted into it. We then substitute (A10) and
(A11) into the result to obtain

∫ L

0

[
c′h(H

s(x))Hs(x)− ch(H
s(x))−

ρ

η

]
dx+

∑

i

∑

j

[
Ni,jc

i
2(Gi,j, Ni,j)− c

i(Gi,j ,Ni,j)
]
= 0.

(A17)

This is the Henry George rule for the complex.
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7.1.1. Continuity of Functions at Boundaries

The derivations below concern variables at the boundaries of clubs. In the text we use bid
rent functions to derive these relations. In this Appendix we use direct differentiation and show
that the technique of bid functions used in the text satisfies the necessary conditions derived in
this Appendix.
First we note that households residing to the left of a boundary travel to the left in order to

consume the CG, while residents to the right of a boundary travel to the right. This implies
residents in a neighborhood of a boundary consume each CG whose market areas are separated
by the boundary, at one of two different facilities. These two facilities provide the same CG but
they may be located at different distances from the boundary and contain different quantities
of the CG. Therefore the quantity of housing and composite good consumed by households at
the vicinity of a boundary may be discontinuous and when approaching a boundary from the
left the consumption basket may differ from the one when approaching the boundary from the
right. Consider such a boundary point xo between facilities jk& jk + 1 ∈ (1, ...,mik) , of clubs
ik ∈ (1, ..., I), k = 1, ...,K; 1 ≤ K < I , i.e., xo = xi1,2j1+1 = ... = xiK ,2jK+1 and xo is an interior
point to all clubs i, s.t., i �= ik&i ∈ (1, ..., I) . In the Lagrangian (A1), every integral which
contains xo in its domain can be split at xo into two integrals: in one integral xo is the upper limit
and in the other integral xo is the lower limit, i.e.,

∫ L
0 f (x)dx =

∫ xo
0 f (x)dx+

∫ L
xo
f (x)dx.When

the integrand is continuous at xo, splitting the integral does not affect the outcome. However,
there are control variables that may be discontinuous at such a boundary point, xo. Households
residing at x0 may commute either to the left of x0 or to its right to consume the CGs for
which x0 is a boundary. These two types of households, in addition to possibly using different
quantities of CGs, may differ in commuting costs and congestion tolls as well as in the amounts
of housing and composite good they consume. Thus, the variables that may be discontinuous
at xo besides Gik , are H (xo), H

s (xo), n (xo) and Z (xo). We designate by the superscript +
the limit at xoof these variables when approaching xo from the left and by the superscript −
the limit of the variables when approaching xo from the right. Accordingly, at xo the variables
H+ (xo) , Z

+ (xo) , n
+ (xo) and H

s+ (xo) are each left-continuous and H− (x0) , Z
− (x0) , n

− (xo)
and Hs− (x0) are each right-continuous. Note that Lagrange multipliers that are functions of
x, such as λ (x) and α (x) , may also split at the boundaries.

We now introduce these split variables into the Lagrangian at boundary points and then
derive the necessary conditions associated with them. First, note that the differentiation with
respect to the split variables themselves yields the same equations as the derivation with respect
to the same continuous variables but with the split variables replacing the continuous ones. New
necessary conditions are obtained only when differentiating with respect to the location of the
boundary, xo. In the Lagrangian, besides the integrals with limits in boundaries such as xi,2j±1,
there are three additional places where these split variables may appear: one is in the integrals
of the resource constraint that are multiplied by η; the second is in the utility constraint that
is multiplied by λ (x) ; and the third is in the equality of demand and supply of housing at each
location that is multiplied by α (x).

