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Abstract 
 
Stochastic dominance rules provide necessary and sufficient conditions for characterizing 
efficient portfolios that suit all expected utility maximizers. For the finance practitioner, 
though, these conditions are not easy to apply or interpret. Portfolio selection models like the 
mean-variance model offer intuitive investment rules that are easy to understand, as they are 
based on parameters of risk and return. We present stochastic dominance rules for portfolio 
choices that can be interpreted in terms of simple financial concepts of systematic risk and 
mean return. Stochastic dominance is expressed in terms of Lorenz curves, and systematic 
risk is expressed in terms of Gini. To accommodate risk aversion differentials across 
investors, we expand the conditions using the extended Gini.  
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How Does Beta Explain Stochastic Dominance Efficiency? 
 

 1.  Introduction 

 

The essence of portfolio optimization is to find a combination of a safe asset and risky 

assets that maximizes expected return while keeping risk at a bearable minimum. This is the 

rationale behind the mean-variance (MV) model, which was originally derived as a special 

case of expected utility (EU) maximization. Although the conditions for which MV is 

analytically consistent with EU seldom hold in practice1, MV is widely accepted as the theory 

that makes sense from a practitioner point of view, because it captures two attributes: 

maximizing expected returns and minimizing risk.  

One trade-off in its intuitive attractiveness is the dependence of mean-variance on a 

specific measure of risk. A more general approach that relies on expected utility theory 

without fully specifying a utility function is stochastic dominance that is expressed in terms of 

probability distributions rather than the usual parameters of risk and return used in MV. 

Second degree stochastic dominance (SSD) rules apply a general form of expected utility 

theory assuming risk-averse expected utility maximizers; the outcomes thus apply to a wider 

group of investors. 

A problem now is that generalizing the theory complicates the rules to the point that 

they seem intractable to most practitioners (see, for example, Thistle, 1993). Moreover, when 

the rules are applied to portfolios of assets, which is the most relevant case for an investor, 

they cannot be reasonably explained and one must rely on faith in them and in the algorithm 

producing the optimal portfolios.   

The aim of our work is to express SSD rules in terms of the traditional concepts used in 

portfolio theory. In other words, we will interpret SSD rules in terms of expected return and 

systematic risk (beta), so that portfolio managers can better grasp the rules. We do this by 

using Lorenz curves dominance instead of the typical cumulative probability functions. This 

lets us present SSD conditions expressed in terms of return and risk, and reconcile them with 

the capital asset pricing model.  

Besides adjusting SSD rules for problems of interest to portfolio managers, we extend 

SSD to marginal conditional stochastic dominance (MCSD) rules. These rules state the 

conditions under which all risk-averse investors holding a specific portfolio will prefer to 

                                                 
1 For instance, multivariate normal probability distribution of returns or quadratic utility 

functions. 



 3 

increase the share of one asset over the share of another.  MCSD is a less demanding concept 

than SSD because it considers only marginal changes of holding risky assets in a given 

portfolio.2  

MCSD conditions are expressed in terms of absolute concentrations curves (ACCs) which 

are the assets' cumulative expected returns conditional on holding the portfolio. ACCs are 

analogous to absolute or generalized Lorenz curves, which are the cumulative conditional 

expected returns of the portfolio. We provide SSD rules by using the necessary conditions for 

MCSD expressed in terms of means and risk-adjusted returns, where risk is measured in terms 

of beta.   

We also consider risk aversion differentiation as formulated by the extended Gini 

coefficient and explain SSD and MCSD for a wider range of specific risk-averse agents. Indeed, 

when beta is estimated using the mean-extended Gini approach, risk aversion is explicitly 

expressed. 

The structure of the paper is as follow: Section 2 defines the basic concepts of expected 

utility, stochastic dominance, and mean-Gini portfolios. Section 3 defines the concept of 

MCSD and introduces the notion of ACCs. Section 4 presents the extended Gini and derives 

the necessary conditions for MCSD including specific risk aversion and Section 5 concludes. 

