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Abstract

We study a three-stage all-pay auction with two players in which the �rst player to win two matches

wins the best-of-three all-pay auction. The players have values of winning the contest and may have

also values of losing, the latter depending on the stage in which the contest is decided. It is shown that

without values of losing, if players are heterogenous (they have di¤erent values) the best-of-three all-pay

auction is less competitive (the di¤erence between the players�probabilities to win is larger) as well as

less productive (the players�total expected e¤ort is smaller) than the one-stage all-pay auction. If players

are homogenous, however, the productivity and obviously the competitiveness of the best-of-three all-pay

auction and the one-stage all-pay auction are identical. These results hold even if players have values

of losing that do not depend on the stage in which the contest is decided. However, the best-of-three

all-pay auction with di¤erent values of losing over the contest�s stages may be more productive than the

one-stage all-pay auction.

1 Introduction

The National Basketball Association (NBA) playo¤s begin with eight teams in each conference who qualify

for the playo¤s. Each team plays against a rival in a best-of-seven contest, with the �rst team to win four

games advancing into the next round, and the other team being eliminated from the playo¤s. In the next

round, the successful team plays against another advancing team from the same conference. Thus, all but
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one team in each conference are eliminated from the playo¤s. The �nal playo¤ round, which is a best-of-

seven contest between the winners of both conferences, is known as the NBA Finals. Basketball is only

one of numerous sporting contests that are based on the form of the best-of-k contest in which the winner

is the one who is �rst to win k+1
2 games (k is an odd integer). Another classical best-of-three contest is

tennis in which the �rst player to win two sets wins the contest. In certain prominent tennis tournaments

for men, including the all four Grand Slam tournaments (the Australian Open, French Open, Wimbledon,

and US Open) the �rst player to win three sets wins the best-of-�ve contest. While best-of-k contests are

common in sport, they also appear in political races (see Klumpp and Polborn (2006)). For example, the

US presidential primary election is a sophisticated version of the best-of-k contest, as in this contest every

game (state-election) actually has a di¤erent weight (party delegates) and the �rst to win the majority of

the total party delegates is elected as the nominee of the party.

One of the main issues we address in this paper is why a contest designer would choose to use a best-of-k

contest over a one-stage contest. One possible reason is that best-of-k contests, such as the NBA playo¤s,

have a relative advantage over the one-stage contest in that there is a higher number of matches. In other

words, if the contest designer makes a pro�t per match, then he might prefer the best-of-k contest. On the

other hand, in tennis, which is a best-of-three contest, the designer does not make a pro�t from every set,

in which case the advantage of the best-of-three tennis contest over a contest based on a long single set is

not so clear.

We study a best-of-three all-pay auction with two players where the players�abilities are common knowl-

edge. Each match among the players is modelled as an all-pay auction. We �rst show that if players have

only values of winning and they are heterogeneous (they have di¤erent abilities or di¤erent values), then the

best-of-three all-pay auction is less productive (the total e¤ort is smaller) and less competitive (the di¤erence

between the players�probabilities to win is higher) than the standard one-stage all-pay auction. If players

are homogenous, however, the productivity and obviously the competitiveness of the best-of-three all-pay

auction and the one-stage all-pay auction are identical. By this comparison it would seem that the contest

designer who wishes to maximize the players� total e¤ort would prefer the one-stage all-pay auction over

the best-of-three all-pay auction. However, this is not inevitably the case. The reason is that in one-stage
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contests we usually assume that players have values of winning but not values of losing, since the di¤erence

between the values of winning and losing is the crucial parameter and therefore the value of losing is usually

normalized to zero. However, in multi-stage contests the role of the value of losing is more complex in that

the di¤erence between the values of winning and losing is not su¢ cient to re�ect the e¤ect of these values

on the players�behavior. This is because the values of losing indirectly change the players�expected payo¤s

in the previous stages and, accordingly, the players�probabilities of winning in each match. To illustrate, in

tennis tournaments, for example, Wimbledon 2008, the prize for the winner was £ 750,000, and the prize for

the runner-up was £ 375,000. We can �nd the same ratio in the US Open 2008 where the prize for the winner

was $1,500,000 and the prize for the runner-up was $750,000. These runner-up prizes, which represent the

values of losing in our model, are the same no matter at what stage the contest is decided. However, we

assume here that the values of losing may depend on the contest stage, the reason being that the player not

only has a bene�t from the monetary value of the prize, but also may bene�t from coming close to winning.