When differentiating with respect to xo either the utility constraint or the equality be-
tween the demand and supply of housing, we obtain the constraint multiplied by the Lagrange
multiplier at the boundary. This expression vanishes and therefore can be ignored. It should
be noted that households at a boundary xo = xik,jk+1, may either commute to their left or to
their right. If a household commutes to his left to facility ik, jk at xik,2jk he bears commuting

costs of tik(xo−xik,2jk), congestion tolls cik2 (ik, jk) and the variables associated with it at xo are
right-continuous (with superscript +). If, however, a household commutes to his right to facility
ik, jk+1 at xik,2(jk+1), his commuting costs are tik(xik ,2jk+1−xo), congestion tolls cik2 (ik, jk+1)
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and the variables associated with the household at xo are left-continuous (with superscript -).
Accordingly, the differentiation of the Lagrangian with respect to xo (= xik,2jk+1) is given below,

−n+(xo)

∑
k δik ,jk
η

+ n+(xo)Z
+(xo) + ch(H

s+ (xo)) + n
+(xo)

∑

k

tik(xo − xik,2jk) =

−n−(xo)

∑
k δik ,jk+1
η

+ n−(xo)Z
−(xo) + ch(H

s− (xo) + n
−(x0)

∑

k

tik(|xik,2(jk+1) − xo).

After substituting (A4) into the above equation and rearranging terms, we obtain the following
necessary condition for efficiency,

n+(xo)

[
∑

k

(
cik2 (ik, jk) + tik(xo − xik,2jk)−

γik
η

)
+ Z+(xo)

]

+ ch(H
s+(xo)) =

n−(xo)

[
∑

k

(
cik2 (ik, jk + 1) + tik(xik,2(jk+1) − xo)−

γik
η

)
+ Z−(xo)

]

+ ch(H
s−(xo)). (A18)

Ph (x) in the text is a continuous function of x (see Corollary 1) and in this Appendix it

is equal to α(x)
η (see (A9)), hence α(x)

η is continuous as well. Condition (A10) here, implies

that Hs (xo) is also continuous, i.e., Hs (xo) = (c′h)
−1
(
α(xo)
η

)
. This, in turn, implies that

i) ch(H
s± (xo)) = ch(H

s (xo)). and ii) n± (xo)H
± (xo) = Hs (xo) .

We now subtract from the square brackets in the left-hand side of (A18) the null-valued left-
hand side of (A7) for the variables at xo with the superscript + . With these right-continuous
variables the commuting is to the left to clubs ik, jk, k = 1, ...,K. Next, we subtract from the
square brackets on the right-hand side of (A18) , the null-valued left-hand side of (A7) for the
variables at xo with the superscript − , where commuting to clubs ik, jk + 1 is to the right of
xo to xik,2(jk+1). Since xo is an interior point of all clubs other than ik, commuting costs to and
congestion tolls at any club i, (i ∈ 1, ..., I ∩ i �= ik, k = 1, ...,K) , are the same for all households
at xo. In addition, we substitute i) and ii) above into the result to obtain, after rearranging
terms

n− (xo)




∑

i�=io

γi
η
−
∑

i�=io

ci2(i, j
i (xo))−

I∑

i�=io

ti(|xo − xi,2ji(xo)|)



+ ch(Hs (xo))−
α (xo)

η
Hs(xo) =

n+ (xo)




∑

i�=ik

γi
η
−
∑

i�=ik

ci2(i, j
i (xo))−

I∑

i�=ik

ti(|xo − xi,2ji(xo)|)



+ ch(Hs (xo))−
α (xo)

η
Hs(xo).

By reducing equal terms from both sides of the above equation we obtain n+ (xo) = n− (xo) ,
i.e., the density of the population is a continuous function of x in the boundary xo. This implies
that H (xo) =

Hs(xo)
n(xo)

is continuous as well at xo.
To summarize, in this section we proved that the continuity of the housing price function at a

boundary implies the continuity of the population density function, the housing supply function
and the housing demand function at the boundary. �
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7.1.2. Necessary Conditions for Boundaries and Bid Housing Price Functions

We now substitute the equality between the variables n (x0) , H
s (x0) and H (x0) with super-

script + to their counterparts with superscript − into (A18) and after reducing equal terms we
obtain,

∑

k

[
cik2 (ik, jk) + tik(xo − xik,2jk)

]
+Z+ (xo) =

∑

k

[
cik2 (ik, jk + 1) + tik(xik,2(jk+1) − xo)

]
+Z− (xo) .