  

                                                 
2 Yitzhaki and Mayshar (2002) have proven that the assumption of continuity in the 

portfolio space implies that, if there is no portfolio that dominates a given portfolio under 

MCSD, then there will be no other portfolio (among all of portfolios, not just marginal ones) 

that dominates the given portfolio.  
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2.  Expected Utility, Stochastic Dominance, and Mean-Gini Rules  

  

To achieve portfolio efficiency under expected utility maximization we must use utility 

functions and know the probability distribution of returns of all assets. To alleviate the need 

for specific utility functions in constructing optimal portfolios, we propose using the rules of 

stochastic dominance, which are expressed in terms of cumulative probability distributions.  If 

we confine the discussion to the class of all risk-averse expected utility maximizers, an 

appropriate mechanism would be second-degree stochastic dominance (SSD) theory that 

states the necessary and sufficient conditions under which a portfolio is preferred to another 

by all risk-averse expected utility maximizers. 

 SSD conditions have been developed independently by Hanoch and Levy (1969), Hadar 

and Russell (1969), and Rothschild and Stiglitz (1970). SSD rules are typically obtained by 

comparing the areas under the cumulative distributions of portfolio returns as follows: (see 

Levy, 1992, 2006)  

 Consider two risky portfolios A and B with cumulative probability FA and GB. For all 

risk-averse investors with non-decreasing concave utility functions U, SSD states that A 

dominates B if ( ) ( )F GE U A E U B≥  where EF  and EG are the expectations using FA and GB. 

SSD rules state that A dominates B if and only if [ ( ) ( )] 0
z

B AG x F x dx
−∞

− ≥∫  for all z, which 

belong to the range of returns on A and B. 

 These necessary and sufficient conditions calculate the areas under the respective 

cumulative probability distributions. The rules are to compare these areas so that, for all 

returns, the area under the cumulative distribution for the preferred portfolio is always smaller 

than the area under the cumulative distribution for the dominated portfolio.  

SSD rules are not easy to interpret when one is constructing portfolios of risky and safe 

assets, because it is difficult to evaluate cumulative distributions of portfolios whose 

composition is changing constantly.  Hence, linear programming and numerical optimization 

methods are commonly used to build efficient SSD portfolios, most of them relying on 

discrete distributions (see, for example, Post, 2003, and Ruszczyński and Vanderbei, 2003). 

As these techniques are based on numerical optimization, it is virtually impossible to check 

and interpret the results.     

 We suggest an easier way:  presenting SSD conditions by means of absolute Lorenz 

curves, following formulations by Shorrocks (1983) and Yitzhaki and Olkin (1991).3 These 

                                                 
3 Shorrocks (1983) calls these curves generalized Lorenz curves.  
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curves enable us to see the contribution of every asset to the expected return and the risk of 

the portfolio.  

The Lorenz curve expresses the cumulative return on the portfolio as a function of the 

cumulative probability distribution. Given a portfolio with cumulative distribution F(x), the 

absolute Lorenz curve (the Lorenz) is defined as: 

∫ ∫
∞− ∞−

=∞<≤∞−=
p px x

pp dxxfpxxdxxxfpL )(bydefinediswhere;for)()(                 (1) 

where f  is the density function of the portfolio. 

We can now use the Lorenz to compare portfolios. According to SSD rules, portfolio A 

dominates portfolio B if and only if: 

 
 ( )   ( )   for all 0     1A BL p L p  p≥ ≥ ≥  (2) 

The rationale for using absolute Lorenz curves to describe the properties of risky 

portfolios can be seen in Figure 1. The Lorenz of a portfolio enables us to represent the 

expected return and the risk of the portfolio geometrically. As returns for a risky portfolio are 

ranked in increasing order, the shape of the Lorenz is convex, with the lowest returns being at 

the left of the given return which is also the slope of the Lorenz. The curve starts at (0, 0) and 

ends at (µ, 1), where µ is the expected return on the portfolio. A safe asset with the same 

return µ will have a linear Lorenz that starts at (0, 0) and ends at (µ, 1).  