As such, it seem reasonable that the value of losing increases in stages regardless of whether these values

are positive or negative. Thus, in our model we assume that players have values of losing and that these

values may be di¤erent during the stages of the contest. In particular, we assume that the value of losing

the contest in the third stage is larger or equal to the value of losing in the second stage.

We show that our results about the comparison of productivity between the best-of-three all-pay auction

and the one-stage all-pay auction hold even if the players have values of losing, given that the values are the

same over the stages in the best-of-three all-pay auction. However, if the values of losing are di¤erent over

the stages, such that the value of losing in the third stage is su¢ ciently larger than the value of losing in the

second stage, then the total e¤ort in the best-of-three all-pay auction might be larger than in the one-stage

all-pay auction. This result holds when the value of losing in the one-stage auction is either larger or smaller

than both values of losing in the best-of-three all-pay auction. Hence, given the natural assumption that

players have values of losing that depend on the stage in which the contest is decided, we provide a possible

explanation for why a contest designer who wishes to maximize the total e¤ort would prefer the best-of-k

contest over the one-stage contest. Obviously, as we mentioned, the contest designer may have other reasons

to prefer the best-of-k contest, particularly if he makes a pro�t for each match of the contest.
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1.1 Related literature

Similar to the comparison made in this paper between the best-of-three all-pay auction and the one-stage all-

pay auction, in the literature on contests we can �nd comparisons between multi-stage contests and one-stage

contests. Gradstein and Konrad (1999) studied a rent-seeking contest à la Tullock (with homogenous players)

and found that simultaneous contests are strictly superior if the contest�s rules are su¢ ciently discriminatory

(as in an all-pay auction). Groh et al. (2009), on the other hand, showed that in a setting with heterogenous

valuations, for the Gradstein-Konrad result to hold it is necessary that the multi-stage contest induce a

positive probability that the two strongest players do not reach the �nal with probability one. Otherwise,

if this happens, the total expected e¤ort in the elimination tournament equals the total e¤ort in the all-pay

auction where all players compete simultaneously. Konrad and Kovenock (2005) studied a tug-of-war contest

in which two players match in a sequence of all-pay auctions and the �rst to win a su¢ ciently higher number

of games receives the prize. They showed that the total e¤ort in their model is lower than in the one-stage

all-pay auction. Clark and Riis (1998) analyzed all-pay auctions with multiple identical prizes and compared

simultaneous versus sequential designs from the point of view of a revenue-maximizing designer. Their results

indicated that if there is a dominant player (one who has a much higher value than his colleagues) a designer

would maximize the expected total bid in the contest by distributing prizes simultaneously, whereas if no

player were dominant, the designer would prefer a sequential distribution.

Several studies in the literature deal with the problem of �nding the optimal allocation of prizes in con-

tests. For example, in all-pay auctions, Moldovanu and Sela (2001) showed that under incomplete information

when cost functions are linear or concave in e¤ort, it is optimal to allocate the entire prize sum to a single

�rst prize.1 In symmetric all-pay auctions under complete information, Barut and Kovenock (1998) showed

that the revenue maximizing prize structure allows any combination of k�1 prizes, where k is the number of

players. These �ndings indicate that a prize for the player with the lowest e¤ort should not be allocated, that

is, players do not have (monetary) values of losing (they are equal to zero). On the other hand, Moldovanu,

Sela and Shi (2008) claimed that even if punishment is costly, punishing the weak players (players with low

1Szymanski and Valletti (2005) studied the optimal number of prizes in Tullock�s model, and showed that the allocation of

two prizes may be more pro�table than the allocation of a single prize.
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e¤orts) may be more e¤ective than rewarding the strong players (players with high e¤orts) in eliciting e¤ort

input. In other words, the value of losing may play a stronger role than the value of winning.