(A19)

Condition (A19) is the necessary condition for xo to be a boundary point between facilities
jk and jk + 1 of club ik, for all k = 1, ...,K, i.e., xo = xi1,2j1+1 = ... = xiK ,2jK+1 and an interior
point in all other clubs. In the Lemma below we prove that this condition is equivalent to the
determination of boundary points by the intersection of bid rent functions (see section 3.3.3).

Lemma 7 Equation (A19) holds for xo if and only if (A20) below holds.

P b
h

(
xo;
[
jikk ,∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) , ∀i ∈ (1, ..., I)

)
∩ (i �= ik,∀k)

])
=

P b
h

(
xo;
[
jikk + 1, ∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) ,∀i ∈ (1, ..., I)

)
∩ (i �= ik, ∀k)

])
. ((A20))

It should be noted that the indexes jikk above are identical to the pairs ik, jk.

Proof: First we show that (A20) implies (A19) . From (22) we obtain at xo for facilities j
ik
k :

H (xo)P
b
h

(
xo;
[
jikk ,∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) , ∀i ∈ (1, ..., I)

)
∩ (i �= ik,∀k)

])
= Y + v−





Z+ (xo) +

∑

k

[
cik2 (j

ik
k ) + tik(xo − xik,2jk)

]
+
∑

i�=ik

[
ci2
(
ji (xo)

)
+ ti

(∣∣xo − xi,2j(xo)
∣∣)]




, (i)

whereas for facilities jikk + 1 we obtain,

H (xo)P
b
h

(
xo;
[
jikk + 1,∀k ∈ (1, ...,K)

]
∪
[ (
ji (xo) ,∀i ∈ (1, ..., I)

)
∩ (i �= ik,∀k)

])
= Y + v−





Z− (xo) +

∑

k

[
cik2 (jk + 1) + tik(xik,2(jk+1) − xo)

]
+
∑

i�=ik

[
ci2
(
ji (xo)

)
+ ti

(∣∣xo − xi,2j(xo)
∣∣)]




,(ii)

We now multiply (A20) by H (xo) and then substitute into its left-hand side the right-hand
side of (i) above, and into the right-hand side of the extended (A20) , we substitute the right-
hand side of (ii) above. Then by reducing identical terms from both sides of the equation we
obtain (A19) . Thus we showed that (A20) implies (A19p) .
To show that (A19) implies (A20) we claim the following : from the right-hand side of (22) for

facilities jikk at the boundary xo, we subtract the left-hand side of (A19) for ik and jikk .We then

equate the result to the right-hand side of (22) for facilities jikk + 1 at the boundary xo, from

which we subtracted the right-hand side of (A19) for ik and jikk . By reducing identical terms
from both sides of the resulting equality, we obtain (A20) .�
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7.1.3. Prices and Shadow Prices

The prices we used in all sections of the paper and their shadow counterparts in this Appendix
are presented in the following table.

Variable in text Variable in Appendix Description of variable

RA
ρ
η The alternative land rent

ph (x)
α(x)
η The housing price function

υ ω
η

The share of a household in alternative land rents

7.2. Characterizing the Bid Housing Price and Other Related Functions

The following differentiation of the (bid) housing price function proves Lemma 2. Differenti-
ating (22) with respect to distance, bearing in mind that no facility is located in x, yields the
Muthian spatial equilibrium condition,27

h(x, pbh)ṗ
b
h(x, j

1 , ..., jI ) + Ṫ r (x, j1 , ..., jI ) ≡ 0 where Ṫ r (x, j1 , ..., jI ) =

=
I∑

i=1

t′i(|x− xi,2ji |)sign(x− xi,2ji ). ((B1))

A dot above a function designates differentiation with respect to x. The reader should bear in

mind that according to our assumptions t′i (y) =
dti(y)
dy > 0 and t′′i (y) =

d2ti(y)
dy2

≤ 0.