In other words, the dotted line in Figure 1 represents the Lorenz of a riskless asset whose 

expected return equals the expected return of the portfolio. In Figure 1, this asset is drawn as a 

straight line, which we term the “line of safe asset” (LSA) as it represents the expected return 

multiplied by the probability p.4 Now we can express the risk of a portfolio as the difference 

between the LSA that yields the same expected return and its Lorenz. Indeed, for every 

probability p, investing in the portfolio provides a cumulative expected return expressed by 

the Lorenz while investing in the riskless asset yields the same cumulative mean as given by 

the LSA. 

 The risk of the portfolio is a function of the vertical differences between the LSA and 

the Lorenz. Therefore, the farther the LSA is from the Lorenz, the greater the risk assumed by 

                                                 
4 In the income inequality literature, this is called the line of perfect equality. 
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the portfolio. Measures of risk are functions based on the weighted distances between the 

LSA and the Lorenz. For example, one possible measure of risk is the Gini’s mean difference 

(GMD) of the portfolio. Equation (3) shows that the area between the LSA and the Lorenz is 

actually one- fourth of GMD (Yitzhaki, 2003, Eq. 4.4, p. 297). 

 
1

0

1
[ ( )] cov[ , ( )]

2
p L p dp r F rµ − = = Γ∫ , (3) 

where µ p is the LSA, L(p) is the Lorenz, and 2cov[ , ( )]r F rΓ =  is one half of the Gini’s mean 

difference of the portfolio. Other measures of risk, like the extended Gini and even the 

variance, can be obtained as functionals of the vertical difference between the LSA and the 

Lorenz.5 .  

We can gain other insight from Figure 1. The horizontal axis is defined as the 

probabilities ranked from those generating the lowest portfolio returns and yielding the 

highest marginal utility to those generating the highest returns with the lowest marginal 

utility.  Thus, the (equal) probabilities on the horizontal axis are ranked according to declining 

marginal utility.  Since utility is defined over wealth, ranking probabilities with respect to 

portfolio returns yields the same result as if the ranking were according to declining marginal 

utility for each investor.  All investors concur with this ranking because it is based only on 

portfolio returns that are assumed to be their only wealth. 

While investors, who hold the same portfolio, may not exhibit the same marginal 

utility from portfolio returns, they all agree upon the ranking of the marginal utility of these 

returns.  Hence, ranking with respect to portfolio returns is the only information we need in 

order to rank portfolios with respect to marginal utility. The vertical axis in Figure 1 shows 

the cumulative portfolio returns up to a specific state of nature, where states of nature are 

ordered according to the return associated with their occurrence. The vertical difference 

between the LSA and the Lorenz of the portfolio represents the returns that, multiplied by the 

marginal utility, make up the expected utility. In other words, the loss in expected utility due 

                                                 
5 The variance is obtained from the area enclosed between the two curves if one uses 

returns instead of probabilities on the horizontal axis (Yitzhaki, 1998). In this case the LSA 

ceases to be a line, which complicates the plotting.  
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to riskiness is the sum (integral) of marginal utility multiplied by the distance between the 

LSA and the Lorenz. Different investors have different marginal utilities, so the loss due to 

riskiness differs among investors.   

The connection between SSD and the non-intersection of Lorenz curves can be 

explained as follows. If one chooses to use a linear utility function, a necessary condition for 

the portfolio to be preferred by all expected utility maximizers is that it is preferred by the 

risk-neutral investor, whose marginal utility is a constant. In this case, one needs to look only 

at the last point on the Lorenz, which equals the portfolio expected return.  

