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Abstract

Stochastic dominance rules provide necessary afiitisnt conditions for characterizing
efficient portfolios that suit all expected utilitmaximizers. For the finance practitioner,
though, these conditions are not easy to appliynterpret. Portfolio selection models like the
mean-variance model offer intuitive investment sulleat are easy to understand, as they are
based on parameters of risk and return. We predeahastic dominance rules for portfolio
choices that can be interpreted in terms of sinfipiencial concepts of systematic risk and
mean return. Stochastic dominance is expressedrinstof Lorenz curves, and systematic
risk is expressed in terms of Gini. To accommodas& aversion differentials across
investors, we expand the conditions using the eladrGini.
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How Does Beta Explain Stochastic Dominance Efficiency?

1. I ntroduction

The essence of portfolio optimization is to find@mbination of a safe asset and risky
assets that maximizes expected return while keegsigat a bearable minimum. This is the
rationale behind the mean-variance (MV) model, Whigas originally derived as a special
case of expected utility (EU) maximization. Althéughe conditions for which MV is
analytically consistent with EU seldom hold in fregl, MV is widely accepted as the theory
that makes sense from a practitioner point of viéecause it captures two attributes:
maximizing expected returns and minimizing risk.

One trade-off in its intuitive attractiveness i® tdependence of mean-variance on a
specific measure of risk. A more general approdet telies on expected utility theory
without fully specifying a utility function is stb@stic dominance that is expressed in terms of
probability distributions rather than the usual gmaeters of risk and return used in MV.
Second degree stochastic dominance (SSD) ruley apgkeneral form of expected utility
theory assuming risk-averse expected utility mazars; the outcomes thus apply to a wider
group of investors.

A problem now is that generalizing the theory caogiks the rules to the point that
they seem intractable to most practitioners (saregetample, Thistle, 1993). Moreover, when
the rules are applied to portfolios of assets, Whscthe most relevant case for an investor,
they cannot be reasonably explained and one miysomefaith in them and in the algorithm
producing the optimal portfolios.

The aim of our work is to express SSD rules in teahthe traditional concepts used in
portfolio theory. In other words, we will interpr8SD rules in terms of expected return and
systematic risk (beta), so that portfolio manages better grasp the rules. We do this by
using Lorenz curves dominance instead of the tymomulative probability functions. This
lets us present SSD conditions expressed in tefmetworn and risk, and reconcile them with
the capital asset pricing model.

Besides adjusting SSD rules for problems of intet@portfolio managers, we extend
SSD to marginal conditional stochastic dominanceC8®) rules. These rules state the

conditions under which all risk-averse investorddimg a specific portfolio will prefer to

1 For instance, multivariate normal probability distition of returns or quadratic utility
functions.



increase the share of one asset over the sharotifea. MCSD is a less demanding concept
than SSD because it considers only marginal chaonfidsolding risky assets in a given
portfolio.2

MCSD conditions are expressed in terms of absaleentrations curves (ACCs) which
are the assets' cumulative expected returns condition holding the portfolio. ACCs are
analogous to absolute or generalized Lorenz cumwbs;h are the cumulative conditional
expected returns of the portfolio. We provide S8[2s by using the necessary conditions for
MCSD expressed in terms of means and risk-adjustedns, where risk is measured in terms
of beta.

We also consider risk aversion differentiation asmiulated by the extended Gini
coefficient and explain SSD and MCSD for a widerga of specific risk-averse agents. Indeed,
when beta is estimated using the mean-extended &pimioach, risk aversion is explicitly
expressed.

The structure of the paper is as follow: Sectiatefines the basic concepts of expected
utility, stochastic dominance, and mean-Gini pdidg Section 3 defines the concept of
MCSD and introduces the notion of ACCs. Sectiorregsents the extended Gini and derives

the necessary conditions for MCSD including speciBk aversion and Section 5 concludes.

2 Yitzhaki and Mayshar (2002) have proven that tesumption of continuity in the
portfolio space implies that, if there is no poliicthat dominates a given portfolio under
MCSD, then there will be no other portfolio (amaabof portfolios, not just marginal ones)
that dominates the given portfolio.