Equation (B1) implies that a marginal displacement at a given location causes a marginal
change in the bid-housing-price function proportional to the sum of all marginal changes in the
home-facility commuting costs to the facilities of clubs j1, ..., jI . The factor of proportionality is
−1/h(x| pbh (x)), i.e., minus the reciprocal of the amount of housing consumed by a household at
x, provided pbh (x) is the price of housing. Note that since ti (|y|) is not differentiable at y = 0, at
the facility locations, xi,2ji , p

b
h

(
x/
(
ji
))

is continuous but not differentiable. For an x that is not
a facility location, the second derivative of the bid housing price is obtained by differentiating
(B1) with respect to distance, thus

p̈bh = −

∂h
∂pb

h

(
ṗbh
)2
+

I∑

i=1
t′′i (|x− xi,2ji |)

h(·)
≥ 0. (B2)

Thus, (B2) implies that pbh(x) is a concave function of x.
Since the housing price function, ph (x) , at a location x that is not a node coincides with

one of the bid rent functions, it has all the properties of a bid housing price function, except at
boundaries and facility locations where it is continuous but not differentiable. We now turn to
other continuous functions that depend on ph(x) (see Appendix 7.1.1). By differentiating (14)
we obtain

dHs

dph
=

1

c
′′

h(H
s)
> 0⇒ Ḣs =

dHs

dph
ṗh = sign (ṗh)

dHs

dph
|ṗh| (B3)

Equation (B3) implies that the supply of housing at a given location is an increasing function
of its product’s price there, and that Ḣs has the same sign as ṗh.

27The function sign(x) is given by sign(x) =






1 for x > 0
0 for x = 0
−1 for x < 0

.

The function sign(x) is differentiable everywhere except at x = 0. Furthermore, |x| = x ·sign(x) and ∂|x|/∂x =
sign(x), except atr x = 0, where it is not defined.
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The density function, n (ph) = Hs (ph (x)) /h(ph (x)) (defined as the number of households
per unit of land) increases with the price of housing. To see this, we make the following differ-
entiation:

∂n (x)

dph
=
d(Hs/h)

dph
=
h∂Hs/∂ph −H

s∂h/∂ph
h2

> 0. (B4)

The sign of (B4) follows from (B3) and from the substitution effect which implies that ∂h (·) /∂ph (·) < 0
in (10) . It follows from (B4) that the density n(x) = Hs (x) /h (x) increases with distance the
same way that ph (x) does.
By differentiating the land rent function in (15) and using (B1) as well as (14), we obtain

·
R(x) = Hs(x)

·
ph(x), (B5)

which implies that R(x) varies with distance in the same way that ph(x) does. By differentiating
Ṙ(x), we obtain

··
R(x) =

·

Hs ·ph +H
s ··ph ≥ 0 (B6)

Together, equations (B6) and (B2) imply that, in the general case, R, like ph, is a concave
function of x.
The functions pbh (x) and ph (x) , are also functions of the parameters U, Y and Gij. By dif-

ferentiation of (18) as well as (5) , with respect to Y, taking into account that only variables
controlled by the consumer may be indirectly affected, namely H (x) and Z (x), we obtain

∂ph (x)

∂Y
=

1

h (x)
≥ 0 (B7)

In the same way we obtain for Gij

∂ph (x)

∂Gij
=

1

h (x)

Ui+2

U1
> 0, xi,2j−1 ≤ x ≤ xi,2j+1 (B8)

7.3. Proof for Section 3

7.3.1. Proof of Lemma 3

The proof is by contradiction. We assume that the market area is not connected and show
that this assumption leads to a contradiction. Without loss of generality, let the disconnected
market area be of club 1(not necessarily the industrial club).