Another necessary condition is that the area below the Lorenz of the dominating 

portfolio be greater than the area below the Lorenz of the dominated portfolio. This area is 

one-half the expected returns minus one-fourth of the GMD (1
2 cov[ , ( )]r F rΓ = ). This is the 

logic behind the mean-Gini (MG) necessary conditions for SSD (Yitzhaki, 1982), which are 

expressed as: 

 
,

A B

A A B B

µ µ

µ µ

≥

− Γ ≥ − Γ
  (4) 

These conditions state that if portfolio A is SSD preferred to portfolio B, then the mean and 

the risk-adjusted mean return of A cannot be less than the mean and the risk-adjusted mean 

return of B when risk is measured by the Gini of the portfolio.6   

                                                 
6 Yitzhaki (1982) also show that the mean-Gini conditions for SSD are sufficient 

whenever cumulative probability distributions intersect at most once.  
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3. Absolute Concentration Curves and Marginal Conditional Stochastic Dominance 

 
Having described the necessary conditions for second-degree stochastic dominance in 

terms of risk-adjusted mean returns, treating each portfolio with a given composition of 

assets, the next step is to measure the relative dominance of assets in and out of the portfolio. 

At the core of portfolio theory is that diversification of asset holdings reduces an investor's 

exposure to risk. SSD in a portfolio must be applied in an environment where investors can 

change the choice of assets. For this purpose, we rely on absolute concentration curves 

(ACCs). Since SSD rules are much more complex in a portfolio context than in application to 

individual assets, one must recognize its limitations as we note in Shalit and Yitzhaki (1994), 

and formulate a more simple question.  

Rather than define rules for dominance, one might ask whether a given portfolio A 

belongs to the SSD efficient set. This inquiry proceeds in several steps:  

(a) First, is it possible to find an alternative portfolio B in the neighborhood of A that 

differs from A by changing the shares of only two assets and then SSD dominates portfolio A? 

 (b) If it is impossible to find such a portfolio, is it possible to find an alternative 

portfolio B in the neighborhood of A that differs from A by more than two assets and SSD 

dominates A? 

 (c) Finally, provided that we have failed to find portfolios that dominate A according to 

(a) and (b), is it possible to find an alternative portfolio B that SSD dominates A? 

A portfolio that is not dominated by another portfolio according to these conditions 

belongs to the SSD efficient set.  We address each question separately. 

 The first problem is answered using the concept of marginal conditional stochastic 

dominance (MCSD) as defined by Yitzhaki and Olkin (1991) and Shalit and Yitzhaki (1994). 

MCSD states the conditions under which all risk-averse investors, holding a given portfolio A, 

prefer to increase the share of one asset over another.  MCSD is more confining than SSD 

because it considers only marginal changes in holding risky assets in a given portfolio, and 

restricts the change to involve two assets only. 7 

 To make MCSD operational, we develop the concept of ACC as follow:  

                                                 
7 The restriction to a marginal change can be interpreted as a search for the direction to 

move in. Then, one has to evaluate the size of the step in that direction.   
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Consider a portfolio of n risky assets{ }1
1

n

ii
= α=∑α } whose returns rα are defined 

by
1

n

iii
r      rα α=

= ∑ , where ri  are the returns on asset i, and fα is the density function of the 

portfolio. Let ( ) ( )i it E r r tαµ = =  be the conditional expected return on asset i, given the 

portfolio return t. The ACC of asset i with respect to portfolio { α } is defined as the 

cumulative conditional expected returns on asset i as a function of  the portfolio cumulative 

distribution p=Fα(rα): 

 
r

  -

( ) =  ( ) ( )     for      - i i p t t dt rfACC
α

ααµ
∞

∞ ≥ ≥ ∞∫ , (5) 

where  

 ( )
r

p f t dt
α

α
−∞

= ∫  

Similarly, from Equation(1), the Lorenz of portfolio { α } is: 

                     
r

-  

( )  =  ( )     for      - L p  t f t dt r
α

α α α
∞

∞ ≥ ≥ ∞∫                                                             (6) 

Following the definition of the portfolio, its Lorenz can then be written as the weighted sum 

of the asset ACCs held in the portfolio, which is expressed as:    