Akerlof and Holden (2008) studied rank-order tournaments with players who are homogeneous in ability

where the probability of winning a match is a stochastic function of players�e¤orts. Their results indicated

that prizes for players with low e¤ort levels are usually more pro�table for the designer who maximizes total

e¤ort than prizes for players with high e¤ort levels. In other words, in one-stage contests, other than all-pay

auctions, values of losing could be even more signi�cant than values of winning.2

In the literature on contests, several papers deal with best-of-k contests. Klumpp and Polborn (2006)

used Tullock�s model to demonstrate that the winner of the �rst match is more likely to win the contest,

and Malueg and Yates (2006), using a generalization of Tullock�s model, showed that best-of three contests

are more likely to end in two rounds rather than three. These results do not necessarily hold in our model

since these authors assumed that players have homogenous abilities3 while in our paper the players may have

heterogeneous abilities.

The rest of the paper is organized as follows: Section 2 introduces the best-of-three all-pay auction and

Section 3 presents the unique equilibrium in the one-stage all-pay auction with a value of losing. In Section 4

we show the unique subgame-perfect equilibrium in the best-of-three all-pay auction with di¤erential values

of losing. Section 5 analyzes the players� probabilities to win the contests, while Section 6 analyzes the

players�total e¤orts. Section 8 concludes.

2 The model

In the model, two players (or teams) i = 1; 2 compete in a best-of-three all-pay auction. The players compete

in sequential matches, and the �rst who wins two matches wins the contest. We model each match among

the two players as an all-pay auction: both players exert e¤orts, and the one exerting the higher e¤ort wins.

Participating in the contest generates a (sunk) cost ei=ci for player i, where ei is the the e¤ort of player i and

2Other works on allocation of resources in sequential contests include, among others, Rosen (1986), Warneryd (1998) and

Konrad (2004).
3 It should be mentioned though that Klumpp and Polborn (2006) do provide some numerical results about players with

heterogenous abilities.
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ci is his ability. Player i�s ability ci is common knowledge. We assume that c1 � c2. The value of winning

the contest is v for both players. The players also have values of losing the contest which are either positive

or negative, and we assume that the value of losing depends on the stage that the contest is decided, namely,

the value of losing in the third stage is a and the value of losing in the second stage is b where v > a � b:

Note that our model is equivalent to a model where the value of winning the contest for player i is vi = vci

and the value of losing for player i is ai = aci in the third stage and bi = bci in the second stage. In this

equivalent model both players have the same cost function c(ei) = ei, and we have c2
c1
= v2

v1
= a2

a1
= b2

b1
. We

use this equivalence for the analysis of the players�equilibrium strategies in the best-of-three all-pay auction

as well as in the one-stage all-pay auction.

3 The one-stage all-pay auction

We begin with the analysis of the standard one-stage all-pay auction which plays a key role in our analysis

of the best-of-three all-pay auction. Consider a one-stage all-pay auction with two players 1; 2 where the

players�values for winning are v1 � v2 > 0 and their values for losing are a1 � a2: According to Hillman

and Riley (1989) and Baye, Kovenock and de Vries (1996, 2007), there is always a unique mixed-strategy

equilibrium in which the players randomize on the interval [0; v2 � a2] according to their e¤ort cumulative

distribution functions which are given by

v1F2(x) + a1(1� F2(x))� x = v1 � v2 + a2

v2F1(x) + a2(1� F1(x))� x = a2

Thus, player 1�s e¤ort is uniformly distributed

F1(x) =
x

v2 � a2

while player 2�s e¤ort is distributed according to the cumulative distribution function