2. Expected Utility, Stochastic Dominance, and M ean-Gini Rules

To achieve portfolio efficiency under expectedittimaximization we must use utility
functions and know the probability distribution refturns of all assets. To alleviate the need
for specific utility functions in constructing optal portfolios, we propose using the rules of
stochastic dominance, which are expressed in tefrosmulative probability distributions. If
we confine the discussion to the class of all Bskrse expected utility maximizers, an
appropriate mechanism would be second-degree stichdominance (SSD) theory that
states the necessary and sufficient conditions ruwtiech a portfolio is preferred to another
by all risk-averse expected utility maximizers.

SSD conditions have been developed independentaimoch and Levy (1969), Hadar
and Russell (1969), and Rothschild and Stiglitz7()9 SSD rules are typically obtained by
comparing the areas under the cumulative distaistiof portfolio returns as follows: (see
Levy, 1992, 2006)

Consider two risky portfolios andB with cumulative probabilityFa andGg. For all
risk-averse investors with non-decreasing concaiéyufunctions U, SSD states thaf

dominatesB if E.U(A)>E,U(B) whereEr andEg are the expectations usifig andGg.

SSD rules state tha dominatesB if and only if J:Z [Gs(X) — FA(X)]dx>0 for all z, which

belong to the range of returns ArandB.

These necessary and sufficient conditions caleutae areas under the respective
cumulative probability distributions. The rules ace compare these areas so that, for all
returns, the area under the cumulative distribufitwrthe preferred portfolio is always smaller
than the area under the cumulative distributiorttierdominated portfolio.

SSD rules are not easy to interpret when one istoaeting portfolios of risky and safe
assets, because it is difficult to evaluate cunwdatistributions of portfolios whose
composition is changing constantly. Hence, lingagramming and numerical optimization
methods are commonly used to build efficient SSDitfplios, most of them relying on
discrete distributions (see, for example, Post,32@M0d Ruszczski and Vanderbei, 2003).
As these techniques are based on numerical optionizat is virtually impossible to check
and interpret the results.

We suggest an easier way. presenting SSD conditly means of absolute Lorenz
curves, following formulations by Shorrocks (19&8)d Yitzhaki and Olkin (1998 .These

3 Shorrocks (1983) calls these curgeseralized Lorenz curves.
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curves enable us to see the contribution of evesgtato the expected return and the risk of
the portfolio.

The Lorenz curve expresses the cumulative returtherportfolio as a function of the
cumulative probability distribution. Given a potito with cumulative distributior(x), the

absolute Lorenz curve (th®renz) is defined as:
L(p) = j xf (X)dx for —oo < x,, < o ; wherex is definedby p = j f (x)dx (1)

wheref is the density function of the portfolio.
We can now use thieorenz to compare portfolios. According to SSD rules,tfwio A

dominates portfolid if and only if:

L.(p) = Ly(p) forallO=p=> 1 (2)

The rationale for using absolute Lorenz curves ¢scdbe the properties of risky
portfolios can be seen in Figure 1. Therenz of a portfolio enables us to represent the
expected return and the risk of the portfolio geroa@lly. As returns for a risky portfolio are
ranked in increasing order, the shape oflitienz is convex, with the lowest returns being at
the left of the given return which is also the €lag theLorenz. The curve starts at (0, 0) and
ends at |, 1), wherepu is the expected return on the portfolio. A safeeasvith the same
returnp will have a lineatorenz that starts at (0, 0) and endsatX).

In other words, the dotted line in Figure 1 repnéséhelorenz of a riskless asset whose
expected return equals the expected return ofahéopo. In Figure 1, this asset is drawn as a
straight line, which we term the “line of safe a5$eSA) as it represents the expected return
multiplied by the probabilityp.# Now we can express the risk of a portfolio asdliference
between the LSA that yields the same expectedmeand itsLorenz. Indeed, for every
probability p, investing in the portfolio provides a cumulatieepected return expressed by
the Lorenz while investing in the riskless asset yields thme cumulative mean as given by
the LSA.

The risk of the portfolio is a function of the tieal differences between the LSA and

theLorenz. Therefore, the farther the LSA is from therenz, the greater the risk assumed by

4 In the income inequality literature, this is cdlkbeline of perfect equality.
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the portfolio. Measures of risk are functions basedthe weighted distances between the
LSA and theLorenz. For example, one possible measure of risk is3imés mean difference
(GMD) of the portfolio. Equation (3) shows that theea between the LSA and therenz is

actually one- fourth of GMD (Yitzhaki, 2003, Eq44p. 297).
h 1
[l#p—~L(P)] dp=coV[r,F(r]=2T, 3)
0

whereu p is the LSAL(p) is the Lorenz, and” = 2cov]r ,F (r )] is one half of the Gini’'s mean

difference of the portfolio. Other measures of riske the extended Gini and even the
variance, can be obtained as functionals of thdcatrdifference between the LSA and the
Lorenz.> .

We can gain other insight from Figure 1. The hartab axis is defined as the
probabilities ranked from those generating the kiwgortfolio returns and yielding the
highest marginal utility to those generating thghleist returns with the lowest marginal
utility. Thus, the (equal) probabilities on therizontal axis are ranked according to declining
marginal utility. Since utility is defined over waih, ranking probabilities with respect to
portfolio returns yields the same result as if thieking were according to declining marginal
utility for each investor. All investors concurtiithis ranking because it is based only on
portfolio returns that are assumed to be their ardglth.

While investors, who hold the same portfolio, magt exhibit the same marginal
utility from portfolio returns, they all agree updme ranking of the marginal utility of these
returns. Hence, ranking with respect to portfeéturns is the only information we need in
order to rank portfolios with respect to marginglity. The vertical axis in Figure 1 shows
the cumulative portfolio returns up to a specifiate of nature, where states of nature are
ordered according to the return associated witlir thecurrence. The vertical difference
between the LSA and theorenz of the portfolio represents the returns that, rpli#d by the

marginal utility, make up the expected utility. dther words, the loss in expected utility due

5> The variance is obtained from the area encloséddas the two curves if one uses
returns instead of probabilities on the horizomtak (Yitzhaki, 1998). In this case the LSA
ceases to be a line, which complicates the platting
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to riskiness is the sum (integral) of marginalitgtimultiplied by the distance between the
LSA and thelLorenz. Different investors have different marginal uit#s, so the loss due to
riskiness differs among investors.

The connection between SSD and the non-interseaifohorenz curves can be
explained as follows. If one chooses to use a tindghty function, a necessary condition for
the portfolio to be preferred by all expected tytilmaximizers is that it is preferred by the
risk-neutral investor, whose marginal utility i€@nstant. In this case, one needs to look only
at the last point on thieorenz, which equals the portfolio expected return.

Another necessary condition is that the area belwsvLorenz of the dominating
portfolio be greater than the area below tloeenz of the dominated portfolio. This area is

one-half the expected returns minus one-fourtthefGMD (I" = cov[r,F (r)]). This is the

logic behind the mean-Gini (MG) necessary condgifor SSD (Yitzhaki, 1982), which are

expressed as:

>
/’lA /’lB (4)
77l W7l W
These conditions state that if portfokois SSD preferred to portfoliB, then the mean and
the risk-adjusted mean return Afcannot be less than the mean and the risk-adjusesth

return ofB when risk is measured by the Gini of the portfélio

6 Yitzhaki (1982) also show that the mean-Gini ctiods for SSD are sufficient
whenever cumulative probability distributions irsiect at most once.
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3. Absolute Concentration Curvesand Marginal Conditional Stochastic Dominance

Having described the necessary conditions for sdagree stochastic dominance in
terms of risk-adjusted mean returns, treating eaattfolio with a given composition of
assets, the next step is to measure the relatmendnce of assets in and out of the portfolio.
At the core of portfolio theory is that diversiftean of asset holdings reduces an investor's
exposure to risk. SSD in a portfolio must be amplie an environment where investors can
change the choice of assets. For this purpose,elyean absolute concentration curves
(ACCs). Since SSD rules are much more complexpar#olio context than in application to
individual assets, one must recognize its limitadi@as we note in Shalit and Yitzhaki (1994),
and formulate a more simple question.

Rather than define rules for dominance, one migit \&hether a given portfolié\
belongs to the SSD efficient set. This inquiry geds in several steps:

(a) First, is it possible to find an alternativerthmio B in the neighborhood oA that
differs fromA by changing the shares of only two assets and3i$fh dominates portfolid?

(b) If it is impossible to find such a portfoligs it possible to find an alternative
portfolio B in the neighborhood oA that differs fromA by more than two assets and SSD
dominatesA?

(c) Finally, provided that we have failed to fipdrtfolios that dominaté according to
(a) and (b), is it possible to find an alternagpaatfolio B that SSD dominates?

A portfolio that is not dominated by another pditioaccording to these conditions
belongs to the SSD efficient set. We address gaehtion separately.

The first problem is answered using the conceptmafginal conditional stochastic
dominance (MCSD) as defined by Yitzhaki and OIKI®41) and Shalit and Yitzhaki (1994).
MCSD states the conditions under which all riskraganvestors, holding a given portfoko
prefer to increase the share of one asset ovehemotMCSD is more confining than SSD
because it considers only marginal changes in hgldsky assets in a given portfolio, and
restricts the change to involve two assets dnly.

To make MCSD operational, we develop the concepiGL as follow:

7 The restriction to a marginal change can be inédepl as a search for the direction to
move in. Then, one has to evaluate the size oftidyein that direction.
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Consider a portfolio o risky asset{ax‘zillaizl}} whose returnsr, are defined

byr, =Zi"=1aa ri , wherer; are the returns on asset i, dpds the density function of the

portfolio. Let g (t)= E(ri|ra =t) be the conditional expected return on assejiven the
portfolio returnt. The ACC of asset with respect to portfolio {a } is defined as the
cumulative conditional expected returns on asset a function of the portfolio cumulative

distributionp=F,(r):
ACCi (p) = ju ) f,0)dt foreoxr,> =, (5)
where
p= rj. f (t)dt
Similarly, from Equation(1), theorenz of portfolio { a } is:
L. (p) = rj. tf, (t)dt foroo>r > o (6)

Following the definition of the portfolio, ittkorenz can then be written as the weighted sum

of the asset ACCs held in the portfolio, whichxpressed as:

L.(p) =D & ACCi (p)  foreo>r, > < (7)
i=1

Figure 2 depicts the ACC of assetThe horizontal axis represents the cumulative
distribution of the portfolio’s return and the Jed axis measures the cumulative expected
returns. The ACC of asset which is an asset that does not need to be iadlud the
portfolio, relates the cumulative expected retumtloat asset to the cumulative probability
distribution of the portfolio. The ACC of asseis the solid curve. The dashed straight line is
the line of safe asset (LSA) that connects theiri(@, 0) with the point (1), wherey; is
the unconditional expected return of agséfthe LSA represents an asset whose returns are
independent of the performance of the portfolio Hrat has the same unconditional expected
return as assét8

We now state the main theorem to determine MCSBguACCs:

8 LSA coincides with the Yitzhaki and Olkin (1991ine of independence (LOI).
Samuelson (1967) shows that independent assetarthaiot included in the portfolio would
be added to it if they have the same expectednetur
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MCSD THEOREM: (Shalit and Yitzhaki, 1994): Given portfolioi{}, assek dominates asset
j for all concave utility functions if and only if:

ACCi(p)z ACCi(p) forall 1>p=0, (8)

with at least one strong inequality

Intuitive Proof: Equation (7) provides a very simple proof for thedrem. Given the shares
of each asset in the portfolio, the ACC is the \tive of theLorenz of the portfolio. To
increase the share of one asset on behalf of anwth@der for the new portfolio to SSD-
dominate the given portfolio, the derivative of th@enz of the portfolio with respect to the
dominating asset has to be greater everywherethigatierivative of the dominated asset.

To derive the necessary conditions for MSCD aridteethem to the fundamental

ideas in finance, we describe the ACCs basic ptigser

(1) The ACC of assetpasses through the points (0, 0) and41,
(2) The derivative of the ACC of assetwith respect top is u(t) = Ei(ri|r, = t).
Consequently, the ACC increases if and onjy(if) > O

(3) The ACC is convex, straight, or concave if antly if Ou (t)/ot

Il
o

<

4) When returns, and r are independent, th&CC; [p,] coincides with the LSA.
(5) The area between the LSA and the ACC is equed\r; , F,, (r,)], the covariance of
the return on assetand the cumulative probability distribution ofrgolio { a}. That

is:

 ACC (), — 200Vl F, €)= 5 4 - AT,

2covl, ,F, (r, )]
r

o

where B = is the Gini regression coefficient of assebn the

portfolio {a} and ', =2cov]r, ,F, (r, )]is one-half of the GMD of the portfol®.

9 See Shalit and Yitzhaki (2002) for the definitioithe Gini regression coefficient and
Carroll, Thistle, and Wei, (1992) for its use..
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These properties allow us to state the necessajiteans for MCSD, namely, that

if asseff dominates assé&tconditional of holding portfolio d}:
My Z

)
ﬂj _ﬁjrra 2 /le _ﬁlfra

The first condition implies that a dominating adsa$ a higher expected return than
the dominated asset, regardless of the risk indolUéne second necessary condition is
more meaningful, as it states that a preferredtdss® a higher risk-adjusted expected

return than the risk-adjusted expected return ef lss favored asset. Indeedﬂﬁs

expresses systematic risk in the mean-Gini mod&-GAPM)L0, then(y;, —,[)’jrl“p) is the

risk-adjusted expected return, which is definethasmean less the beta calculated in Gini
terms.

From the second necessary condition one can ggalua

Mzm-ﬂj (10)

i.e., when a security dominates another by MC8P difference between the two securities’
expected returns per unit of portfolio risk must tpeater than the difference in their

systematic risks defined in terms of MG—CAPM.

Using the mean and the risk-adjusted mean rethis,result allows for a complete
ordering of investment alternatives. MCSD critetising ACCs establish only a partial
ordering. A complete ordering is an advantage wieilominance can be assessed by using
ACCs, but a decision maker nevertheless wantsoirevestment alternatives. In that case, the
mean-Gini necessary conditions for MCSD provide imvestment ranking that does not
necessarily satisfy the sufficient conditions.

Given definition of the SSD criteria in a portfinicontext by changing only two assets,

we can extend it to several assets in a relatsietyple manner.

(b) Isit possible to find an alter native portfolio B, in the neighborhood of A, that SSD
dominates A and differs fromit in more than two assets?

10 Whenever the CAPM is mentioned, we interpret ith@sreference portfolio held by the
investor, and not necessarily the market portfolio.
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According to Equation (7), a combination of ACCssaiveral assets defines a new
ACC that is a linear combination of individual ACGdence, to address MCSD involving
more than two assets we need to search for a lowabination of assets whose ACC is not
below a linear combination of other assets. This lsa solved numerically as in Shalit and
Yitzhaki (2003), and then the optimal ACC can benéated.

(c) Isit possibleto find an alternative portfolio B that SSD dominates A?

Yitzhaki and Mayshar (2002) have shown that if afpbto is not MCSD-dominated by
another portfolio it is also not SSD-dominated Iny ather portfolio. To understand the
intuition to prove this, let us consider two polids, A andB, whereB SSD-dominateé. In

that case, for all risk-averse utility functions:
E[U(B)] > HU(A]. (11)

Hence, to prove the argument it must be shownitHaguation (11) holds, there is also a
portfolio in the neighborhood & that SSD dominatea. First note that:

JE[U(B)] + (1-A)E[U(A)] >E[U(A)] for 1> 4 > O, (12)

Because U is concave, we know that:

HUlQ-A) A+4B} = AHW(B] «1- A HU(A] (13)
Combining (12) and (13) we get:
E{U[1- ) A+AB]} > HU A] forl > A> O. (24)

We now apply (14) foh—0 andi > 0, by which we find a portfolio in the neighbodd
of A that SSD-dominateé&. Therefore, it is impossible to have an SSD ptidfthat
dominatesA, without having also a portfolio, in the neighbook of A, that SSD dominates
A. Thus, we may conclude thatAfis not MCSD-dominated it is also true that neitlseA
SSD-dominated.

12



4. Risk Aversion, Extended Gini, and MCSD

With an additional parameter, the extended Ginibegus to analyze risk aversion
differentiation when we calculate the measure gpédision. Indeed, with the parameter
which represents risk aversion, the extended Goefficient characterizes risk-averse
investors ranging from risk-neutral € 1) to highly risk-averse maxi-min individuals% ).
Other necessary conditions for MCSD that are sjpetif risk-averse agents can then be
derived using the mean and systematic risk. The M@8&minating asset has to have a higher
risk-adjusted expected return than the dominatesgtagor every risk-averse investor. We
adjust the expected return using the mean-exte@ed CAPM. For each asset and risk
aversion coefficient, the extended Gini beta isuated and used to adjust the expected
return for risk.

The extended Gini specifies increasing risk avergip stressing the lower returns that
are the segments of the distribution of returng/lhach investors are most averse. Recall that
the standard Gini is defined as the weighted \artitifference between the LSA and the
Lorenz of the portfolio. Using the parameterto adjust the area definition, we define the

extended Gini for assétas:

T () =v(v -1 (@L-p)? (P — Ly ()P (15)

where L, (p) :j_x” xf, (x)dx is theLorenz, X, is indirectly determined b)sz'_xP f, (X)dx,

v(v-1)(1- p)? is the weight associated with each portion ofates, andpux is the LSA.

The parameter (>0) is being established by researchérs.

There are some special cases of interest for ttemeéed Gini:
Forv = 2 Equation (15) becomes one-half of Gini’'s mddference.
Forv — o« the extended Gini reflects the attitude of a mam-decision maker who wants to
express risk in terms of only the worst outcome.
Forv — 1 Equation (15) becomes the expected return, alp@a risk-neutral investor who
does not use any measure of dispersion to evaiigate
For O<v <1 the extended Gini is negative and models alogikg investor. For ease of
presentation and because we are dealing with xigksa investors, we assume that 1,

although many of the results we report can be agphithout modification to risk-loving

11 See Aaberge (2000), and Kleiber and Kotz (2002pdditional connections between
the Lorenz curve and extended Gini.
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investors. In financial analysis, the covariancemidla for the extended Gini is more

convenient:

I, (v)=-vcov{X,[L-F(xX)]"} (16)

Equation (16) is obtained by integrating Equatibs) (by parts with:
U= (@ pydu= ¢-DAp)y>,V=pu -L, 0)adV=p, X, leads to:

1 1
v(v =1 Q- p) *[pa, — Ly (P)Idp =v(L- p)"* b -[pat, — Ly (P)1ls = [ [, = X(P)I(L~ p)"*dp
0 0
The first term on the right-hand side is equaldémz and the second term becomes:
1 b
[, =X(PIL— P Hdp == [ (x= ) L= F(X)] Hx = —veov{ X [L - F(] "} .
0 a

Additional insight into (15) can be gained by shiogvihat the first term is simply the area

under the diagonal. By twice integrating by pditig, weighted area under the diagonal is
1 1
vv=1)[ Q- p)? pu,dp=vu[ (- py *dp=—p (- p) | = p (17)
0 0

Hence, the weighted area under the Lorenz curequal to:
u—veovr,[L-F(n]" (18)

We refer to Equation (18) as RAR(- the risk-adjusted expected return of an asseguhe
extended GinI'(v).12

One can introduce risk aversion differentiatiomointhe SSD and MCSD necessary
conditions and make them specific to various inmestA necessary condition for SSD is that
the RAR{) of the dominating portfolio will be not lower thahe RAR{) of the dominated
portfolio. Hence, the conditions for the portfolisisown in Equation (4) become:

Hp 2 He

(19)
ta—Ta(W) 2 g -T5(v)

The necessary conditions for MCSD developed inaiga (9) can be replicated with
the extended Gini to become:

If assef MCSD dominates assktconditional on holding portfoliod}:

12 It can be shown that that, —T', (v) is a special case of Yaari's (1987) dual utility

function.
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My 2

- - (29)
and u =g ¢ X, ¢)zu—-p X, )
Except that this timeﬁjr (v) is defined in terms of the extended Gini as follows
COV{I’ 1[1_ Fa (ra )]V_l}
B (v)= : (20)

cov{r,,[1-F,(r)]"}’

and I'(v) is the extended Gini as shown by Equation (16).

Interpretation of Equation (19) remains the saméag&quation (9), except that the
necessary conditions depend on the investor’s Bpedefficient of risk aversion. This is
the main point of our work: If assptdominates assétaccording to MCSD, then it must be
that the risk-adjusted expected return @ higher than the risk-adjusted expected retfifg o
where risk is measured by extended Gini betaslfqroasible risk aversion coefficients In
other words, if assgtMCSD dominates assktfor a given portfolioa, there is no extended
Gini beta fork for all possibley that will increase the RAR) of k more than the RARJ of j.
These conditions, however, are merely necessarynahdufficient, because the family of
extended-Gini utility functions does not cover dissible risk-averse utility functions. For
example, they do not include a change in the adefft of risk aversiowv on a given point
along the distribution of returns.

If we can use the extended Gini to express thessacg conditions for SSD and
MCSD, how then do we choose the risk aversion patam ? To answer this question we
should point out that - I'(v) is a special case of Yaari's (1987) dual utifityction. Hence,
the question to be asked is really how one can ssh@o utility function that represents a
specific investor. By gathering information on ist@ decision making under risk,
presumably one can estimate the paramespecifically for a particular investor, but thésa

question for further research.
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5.  Conclusion

We have shown how to use stochastic dominance mlesnstructing portfolios. A major
weakness of this approach is that it is based anenigal optimization methods that do not
admit intuitive explanations of the outcomes. Oemedy is to characterize the rules
geometrically by using absolute Lorenz curfes second-degrestochastic dominance and
absolute concentration curves for marginal cond#licstochastic dominance. We can then
interpret the rules in terms of risk-adjusted mestarns depending on different measures of
risk aversion.

How does systematic risk explain stochastic donaaagfficiency? Beta, which is used
by practitioners in finance, measures systemasic ais the covariance between asset return
and market retur# The concept is rooted in mean-variance theory pigdés security risk in
capital market equilibrium. The measure is mainlpatelent on the validity of MV and its
compatibility to maximizing expected utility whereturns are multivariate normally
distributed or when the investor’s utility functias quadratic. The presence of fat tails and
skewness in financial data precludes normality etfinns, and quadraticity of preferences
leads to unwarranted results.

Alternative measures of systematic risk have semerged. Shalit and Yitzhaki (2002)
have shown that the correct approach should beotodt the covariance between asset return
and marginal utility to express undiversifiablekrisorrectly. Hence systematic risk depends
upon the choice of the risk measure chosen by iakedn the case of Gini's mean difference
and the extended Gini, the resulting betas arentkan-extended Gini betas used in the
necessary conditions for stochastic dominance. @yegdllen and Shalit (1999) have shown
that MEG betas, which depend upon the investor'sedegf risk aversion, subside to the
standard MV beta only when returns are normallyrithsted. As it is seldom the case that

normality holds, we advocate MEG betas to be usesté@hastic dominance.

13 In general the term market's return should berpné¢ed as the portfolio's return. See
Shalit and Yitzhaki (2007) concerning CAPM with éxetgeneous risk-averse investors.

16



Figure 1: SSD and Absolute Lorenz Curves
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Figure 2: Absolute Concentration Curves
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