                
1

( ) =   ( ) for -
n

ii
i

L p p rACCα αα
=

∞ ≥ ≥ ∞∑                                                           (7) 

Figure 2 depicts the ACC of asset i. The horizontal axis represents the cumulative 

distribution of the portfolio’s return and the vertical axis measures the cumulative expected 

returns. The ACC of asset i, which is an asset that does not need to be included in the 

portfolio, relates the cumulative expected return on that asset to the cumulative probability 

distribution of the portfolio. The ACC of asset i  is the solid curve. The dashed straight line is 

the line of safe asset (LSA) that connects the origin (0, 0) with the point (1, µi ), where µi is 

the unconditional expected return of asset i. The LSA represents an asset whose returns are 

independent of the performance of the portfolio and that has the same unconditional expected 

return as asset i. 8 

We now state the main theorem to determine MCSD using ACCs: 

                                                 
8 LSA coincides with the Yitzhaki and Olkin (1991) line of independence (LOI). 

Samuelson (1967) shows that independent assets that are not included in the portfolio would 

be added to it if they have the same expected returns.    
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MCSD THEOREM: (Shalit and Yitzhaki, 1994): Given portfolio { α }, asset k dominates asset 

j for all concave utility functions  if and only if:  

 
 ( ) ( ) for all 1 0k jp   p          p   ACC ACCα α≥ ≥ ≥ , (8) 

with at least one strong inequality.  

 

Intuitive Proof:  Equation (7) provides a very simple proof for the theorem. Given the shares 

of each asset in the portfolio, the ACC is the derivative of the Lorenz of the portfolio. To 

increase the share of one asset on behalf of another in order for the new portfolio to SSD-

dominate the given portfolio, the derivative of the Lorenz of the portfolio with respect to the 

dominating asset has to be greater everywhere than the derivative of the dominated asset.   

 To derive the necessary conditions for MSCD and relate them to the fundamental 

ideas in finance, we describe the ACCs basic properties:  

 
(1) The ACC of asset i passes through the points (0, 0) and (1, µi ). 

(2) The derivative of the ACC of asset i with respect to p is µi(t) = Ei(ri|rα = t). 

Consequently, the ACC  increases if and only if µi(t) > 0   

(3) The ACC is convex, straight, or concave if and only  if  ( ) / 0i t tµ

> 
 

∂ ∂ = 
 < 

 

(4) When returns rα and ri are independent, the ACCi [pα] coincides with the LSA. 

(5) The area between the LSA and the ACC is equal to cov[ri , Fα (rα)], the covariance of 

the return on asset i and the cumulative  probability distribution of portfolio { α}. That 

is: 

 

  { }
1

0

1 1
( ) 2cov[ , ( )] ( )

2 2i i i i iACC p dF r F rα α α αµ µ β Γ= − = − Γ∫ , 

 where 
2cov[ , ( )]i

i

r F rα α

α

β Γ =
Γ

  is the Gini regression coefficient of asset i on the 

portfolio {α} and 2cov[ , ( )]r F rα α α αΓ = is one-half of the GMD of the portfolio.9  

                                                 
9 See Shalit and Yitzhaki (2002) for the definition of the Gini regression coefficient and 

Carroll, Thistle, and Wei, (1992) for its use.. 
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) 

These properties allow us to state the necessary conditions for MCSD, namely, that 

if asset j dominates asset k conditional of holding portfolio {α}: 

 
j k

j j k kα α

µ µ

µ β µ βΓ Γ

≥

− Γ ≥ − Γ
 (9) 

The first condition implies that a dominating asset has a higher expected return than 

the dominated asset, regardless of the risk involved. The second necessary condition is 

more meaningful, as it states that a preferred asset has a higher risk-adjusted expected 

return than the risk-adjusted expected return of the less favored asset. Indeed asjβ Γ  

expresses systematic risk in the mean-Gini model (MG-CAPM)10, then( )j j pµ β Γ− Γ  is the 

risk-adjusted expected return, which is defined as the mean less the beta calculated in Gini 

terms. 

 From the second necessary condition one can evaluate: 

 k j
k j

P

(  - )
   -  

µ µ
β β≥

Γ
 (10) 

 i.e., when a security dominates another by MCSD, the difference between the two securities’ 

expected returns per unit of portfolio risk must be greater than the difference in their 

systematic risks defined in terms of MG–CAPM.  

 Using the mean and the risk-adjusted mean return, this result allows for a complete 

ordering of investment alternatives. MCSD criteria using ACCs establish only a partial 

ordering.  A complete ordering is an advantage when no dominance can be assessed by using 

ACCs, but a decision maker nevertheless wants to rank investment alternatives.  In that case, the 

mean-Gini necessary conditions for MCSD provide an investment ranking that does not 

necessarily satisfy the sufficient conditions. 

 Given definition of the SSD criteria in a portfolio context by changing only two assets, 

we can extend it to several assets in a relatively simple manner.   
 

(b) Is it possible to find an alternative portfolio B, in the neighborhood of A, that SSD 

dominates A and differs from it in more than two assets? 

 

                                                 
10 Whenever the CAPM is mentioned, we interpret it as the reference portfolio held by the 

investor, and not necessarily the market portfolio.  
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According to Equation (7), a combination of ACCs of several assets defines a new 

ACC that is a linear combination of individual ACCs. Hence, to address MCSD involving 

more than two assets we need to search for a linear combination of assets whose ACC is not 

below a linear combination of other assets. This can be solved numerically as in Shalit and 

Yitzhaki (2003), and then the optimal ACC can be delineated.   

 

(c) Is it  possible to find an alternative portfolio B that SSD dominates A? 

 

Yitzhaki and Mayshar (2002) have shown that if a portfolio is not MCSD-dominated by 

another portfolio it is also not SSD-dominated by any other portfolio. To understand the 

intuition to prove this, let us consider two portfolios, A and B, where B SSD-dominates A. In 

that case, for all risk-averse utility functions:  

 [ ( )]  [ ( )].E U B E U A≥  (11) 

Hence, to prove the argument it must be shown that if Equation (11) holds, there is also a 

portfolio in the neighborhood of A that SSD dominates A. First note that:  

   [ ( )]   (1 - )  [ ( )] [ ( )]     1    0.E U B E U A E U A forλ λ λ+ ≥ ≥ ≥  (12) 

Because U is concave, we know that: 

 { [(1- )  ]}   [ ( )] (1-  ) [ ( )] E U A B E U B E U Aλ λ λ λ+ ≥ +  (13) 

Combining (12) and (13) we get: 

 { [(1- ) ]}  [ ( )]     1    0.E U A B E U A forλ λ λ+ ≥ ≥ ≥  (14) 

We now apply (14) for λ→0 and λ > 0, by which we find a portfolio in the neighborhood 

of A that SSD-dominates A.  Therefore, it is impossible to have an SSD portfolio that 

dominates A, without having also a portfolio, in the neighborhood of A, that SSD dominates 

A. Thus, we may conclude that if A is not MCSD-dominated it is also true that neither is A 

SSD-dominated.  
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4.  Risk Aversion, Extended Gini, and MCSD 

 

With an additional parameter, the extended Gini enables us to analyze risk aversion 

differentiation when we calculate the measure of dispersion. Indeed, with the parameter ν, 

which represents risk aversion, the extended Gini coefficient characterizes risk-averse 

investors ranging from risk-neutral (ν = 1) to highly risk-averse maxi-min individuals (ν = ∞). 

Other necessary conditions for MCSD that are specific to risk-averse agents can then be 

derived using the mean and systematic risk. The MCSD-dominating asset has to have a higher 

risk-adjusted expected return than the dominated asset, for every risk-averse investor. We 

adjust the expected return using the mean-extended Gini CAPM. For each asset and risk 

aversion coefficient, the extended Gini beta is calculated and used to adjust the expected 

return for risk.  