⋅

⋅

⋅ ⋅⋅2,1x 3,1x 4,1x ax

( )Ioo

b

h jjxp ,...,,1, 2

( )Ib

h jjxp 1

2

1 ,...,,2,

( )Ib

h jjxp 1

2

1 ,...,,1,

Figure 5: Bid housing price functions in a disconnected market area.
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In Figure 5, facility 1, 1 (facility 1 of club 1) providing G1,1 of the CG of club 1 is located in
x1,2, and facility 1, 2 providing G1,2 is located in x1,4 . The locations x1,3 and xa are boundaries
between the market areas of facility 1, 1 and facility 1, 2. There are two parts of the market area
of facility 1, 1: the first lies to the left of x1,3 and includes x1,2 and the second is spread to the
right of xa. The market area of facility 1, 2 is between x1,3 and xa. Thus, the market area of
facility 1, 1 is disconnected and we show here that such a layout leads to a contradiction when
transportation costs are linear. To avoid the question of where people residing in a boundary
use the CGs, n what follows we assume that market areas consist of half-closed segments, e.g.,
(xi,2j−1,xi,2j+1] .

The proof is divided into two parts. In the first part, the housing price function in
the connected segment of the market area

(
x1,3, xα

)
coincides with a single bid housing price

function. In the second part, we extend the proof to the more general case.
The function pbh

(
x, 1, j2o , ..., j

I
o

)
(see Figure 5) is the bid housing price of residents who travel

to x1,2 to consume G1,1 and to xi,2jio , i = 2, ..., I (the points are not depicted in Figure 5) to

consume the rest of the CGs. pbh
(
x, 1, j2o , ..., j

I
o

)
coincide with the housing price function in the

segment (x1,2 , x1,3 ]. The function p
b
h

(
x, 2, j21 , ..., j

I
1

)
is the bid of residents at x who travel to x1,4 ,

as well as to xi,2ji1 , i = 2, ..., I (these points are also not depicted in Figure 5) and this bid function

coincides with the housing price function in the segment (x1,3 , xa]. In addition to the above two
bid housing price functions, we consider the bid housing price function, pbh

(
x, 1, j21 , ..., j

I
1

)
. In

the segment (x1,3, xa] this function is the highest bid for housing that residents are willing to pay
for housing while patronizing facility (1, 1). The reason is that the optimal vector of facilities of
all clubs other than 1 at (x1,3, xa] is j

2
1 , ..., j

I
1 , the same vector as is in the housing price function

in the segment (x1,3, xa]. In other words, among all bid housing price functions with households
that patronize facility (1, 1), the bid function pbh

(
x, 1, j21 , ..., j

I
1

)
is the highest in (x1,3, xa] . In

this case the market area of facility (1, 1) would exist to the right of xa only if the functions
pbh
(
x, 1, j21 , ..., j

I
1

)
and pbh

(
x, 2, j21 , ..., j

I
1

)
intersect at xa.

From (21) we learn that the only difference between Tr
(
x, 1, j21 , ..., j

I
1

)
and Tr

(
x, 2, j21 , ..., j

I
1

)
,

is the cost terms associated with facilities of club 1.At the point x1,4, the function Tr
(
x1,4 , 1, j

2
1 , ..., j

I
1

)

must be higher than Tr
(
x1,4, 2, j

2
1 , ..., j

I
1

)
otherwise no one would travel to facility (1, 2) and the

market area of facility (1, 1) would be connected. From equation (B1) in Appendix 7.2, it follows
that in locations to the right of x1,4, the equality Ṫ r

(
x, 2, j21 , ..., j

I
1

)
= Ṫ r

(
x, 1, j21 , ..., j

I
1

)
must

hold. The reason for the equality of the two Ṫ r-s is that since from all locations to the right
of x1,4 households commute in both cases to the same facilities of clubs i, t′i (x) for i > 1 is the
same in both the above Tr functions. In addition, sign (x− x1,2) = sign (x− x1,4) ,∀x > x1,4,
and by assumption, t′1 (y) =Constant. Hence, the two bid functions, pbh

(
x, 2, j21 , ..., j

I
1

)
and

pbh
(
x, 1, j21 , ..., j

I
1

)
at xa have the same slopes as is shown below in (D1) and calculated from

equation (B1) in Appendix 7.2.