F2(x) =
v1 � v2 + a2 � a1 + x

v1 � a1

Given these mixed strategies, player 1�s winning probability against 2 is

p�1 = 1�
v2 � a2
2(v1 � a1)

(1)
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Without loss of generality, assume that v1 = 1: Substituting h = c2
c1
= v2

v1
= a2

a1
in (1) yields

p�1 = 1�
h(1� a1)
2(1� a1)

= 1� h
2

That is, the value of losing a does not have any e¤ect on the players�probabilities to win the contest.

The total expected e¤ort is given by

TE� =
v2 � a2
2

(1 +
v2 � a2
v1 � a1

) (2)

Now let v1 = 1: Substituting h = v2
v1
= a2

a1
in (2) implies

TE�(a) =
h(1� a1)

2
(1 + h)

That is, the total e¤ort decreases in the value of losing a.

Using the analysis of the one-stage all-pay auction we can now turn to analyzing the players�equilibrium

strategies in the best-of-three all-pay auction.

4 The best-of-three all-pay auction

In the analysis of the subgame-perfect equilibrium of the best-of-three all-pay auction we assume that,

2v2 � v1 � 2a2 > 0 (3)

Note that without losing values, the requirement 2v2 � v1 > 0 is necessary, since otherwise, by the analysis

below, it would be veri�ed that player 2 will not have any incentive to compete in the �rst stage. Assumption

(3) guarantees that player 2 has an incentive to compete in the �rst stage and also that given the existing

of values of losing, the winner in the �rst stage has a relative advantage in the second stage. Thus, without

this assumption, the best-of-three all-pay auction is less competitive and therefore less interesting since the

player with the higher value (ability) wins some matches without a real competition.

In order to analyze the subgame-perfect equilibrium of the best-of-three all-pay auction we begin with

the last stage of the contest and go backwards to the previous stages.
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4.1 Stage 3

The players compete in the last stage only if each player won one of the previous matches. Therefore, the

expected value of player i if he wins the match in stage 3 is vi and if he loses, it is ai: Thus, based on the

analysis of the one-stage all-pay auction, players 1 and 2 randomize on the interval [0; v2 � a2] according to

their cumulative distribution functions F (3)i ; i = 1; 2 which are given by

v1F
(3)
2 (x) + a1(1� F (3)2 (x))� x = v1 � v2 + a2 (4)

v2F
(3)
1 (x) + a2(1� F (3)1 (x))� x = a2

4.2 Stage 2

Assume �rst that player 1 won the �rst match in stage 1. Then, if player 2 wins in this stage, by (4) his

expected payo¤ in the next stage is a2; and if player 2 loses in this stage, by (4) his payo¤ is b2: Similarly,

if player 1 wins in this stage, he wins the contest, and his payo¤ is v1, and if player 1 loses in this stage,

by (4) his expected payo¤ in the next stage is v1 � v2 + a2: Thus, since our assumption (3) implies that

v2 � a2 � a2 � b2, we obtain that players 1 and 2 randomize on the interval [0; a2 � b2] according to their

e¤ort cumulative distribution functions F (2)i ; i = 1; 2 which are given by

v1F
(2)
2 (x) + (v1 � v2 + a2)(1� F (2)2 (x))� x = v1 � a2 + b2 (5)

a2F
(2)
1 (x) + b2(1� F (2)1 (x))� x = b2

Assume now that player 2 won the �rst match in stage 1. Then, if player 1 wins in this stage, by (4) his

expected payo¤ in the next stage is v1 � v2 + a2 and if player 1 loses, his payo¤ is b1: Similarly, if player 2

wins in this stage, he wins the contest, and then his payo¤ is v2; and if he loses, by (4) his expected payo¤

in the next stage is a2: Thus, since our assumption (3) implies that v2 � a2 � v1 � v2 + a2 � b1; we obtain

that players 1 and 2 randomize on the interval [0; v1 � v2 + a2 � b1] according to their e¤ort cumulative

distribution functions F (2)i ; i = 1; 2 which are given by

(v1 � v2 + a2)F (2)2 (x) + b1(1� F (2)2 (x))� x = b1 (6)

v2F
(2)
1 (x) + a2(1� F (2)1 (x))� x = 2v2 � v1 � a2 + b1
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4.3 Stage 1

If player 1 wins, by (5) his expected payo¤ in the next stage is v1 � a2 + b2, and if he loses, by (6) his

expected payo¤ in the next stage is b1: Similarly, if player 2 wins, by (6) his expected payo¤ in the next

stage is 2v2 � v1 � a2 + b1, and if he loses by (5) his expected payo¤ is b2: Thus, since v1 � a2 + b2 � b1 �

2v2 � v1 � a2 + b1 � b2 and by our assumption (3) 2v2 � v1 � a2 + b1 � b2 > 0, we obtain that players 1

and 2 randomize on the interval [0; 2v2 � v1 � a2 + b1 � b2] according to their e¤ort cumulative distribution

functions F (1)1 ; i = 1; 2, which are given by

(v1 � a2 + b2)F (1)2 (x) + b1(1� F (1)2 (x))� x = 2v1 � 2v2 + 2b2 � b1 (7)

(2v2 � v1 � a2 + b1)F (1)1 (x) + b2(1� F (1)1 (x))� x = b2

5 Probabilities of winning

By the above analysis of the subgame-perfect equilibrium, we obtain that in the best-of-three all-pay auction,

player 1 (the player with the higher ability) wins the contest if:

1. He wins the �rst two matches. This happens with the probability of

(1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(1� a2 � b2
2(v2 � a2)

)

2. He loses the �rst match and wins matches 2 and 3. This happens with the probability of

(
2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
v1 � v2 + a2 � b1
2(v2 � a2)

)(1� v2 � a2
2(v1 � a1)

)

3. Player 1 wins matches 1 and 3 and loses match 2. This happens with the probability of

(1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
a2 � b2
2(v2 � a2)

)(1� v2 � a2
2(v1 � a1)

)

Hence, player 1�s probability to win the contest is:

p1 = (1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(1� a2 � b2
2(v2 � a2)

) (8)

+(
2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
v1 � v2 + a2 � b1
2(v2 � a2)

)(1� v2 � a2
2(v1 � a1)

)

+(1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
a2 � b2
2(v2 � a2)

)(1� v2 � a2
2(v1 � a1)

)
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A comparison of player 1�s probability to win the one-stage all-pay auction and his probability to win

the best-of-three all-pay auction yields the following intuitive result.

Proposition 1 If players do not have values of losing, the probability of the player with the higher ability

(value) to win the best-of-three all-pay auction is higher than his probability to win the one-stage all-pay

auction with the same values of winning.

Assume now that players have a value of losing a in the one-stage all-pay auction as well as in both stages

(2 and 3) of the best-of-three all-pay auction, that is, a = b: Then we have,

Proposition 2 If players have the same value of losing in both stages (a = b), then the probability of the

player with the higher ability to win increases in the value of losing, and in particular, it is higher than his

probability to win the one-stage all-pay auction with the same values of winning and losing.

It can be shown that even when the players�values of losing in both stages of the best-of-three all-pay

auction are not identical (a > b), the probability that the strong player wins is still larger than his probability

to win the one-stage all-pay auction. In other words, the values of losing do not have a signi�cant e¤ect on

the players�probabilities to win in the best-of-three all-pay auction. On the other hand, the values of losing

have a signi�cant e¤ect on the players�total e¤ort as we show in the following section.

6 Total e¤ort

By the analysis of the subgame-perfect equilibrium of the best-of-three all-pay auction in Section 4, the total

e¤ort for the di¤erent stages is as follows:

The total e¤ort in the third stage is

(
v2 � a2
2

)(1 +
v2 � a2
v1 � a1

)

which is obtained with the probability of

(
2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
v1 � v2 + a2 � b1
2(v2 � a2)

) + (1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
a2 � b2
2(v2 � a2)

)
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If player 1 wins the �rst match, the total e¤ort in the second stage is

(
a2 � b2
2

)(1 +
a2 � b2
v2 � a2

)

and this e¤ort is obtained with the probability of

1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

Otherwise, if player 2 wins the �rst match, the total e¤ort in the second stage is

(
v1 � v2 + a2 � b1

2
)(1 +

v1 � v2 + a2 � b1
v2 � a2

)

and this e¤ort is obtained with the probability of

2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

The total e¤ort in the �rst stage is

(
2v2 � v1 � a2 + b1 � b2

2
)(1 +

2v2 � v1 � a2 + b1 � b2
v1 � a2 + b2 � b1

)

Hence, the total e¤ort in the best-of-three all-pay auction is given by

TE = (
v2 � a2
2

)(1 +
v2 � a2
v1 � a1

)(
2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
v1 � v2 + a2 � b1
2(v2 � a2)

) (9)

+(
v2 � a2
2

)(1 +
v2 � a2
v1 � a1

)(1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)(
a2 � b2
2(v2 � a2)

)

+(
a2 � b2
2

)(1 +
a2 � b2
v2 � a2

)(1� 2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)

+(
v1 � v2 + a2 � b1

2
)(1 +

v1 � v2 + a2 � b1
v2 � a2

)(
2v2 � v1 � a2 + b1 � b2
2(v1 � a2 + b2 � b1)

)

+(
2v2 � v1 � a2 + b1 � b2

2
)(1 +

2v2 � v1 � a2 + b1 � b2
v1 � a2 + b2 � b1

)

A comparison of the total e¤ort in the standard one-stage all-pay auction and in the best-of-three all-pay

auction yields the following unambiguous result:

Proposition 3 If players do not have values of losing, the total e¤ort in the best-of-three all-pay auction

with heterogenous players is smaller than the total e¤ort in the one-stage all-pay auction with the same values

of winning.
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Assume now that players have the value of losing a in the one-stage all-pay auction and the same value

in both stages of the best-of-three all-pay auction, that is, a = b: Then we have,

Proposition 4 If players have the same value of losing in both stages (a=b), then the total e¤ort in the

best-of-three all-pay auction with heterogenous players is smaller than the total e¤ort in the one-stage all-pay

auction with the same values of winning and losing.

However, if the values of losing are not the same over the stages in the best-of-three all-pay auction,

the comparison of the total e¤ort in this contest and the one-stage all-pay auction is more complex. The

following result shows the e¤ects of both values of losing on the players� total e¤ort in the best-of-three

all-pay auction.

Proposition 5 Assume that players are homogeneous. Then, the players� total e¤ort in the best-of-three

all-pay auction decreases in the value of losing in the second stage and increases in the value of losing in

the third stage. If the value of losing is the same in both stages, the total e¤ort decreases in the value of

losing and, in particular, it is equal to the total e¤ort in the one-stage all-pay auction with the same values

of winning and losing.

Assume that players are homogeneous. Also assume that the value of losing in the one-stage all-pay

auction is either 0 or a > 0; and the value of losing in the best of three all-pay auction is 0 in the second

stage and a in the third stage. Then the total e¤ort in the one-stage all-pay auction is smaller or equal to

the total e¤ort without a value of losing, and by Proposition 5 the total e¤ort in the best-of-three all-pay

auction is larger than the total e¤ort without values of losing. Since without values of losing both forms of

the contest yield the same total e¤ort, we obtain that

Conclusion 1 If players are homogeneous, the total e¤ort in the best of three all-pay auction may be larger

than the total e¤ort in the one-stage all-pay auction where the values of losing in the best-of-three all-pay

auction may be larger or smaller than the value of losing in the one-stage all-pay auction.
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Because of the continuity of the players�total e¤ort function in the asymmetry parameter h = c2
c1
; it is

clear that the above result according to which the expected total e¤ort in the best-of-three all-pay auction

may be larger than the total e¤ort in the one-stage all-pay auction holds even for heterogenous players.

7 Concluding remarks

We studied the best-of-three all-pay auction where each match is modeled as an all-pay auction. We showed

that if players do not have values of losing (the values of losing are equal to zero) and these players are

heterogenous, the best-of-three all-pay auction is inferior to the standard one-stage all-pay auction from

two points of view: 1) the di¤erence between the players�probabilities of winning is always larger in the

best-of-three all-pay auction than in the standard one-stage all-pay auction, and 2) the total e¤ort in the

best-of three all-pay auction is always smaller than in the standard one-stage all-pay auction. From these

points of view, if players are homogenous, the best-of-three all-pay auction and the one-stage all-pay auction

are equivalent. This superiority of the one-stage all-pay auction over the best-of-three all-pay auction holds

even if players have values of losing when they are the same over all the stages of the best-of-three all-pay

auction. However, if the values of losing are not the same, the best-of-three all-pay auction is not necessarily

inferior to the one-stage all-pay auction and the total e¤ort in the best-of-three all-pay auction might be

larger than in the one-stage all-pay auction. Our �ndings explain why best-of-k contests are sometimes

preferred. We may conclude that if the contest designer wishes to maximize players�total e¤ort, the choice

between best-of-k contests and one-stage contests could depend on the players�values of losing.
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8 Appendix

8.1 Proof of Proposition 1

Without loss of generality, assume that v1 = 1: Denote by h = c2
c1
= v2

v1
= a2

a1
= b2

b1
> 1

2 , a1 = a and b1 = b:

Then, by (8), player 1�s probability to win the best-of-three all-pay auction is given by

p1 = (1� 2h� 1� ah+ b(1� h)
2(1� ah+ b(h� 1)) )(1�

a� b
2(1� a) ) (10)

+(
2h� 1� ah+ b(1� h)
2(1� ah+ b(h� 1)) )(

1� h+ ah� b
2(h� a) )(1� h

2
)

+(1� 2h� 1� ah+ b(1� h)
2(1� ah+ b(h� 1)) )(

a� b
2(1� a) )(1�

h

2
)

When the values of losing approach zero we obtain,

lim
a;b!0

p1(a; b) = (1�
(2h� 1)

2
) + (

(2h� 1)
2

)(
(1� h)
2h

)(1� h
2
)

By (1), the probability of player 1 to win the one-stage all-pay auction is

p�1 = 1�
h

2

Thus,

p1 � p�1 = (1� (2h� 1)
2

) + (
(2h� 1)

2
)(
(1� h)
2h

)(1� h
2
)� (1� h

2
) (11)

=
1

2h
(1� h)

�
h� 1

2

��
1� 1

2
h

�
+
1

2
(1� h)

Note that by our assumption (3) h > 1
2 and then p1 � p

�
1 > 0: Q:E:D:

8.2 Proof of Proposition 2

Denote a1 = a and b1 = b and suppose that a = b: Then, by (8), player 1�s probability to win the best-of-three

all-pay auction is given by

p1 = �
1

8a� 8h
�
19h� 10a+ 7ah2 � 2ah3 + ah� 15h2 + 2h3 � 2

�
The derivative of player 1�s probability to win is

dp1(a)

da
= � 1

8 (a� h)2
(h� 1)2

�
2h2 � 5h+ 2

�
(12)

14



Note that since 2h2� 5h+2 < 0 for all 0:5 < h � 1; by (12) we obtain that player 1�s probability to win the

best-of-three all-pay auction increases in a. This argument together with Proposition 1 and the fact that

the value of losing does not a¤ect the probability to win in the one-stage all-pay auction yields the desirable

result. Q:E:D:

8.3 Proof of Proposition 3

Without loss of generality, assume that v1 = 1. Let h = v2
v1
= a2

a1
= b2

b1
= c2

c1
> 1

2 , a1 = a and b1 = b. Then,

by (9), the total e¤ort in the best-of-three all-pay auction is

TE = (
h(1� a)

2
)(1 + h)((

2h� 1� ah+ b(1� h)
2(1� ah+ b(h� 1)) )(

1� h+ ah� b
2h(1� a) ) + (1� 2h� 1� ah+ b(1� h)

2(1� ah+ b(h� 1)) )(
a� b
2(1� a) ))(13)

+(
(a� b)h

2
)(1 +

a� b
(1� a) )(1�

2h� 1� ah+ b(1� h)
2(1� ah+ b(h� 1)) )

+(
1� h+ ah� b

2
)(1 +

1� h+ ah� b
h(1� a) )(

2h� 1� ah+ b(1� h)
2(1� ah+ b(h� 1)) )

+(
2h� 1� ah+ b(1� h)

2
)(1 +

2h� 1� ah+ b(1� h)
1� ah+ b(h� 1) )

When the values of losing approach zero, the total e¤ort is

lim
a;b!0

TE(a; b) =
h

2
(1 + h)(

2h� 1
2

)(
1� h
2h

)

+(
1� h
2

)(1 +
1� h
h

)(
2h� 1
2

)

+(
2h� 1
2

)2h

By (2), the total e¤ort in the standard one-stage all-pay auction is

TE� =
h

2
(1 + h)

Thus, the di¤erence of the total e¤orts in both contests is

TE � TE� =
h

2
(1 + h)(

2h� 1
2

)(
1� h
2h

) + (
1� h
2

)(1 +
1� h
h

)(
2h� 1
2

) + (
2h� 1
2

)2h� h
2
(1 + h)

=
13

8
h2 � 5

4
h� 1

4
h3 +

1

4h

�
3h� 2h2 � 1

�
� 1
8
=
13h3 � 14h2 � 2h4 + 5h� 2

8h

It can be veri�ed that �(h) = 13h3�14h2�2h4+5h�2 < 0 for all 0:5 < h < 1 and �(h) = 0 for h = 1:

Q:E:D:
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8.4 Proof of Proposition 4

By (9) and (2), if a = b; the di¤erence of the total e¤ort in both contests is given by

� = TE(a = b)� TE� = � 1

8h

�
13ah3 � 5h� 14ah2 � 2a� 2ah4 + 5ah+ 14h2 � 13h3 + 2h4 + 2

�
The �rst order derivative is

d�

dh
=

1

4h2
(a� 1)

�
3h4 � 13h3 + 7h2 � 1

�
It can be veri�ed that

�
3h4 � 13h3 + 7h2 � 1

�
< 0 for all 0:5 < h � 1, and since a < 1, we have d�

dh > 0 for

all 0:5 < h � 1.

Note that �(h = 1) = 0: Since d�
dh > 0; we obtain that �(h) < 0 for all 0:5 < h < 1 and �(h) = 0 for

h = 1: Q:E:D:

8.5 Proof of Proposition 5

Let h approach 1 in (13). Then since a; b < 1 we obtain,

d

da
lim
h!1

TE(a; b) =
1

2 (a� 1)2
�
�a2 + 2a+ b2 � 2b

�
=

1

2 (a� 1)2
(a� b)(2� a� b) > 0

and,

d

db
lim
h!1

TE(a; b) =
1

1� a (b� 1) < 0

If a = b; we obtain that the total e¤ort of homogenous players in the best-of three all-pay auction is the

same as in the one-stage all-pay auction and is given by

lim
h!1

TE(b = a) = 1� a

Q:E:D:
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