The extended Gini specifies increasing risk aversion by stressing the lower returns that 

are the segments of the distribution of returns to which investors are most averse. Recall that 

the standard Gini is defined as the weighted vertical difference between the LSA and the 

Lorenz of the portfolio. Using the parameter ν to adjust the area definition, we define the 

extended Gini for asset X as:   

 
1 -2

0
( ) ( -1) (1- ) ( ( ))X X Xp p L p dpνν ν ν µΓ = −∫  (15) 

where  ( ) ( )
pX

X XL p xf x dx
−∞

= ∫  is the Lorenz, Xp is indirectly determined by ( )
PX

Xp f x dx
−∞

= ∫ , 

2( -1)(1 )p νν ν −−  is the weight associated with each portion of the area, and  pµX is the LSA. 

The parameter ν (>0) is being established by researchers.11 

There are some special cases of interest for the extended Gini: 

For ν = 2 Equation (15) becomes one-half of Gini’s mean difference.  

For ν → ∞ the extended Gini reflects the attitude of a max-min decision maker who wants to 

express risk in terms of only the worst outcome.  

For ν → 1 Equation (15) becomes the expected return, allowing a risk-neutral investor who 

does not use any measure of dispersion to evaluate risk. 

For 0< ν <1 the extended Gini is negative and models a risk-loving investor. For ease of 

presentation and because we are dealing with risk-averse investors, we assume that ν > 1, 

although many of the results we report can be applied without modification to risk-loving 

                                                 
11 See Aaberge (2000), and Kleiber and Kotz (2002) on additional connections between 

the Lorenz curve and extended Gini. 
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investors. In financial analysis, the covariance formula for the extended Gini is more 

convenient: 

 1( ) cov{ ,[1 ( )] }X X F x νν ν −Γ = − −  (16) 

 
Equation (16) is obtained by integrating Equation (15) by parts with: 

 1 2   (1- ) ,  ( -1)(1- ) ,  -  ( ),    -   X x pU p dU p V p L p dV Xν νν µ µ− −= = = = leads to: 

1 1
2 1 1 1 1

0 0

0 0

( 1) (1 ) [ ( )] (1 ) | [ ( )] | [ ( )](1 )x X x X xp p L p dp p p L p x p p dpν ν νν ν µ ν µ ν µ− − −− − − = − ⋅ − − − −∫ ∫  

The first term on the right-hand side is equal to zero, and the second term becomes:  

1
1 1 1

0

[ ( )](1 ) ( ) [1 ( )] cov{ ,[1 ( )] }
b

x X

a

x p p dp x F X dx x F xν ν νν µ ν µ ν− − −− − − = − − − = − −∫ ∫ . 

Additional insight into (15) can be gained by showing that the first term is simply the area 

under the diagonal. By twice integrating by parts, the weighted area under the diagonal is  

 
1 1

2 1 1
0

0 0

( 1) (1 ) (1 ) (1 ) |xp p dp p dp pν ν νν ν µ νµ µ µ− −− − = − = − − =∫ ∫  (17) 

Hence, the weighted area under the Lorenz curve is equal to: 

 1cov{ , [1 ( )] }r F r νµ ν −− −  (18) 

We refer to Equation (18) as RAR(ν) – the risk-adjusted expected return of an asset using the 

extended Gini Γ(ν).12 

 One can introduce risk aversion differentiation into the SSD and MCSD necessary 

conditions and make them specific to various investors. A necessary condition for SSD is that 

the RAR(ν) of the dominating portfolio will be not lower than the RAR(ν) of the dominated 

portfolio. Hence, the conditions for the portfolios shown in Equation (4) become: 

 
( ) ( ) ,

A B

A A B B

µ µ

µ ν µ ν

≥

− Γ ≥ − Γ
  (19) 

 

 The necessary conditions for MCSD developed in Equation (9) can be replicated with 

the extended Gini to become: 

If asset j MCSD dominates asset k conditional on holding portfolio {α}: 

                                                 
12 It can be shown that that ( )X Xµ ν− Γ  is a special case of Yaari's (1987) dual utility 

function.  
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and ( ) ( ) ( ) ( )

j k

j j k kα α

µ µ

µ β ν ν µ β ν νΓ Γ

≥

− Γ ≥ − Γ
 (19) 

Except that this time, ( )jβ νΓ  is defined in terms of the extended Gini as follows: 

 
1

1

cov{ ,[1 ( )] }
( )

cov{ ,[1 ( )] }
j

j

r F r

r F r

ν
α α

ν
α α α

β ν
−

Γ
−

−
=

−
, (20) 

and  Γ(ν) is the extended Gini as shown by Equation (16).  

Interpretation of Equation (19) remains the same as for Equation (9),  except that the 

necessary conditions depend on the investor’s specific coefficient of risk aversion.   This is  

the main point of our work: If asset j dominates asset k according to MCSD, then it must be 

that the risk-adjusted expected return of j is higher than the risk-adjusted expected return of k, 

where risk is measured by extended Gini betas for all possible risk aversion coefficients ν. In 

other words, if asset j MCSD dominates asset k for a given portfolio α, there is no extended 

Gini beta for k for all possible ν that will increase the RAR(ν) of k more than the RAR(ν) of j.  

These conditions, however, are merely necessary and not sufficient, because the family of 

extended-Gini utility functions does not cover all possible risk-averse utility functions.  For 

example, they do not include a change in the coefficient of risk aversion ν on a given point 

along the distribution of returns.  

 If we can use the extended Gini to express the necessary conditions for SSD and 

MCSD, how then do we choose the risk aversion parameter ν ? To answer this question we 

should point out that µ - Γ(ν) is a special case of Yaari’s (1987) dual utility function. Hence, 

the question to be asked is really how one can choose a utility function that represents a 

specific investor. By gathering information on investor decision making under risk, 

presumably one can estimate the parameter ν specifically for a particular investor, but this is a 

question for further research.  
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5. Conclusion  

 

We have shown how to use stochastic dominance rules in constructing portfolios. A major 

weakness of this approach is that it is based on numerical optimization methods that do not 

admit intuitive explanations of the outcomes. Our remedy is to characterize the rules 

geometrically by using absolute Lorenz curves for second-degree stochastic dominance and 

absolute concentration curves for marginal conditional stochastic dominance. We can then 

interpret the rules in terms of risk-adjusted mean returns depending on different measures of 

risk aversion.  

How does systematic risk explain stochastic dominance efficiency? Beta, which is used 

by practitioners in finance, measures systematic risk as the covariance between asset return 

and market return.13 The concept is rooted in mean-variance theory as it prices security risk in 

capital market equilibrium. The measure is mainly dependent on the validity of MV and its 

compatibility to maximizing expected utility when returns are multivariate normally 

distributed or when the investor’s utility function is quadratic. The presence of fat tails and 

skewness in financial data precludes normality of returns, and quadraticity of preferences 

leads to unwarranted results. 

 Alternative measures of systematic risk have since emerged. Shalit and Yitzhaki (2002) 

have shown that the correct approach should be to look at the covariance between asset return 

and marginal utility to express undiversifiable risk correctly. Hence systematic risk depends 

upon the choice of the risk measure chosen by investors. In the case of Gini’s mean difference 

and the extended Gini, the resulting betas are the mean-extended Gini betas used in the 

necessary conditions for stochastic dominance. Gregory-Allen and Shalit (1999) have shown 

that MEG betas, which depend upon the investor’s degree of risk aversion, subside to the 

standard MV beta only when returns are normally distributed.  As it is seldom the case that 

normality holds, we advocate MEG betas to be used for stochastic dominance.  

 

                                                 
13 In general the term market's return should be interpreted as the portfolio's return. See 

Shalit and Yitzhaki (2007) concerning CAPM with heterogeneous risk-averse investors.   
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Figure 1: SSD and Absolute Lorenz Curves 
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Figure 2: Absolute Concentration Curves 
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