ṗbh
(
xa, 1, j

2
1 , ..., j

I
1

)
= −

Ṫ r
(
xa, 1, j21 , ..., j

I
1

)

H(xa)
= −

Ṫ r
(
xa, 2, j21 , ..., j

I
1

)

H(xa)
= ṗbh

(
xa, 2, j

2
1 , ..., j

I
1

)
..

((D1))

In the middle of (D1), the two Ṫ r-functions in the numerators above are equal, due to the
linearity of the transportation cost functions and so is H(xa) (the two pbh functions in the
compensated demand for housing in the denominator are the same at their intersection point).
Thus, at xa both pbh functions, as well as their derivatives, are the same. This means that the
two bid functions do not intersect at xa but are tangent to each other. This is a contradiction,
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which means that facility 1,1 is connected. This completes the first part of the proof.
In the second stage we prove the lemma for the case in which the housing price function

ph (x) , x1,3 < x < xa consists of segments of different bid functions, each with a different vector(
J2, ..., jI

)
. All of these bid functions of which ph consists, have j1 = 2, i.e., in all of them

residents travel to facility 2 of club 1. In this case, let p̄bh
(
x, 2, j21 , ..., j

I
1

)
be the bid function

that in (x1,4, xa) coincides with the last segment of the price function, namely, the segment that
ends in xa. By p̄

b
h

(
x, 1, j21 , ..., j

I
1

)
we designate the bid function of a household that patronizes(

1, j21 , ..., j
I
1

)
. This function is the highest bid of patrons of (1, 1) in a sufficiently small segment

to the left of xa. The two bid functions, p̄bh
(
x, 2, j21 , ..., j

I
1

)
and p̄bh

(
x, 1, j21 , ..., j

I
1

)
intersect at xa.

From here on the proof proceeds exactly as the proof in part one. This completes the proof of
the Lemma.�

7.4. Proofs for Section 4

7.4.1. Proof of Proposition 4

The profit function of a contractor at x facing the given price of housing p∗h (x) is π (x) =
p∗h (x)H

s (x)−ch (Hs (x)) . Hence, contractors maximizing their profits at x by choosing Hs (x) ,
lead to the fulfillment of p∗h (x) = c′h (H

s (x)) . Thus causes Hs (x) to equal Hs∗ (x) . The subsidy
S(x) ensures that a household at x can purchase the optimal consumption basket at the given
prices. The price of housing being optimal implies that so is H (x) . Together H∗ (x) and Hs∗ (x)

imply in turn that n (x) = n∗ (x) = Hs∗(x)
H∗(x) and upon integration that indeed, Nij = N∗

ij.

Let πij = p
Gij
Gij−ci

(
Gij, N

∗
ij

)
be the profit function that an operator of facility ij maximizes

by choosing Gij for given p
Gij

and N∗
ij. The necessary condition for this maximization is =

ci1

(
Gij ,N∗

ij

)
and since p

Gij

def
= ci1(G

∗
ij,N

∗
ij), this condition yields Gij = G∗ij. Each individual

pays pd
Gij
=

p
Gij

N∗

ij
. This ensures that the overall payments paid for Gi,j by residents of the market

area of facility (i, j), i.e., N∗
ijp

d
Gij

= p
Gij

(
= ci1(G

∗
ij, N

∗
ij)
)
, are sufficient to induce the facility

operator to provide the optimal CG.
The Henry George rule ensures that aggregate land rents, in addition to aggregate clubs’

profits, that are all within the complex’s jurisdiction, exactly match the funds needed to finance
the required transfers to residents. �


