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Abstract

We study all-pay contests under incomplete information where the reward is a func-

tion of the contestant's type and also of his e�ort. We analyze the optimal reward for

the designer when the reward is either multiplicatively separable or additively separable

in e�ort and type. In the multiplicatively separable environment the optimal reward is

always positive while in the additively separable environment it may also be negative.

In both environments, depending on the designer's utility, the optimal reward may

either increase or decrease in the contestants' e�ort. Finally, in both environments,

the designer's payo� depends only upon the expected value of the e�ort-dependent

rewards and not the number of rewards.
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1 Introduction

The X prize is a ten-million-dollar competition created to jumpstart the space tourism in-

dustry by attracting the attention of the most talented entrepreneurs and rocket experts in

the world. The cash prize will be awarded to the �rst team that privately �nances, builds

and launches a spaceship that is able to (a) carry three people to 100 kilometers (62.5 miles),

(b) returns safely to earth, (c) repeats the launch with the same ship within two weeks. The

X prize was inspired by the early aviation prizes of the 20th century, primarily the spectac-

ular trans-Atlantic ight of Charles Lindbergh in the Spirit of St. Louis which captured the

$25,000 Orteig prize in 1927.

The X-prize competition is an example of an R&D contest in which all contestants in-

cluding those that do not win any prize incur costs as a result of their e�orts but only the

winner gets the prize. These winner-take-all contests appear in many di�erent forms: only

the �rst to invent gets a patent, the hedge fund that �nds the arbitrage opportunity the

quickest gets the rewards, the �rst to cross the �nish line wins a marathon, only one worker

may get the promotion. In many cases, the sponsor has at least a limited control over the de-

sign used: the government can determine scope and length of patents, the SEC can regulate

hedge funds, the organizers of the marathon can set the size of the prize, and the company

can set rules with a promotion contest.

This potential control has led to research in contest design. Initial research in contest

design analyzed limiting the number of contestants. Taylor (1995) and Fullerton and McAfee

(1999) study the optimal number of participants in contests and methods of restricting entry.

Baye et al. (1993) look at the optimal set of contestants in all-pay contests. They �nd that
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under complete information, it is sometimes advantageous to exclude the contestant with

the highest valuation for winning the contest.

A di�erent approach to contest design is restricting the contestants' strategies. Che and

Gale (1998) show that in all-pay contests under complete information, if agents have linear

cost functions bid cap may be pro�table for the designer who wishes to maximize the total

e�ort; Gavious et al. (2003) show that in all-pay contests under incomplete information, if

agents have convex cost functions then e�ectively capping the bids is pro�table for a designer

with a large number of contestants.

Further investigation into contest design allowed the designer control over the reward

structure. In �xed-prize contests, the designer can determine the number of prizes having

positive value and the distribution of the �xed total prize sum among the di�erent prizes. In

symmetric all-pay contests under complete information, Barut and Kovenock (1998) show

that the revenue maximizing prize structure allows any combination of K � 1 prizes, where

K is the number of contestants. In particular, allocating the entire amount to a �rst prize is

among the optimal designs. In an all-pay contests with incomplete information, Moldovanu

and Sela (2001) show that when cost functions are linear or concave in e�ort, it is optimal

to allocate the entire prize sum to a single \�rst" prize, and when cost functions are convex,

several positive prizes may be optimal. Che and Gale (2003) study a contest where the

contestants choose a prize from a menu of �xed prizes and the winner is determined according

to the best combination of e�ort and prize.

In this paper we go one step forward and allow the designer to determine a structure

of a variable reward such that there is a relationship between the e�orts incurred in the
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contest and the size of the reward collected by the winning contestant. That is, a larger

e�ort changes not only the probability of winning the contest but also the size of the reward

gained by winning. Such a relationship is already present in many examples of contests: In

the X prize as with patent races, the winning �rm choosing a larger e�ort leads to an earlier

innovation time. This in present value terms leads to a larger reward. A hedge fund not only

faces competition from other hedge funds, but from market forces eliminating opportunities.

Earlier detection can lead to larger pro�ts. In the marathon, harder training can lead to a

quicker winning time. This can result in a larger prize (such as if a course or world record is

broken). Also, in work promotions, greater e�ort can result in a larger raise to the winner.

We study the optimal reward structure in all-pay contests under incomplete information

where the designer wishes to maximize either the total expected e�ort or the expected

highest e�ort. The optimal e�ort-dependant reward is not clear-cut. The reward a�ects

the designer's payo� in two ways: indirectly through inuencing the e�ort exerted by the

contestants and directly by the payments made to the winner. Moreover, Kaplan et al.

(2002) show that in all-pay contests under incomplete information an increase in the reward

function may decrease the contestants' e�orts.1 Indeed, as we show in this paper the optimal

reward structure is surprising in several environments.

We �nd the equilibrium e�ort and the optimal reward in two di�erent environments:

where the reward is multiplicatively separable in e�ort and type and where the reward is

additively separable. The environments are similar since in both of them, if the contest

1Also under complete information, Kaplan et al. [2003] show that e�ort-dependent rewards introduce

substantial qualitative changes to the behavior of the contestants compared with constant reward all-pay

auctions.
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designer wishes to maximize the expected total e�ort, the equilibrium e�ort is independent

of the number of contestants. In this case, for su�ciently large number of contestants,

the optimal reward function in both environments decreases in e�ort, that is, a larger e�ort

decreases the size of the reward gained by winning. On the other hand, in both environments,

if the contest designer wishes to maximize the expected highest e�ort, the equilibrium e�ort

depends on the number of contestants. Then, for any number of contestants, the optimal

reward function may increase in e�ort.

Our environments are distinguished since in the multiplicatively separable environment

the optimal reward is always positive while in the additively separable environment it may

also be negative. Furthermore, in the multiplicatively separable environment, for every

optimal reward function, all contestants choose to participate in the auction. On the other

hand, the optimal reward function in the additively separable environment may limit the

number of contestants that choose to participate in the contest. That is the optimal reward

function serves the role of entry fees or alternatively reserve prices in the standard contests

(auctions). It is interesting to note that the optimal reward does not necessarily eliminate

participation of the contestants with the lowest valuations (it never eliminate the contestants

with the highest valuations). In all cases, more types are included when the designer cares

about the total e�ort.

Finally, we allow the designer the additional control of the number of e�ort-dependent

rewards (as mentioned above, this control is analyzed in Barut & Kovenock (1998) and

Moldovanu & Sela (2001)). We �nd that it does not matter upon how many prizes the

reward is distributed; only the expected value of the reward matters. We present an example

5



where an optimal design is to give an e�ort-dependent prize to the loser of a two-contestant

contest. This further shows the consequence of this work { that an e�ort-dependent reward

can be an e�cient tool for the contest designer but its structure as well as its e�ects on the

contest are sometimes unusual.

The paper proceeds as follows. In Section 2 we present the model. We analyze the optimal

reward in the multiplicatively separable environment in Section 3 and in the additively

separable environment in Section 4. In Section 5, we revisit the question of multi-prize

contests and in Section 6 we conclude. The Appendix contains the proofs.

2 The model

Consider an all-pay contest with e�ort-dependent rewards. The set of contestants is N =

f1; 2; :::; ng: Each contestant's type �i; i = 1:::; n; is independently drawn from the interval

[�; �] according to the distribution function F:2 While F is common knowledge, each contes-

tant is privately informed about his own type. Each contestant i exerts an e�ort xi and, by

doing so, incurs a disutility (or cost) denoted by c(�i; xi), where c : [�; �] � R+ ! R+ is a

strictly increasing in x; strictly decreasing in � and twice continuously di�erentiable function

with c(�; 0) = 0; and cx(�; 0) = 0. We have additional su�cient conditions to guarantee a

monotonic solution to our problem: c�x < 0; cxx > 0; cx2� � 0 and cx�2 � 0.

The contestant i that chooses the highest e�ort xi wins a reward R(xi) : R+ ! R+ and

values this reward according to the value function V (�i; R(xi)) : [�; �] � R+ ! R+ which is

2It is assumed that the hazard rate F 0=(1� F ) is increasing.
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a twice continuously di�erentiable function. Each contestant chooses his e�ort in order to

maximize his expected utility given the other contestants' actions and the form of the reward

function. We consider here two forms of utility for the designer: (1) the designer maximizes

the expected value of total e�ort E(
Pn

i=1 xi) minus the expected reward he must pay out,

and (2) the designer maximizes the expected value of the highest e�ort E(maxfxig) minus

the expected reward he must pay out.

2.1 Equilibrium

Consider �rst the equilibrium in the contest that results after the designer sets the reward

function. In a Bayesian equilibrium, the e�ort function x(�) chosen by each contestant

maximizes his expected utility given the e�ort functions chosen by the other contestants.

Hence, for each �; a symmetric equilibrium e�ort function x(�) (assumed to be monotonic

increasing and di�erentiable) solves the following maximization problem

�(�) = max
x
F (�(x))n�1 � V (�; R(x))� c(�; x) (1)

Proposition 1 Any equilibrium strategy x(�) is given by the implicit function

F (�)n�1V (�;R(x(�)))� c(�; x(�)) =
Z �

�

[F (~�)n�1V�(~�; R(x(~�)))� c�(~�; x(~�))]d~� (2)

while the RHS of (2) is the expected payo� of a contestant given this strategy.

Proof. See Appendix.
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The designer decides the exact form of the reward function in order to maximize his

expected payo� subject to the choice of contestants' e�ort in equilibrium. When the designer

wishes to maximize the expected value of total e�ort, his expected payo� is given by

n

Z �

�

x(�)dF �
Z �

�

R(x(�))dF n (3)

The left term of (3) is the expected total e�ort exerted by the contestants and the right term

of (3) is the designer' expected payment to the contestant with the highest e�ort.

Similarly, when the designer wishes to maximize the expected value of the highest e�ort,

his expected payo� is given by Z �

�

[x(�)�R(x(�))]dF n (4)

3 Multiplicatively separable case

In this section we assume that the value function is multiplicatively separable with the form

V (�;R(x)) = � �R(x)

The equilibrium e�ort x(�) is the solution of the following maximization problem

argmax
x
F (�(x))n�1 � � �R(x)� c(�; x)

Equivalently, the equilibrium e�ort x(�) is also the solution of the problem

argmax
x
F (�(x))n�1 �R(x)� ĉ(�; x)

where ĉ(�; x) = c(�; x)=�. Hence, without loss of generality, we can consider the independent-

type case in which the value function is given by

V (�; R(x)) = R(x) (5)
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We now analyze the two cases of designer's objective: maximization of total e�ort and

maximization of highest e�ort.

3.1 Maximization of the total e�ort

Proposition 2 Consider a multiplicatively separable environment and a designer that wishes

to maximize the expected value of total e�ort. Then, the optimal reward is given by

R(x) =

�
ĉ(�(x); x)�

Z x

0

ĉ�(�(~x); ~x)d�(~x)

�
=F (�(x))n�1 (6)

where ĉ(�; x) = c(�; x)=� and �(x) is the inverse of the equilibrium e�ort x(�) which is given

by

1 + ĉ�x(�; x(�))
1� F (�)
f(�)

= ĉx(�; x(�)) (7)

Proof. See Appendix.

By equation (7), we have

Corollary 1 In the multiplicatively separable environment when the designer wishes to max-

imizes the expected value of total e�ort, the equilibrium e�ort x(�) is independent of the

number of contestants n.

The independence of the equilibrium e�ort in the number of contestants becomes clear

if we notice that the optimal reward R(x) in the multiplicatively separable environment

when the designer wishes to maximize the expected value of total e�ort is comparable to the

optimal wage contract in a Principal-Agent (PA) model where the principal o�ers the agent
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a wage w(x) that depends upon output x (which can be sold at a price of one). In the PA

model the agent's maximization problem is

max
x
w(x)� c(�; x)

The principal's expected payo� given the solution x(�) of the agent's problem is the expected

output that he receives (the price of which is one) minus the expected wage that he must

pay:

n

Z �

�

[x(�)� w(x(�))]dF

The substitution of w(x) � R(x) � F (�(x))n�1 yields the same problems of (1) and (3).

However, while in the PA model the optimal wage is always increasing, in our model, we

have

Proposition 3 In the multiplicatively separable environment, when the designer wishes to

maximize the expected value of total e�ort, for large enough n; the optimal reward is decreas-

ing.

Proof. See Appendix.

Example 1 Consider the multiplicatively separable environment where the designer maxi-

mizes the total e�ort. The cost function is c(x; �) = x2and the distribution of the contestants'

types F is uniform on [0; 1].

From this speci�cation, ĉ(x; �) = x2=� and we can rewrite (7) as

1� (2x(�)=�2)(1� �) = 2x(�)=�
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Thus, the equilibrium e�ort is

x(�) =
�2

2

Notice that the optimal e�ort does not depend upon n: The inverse of the equilibrium e�ort

is �(x) =
p
2x: By (6) the optimal reward is

R(x) = (2x)2�n=2=3

For two bidders the optimal reward is R(x) = 2x
3
. For four bidders, we have an independent-

e�ort optimal reward R(x) = 1
3
. For six bidders, we have already a decreasing reward

function R(x) = 1
6x
. �

3.2 Maximization of the highest e�ort

Proposition 4 In the multiplicatively separable environment, when the designer wishes to

maximize the expected value of the highest e�ort, the optimal reward is given by

R(x) =

�
ĉ(�(x); x)�

Z x

0

ĉ�(�(~x); ~x)d�(~x)

�
=F (�(x))n�1 (8)

where ĉ(�; x) = c(�; x)=� and �(x) is the inverse of the equilibrium e�ort x(�) which is given

by

F (�)n�1 + ĉ�x(�; x(�))
1� F (�)
f(�)

= ĉx(�; x(�)) (9)

Proof. See Appendix.

As a function of the equilibrium e�ort, the reward formula where the designer maximizes

the highest e�ort (8) is the same as in the case where the designer maximizes the total e�ort

11



(6). However, since the equilibrium e�orts are not identical in both cases (equations (7) and

(9) are not equal) we obtain that the optimal rewards are di�erent.

A simple comparison of the equilibrium e�orts (equations (7) and (9)) yields

Corollary 2 In the multiplicatively separable environment, the equilibrium e�ort function

when the designer maximizes the expected highest e�ort is point-wise smaller than the equi-

librium e�ort when the designer maximizes the expected total e�ort. Thus, the expected value

of the highest e�ort is smaller when the designer maximizes the highest e�ort.

It is important to notice that in the case when the designer maximizes the expected

highest e�ort the optimal reward R(x) in the multiplicatively separable environment is not

comparable to any variable in the classical Principal-Agent (PA) model. In contrast to the

case where the designer maximizes the expected value of total e�ort we have

Corollary 3 In the multiplicatively separable environment, when the designer maximizes

the expected value of the highest e�ort, the equilibrium e�ort x(�) depends on the number of

players n.

It is shown that in the case when the designer maximizes the expected value of total

e�ort, the optimal reward function decreases in e�ort if the number of players is su�ciently

large. In this case where the designer maximizes the expected value of the highest e�ort the

optimal reward may be increasing for any number of players.

Example 2 Consider the multiplicatively separable environment where the designer maxi-

mizes the highest e�ort. The cost function is c(x; �) = x2 and the distribution of the con-

testants' types F is uniform on [0; 1].
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Thus ĉ(x; �) = x2=�: From this speci�cation, we can rewrite (9) as

�n�1 � (2x(�)=�2)(1� �) = 2x(�)=�

This implies the equilibrium e�ort

x(�) =
�n+1

2

The inverse of the equilibrium e�ort is �(x) = (2x)1=(n+1): By (8) the optimal reward is then

R(x) =
2n+ 2

4(2n+ 1)
(2x)

n+2
n+1

It can be veri�ed that for large n this reward approaches R(x) = x=2.

Notice that the expected highest e�ort in this case is n
4n+2

while the expected highest

e�ort in the case where the designer maximizes the total e�ort is always larger and equal to

n
2n+4

: Thus, the expected payment when the designer maximizes the highest e�ort must be

smaller than the expected payment when the designer maximizes the total e�ort, otherwise,

there is a contradiction to the optimality of the reward function in this example.

4 Additively separable case

In this section we assume that the value function is additively separable with the form

V (�;R(x)) = � +R(x)

Here we again analyze the two cases of the designer's objective.
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4.1 Maximization of the total e�ort

Proposition 5 In the additively separable environment, when the designer wishes to maxi-

mize the expected value of total e�ort, the optimal reward is given by

R(x) =

 
c(�(x); x) +

Z �(x)

��
[F (�)n�1 � c�(�; x(�))]d�

!
=F (�(x))n�1 � �(x) (10)

where �(x) is the inverse of the equilibrium e�ort x(�) which is given by

1 + c�x(�; x(�))
1� F (�)
f(�)

= cx(�; x(�)) (11)

and the cuto� �� is the � that maximizes the designer's pro�t from the set f� 2 [�; �] :

x(�)� c(�; x(�))+
�
� � 1�F (�)

f(�)

�
F (�)n�1+ c�(�; x(�))

1�F (�)
f(�)

= 0g (if the set is empty �� = �):

Proof. See Appendix.

The designer's payo� when he maximizes the total e�ort is

n

Z �

�

�
x(�)� c(�; x(�)) +

�
� � 1� F (�)

f(�)

�
F (�)n�1 + c�(�; x(�))

1� F (�)
f(�)

�
dF

The reward function in this case limits the participation of players for which the expression

within the integral is negative. Notice that if the cost function does not depend on the

contestant type, i.e., c(�; x) = x, then (11) holds for all x(�). This is because our environment

is converted into the standard auction environment and revenue equivalence holds{ where

pro�t of the designer depends only upon which types are included determined by when�
� � 1�F (�)

f(�)

�
is positive.

The equilibrium e�ort is the same in the additively separable case as in the multiplica-

tively separable case when the value function is independent-type. However, the optimal
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reward functions are di�erent in these two cases. The di�erence between these cases is an

added bene�t for winning that depends upon � in the additively-separable case. This added

bene�t yields additional rents for the contestant, but the induced equilibrium e�ort does not

inuence these rents.

Proposition 6 In the additively-separable case when the designer wishes to maximize the

expected value of total e�ort, for large enough n the optimal reward is decreasing.

Proof. See Appendix.

Example 3 Consider the additively separable environment where the designer maximizes

the total e�ort. The cost function is c(�; x) = x2=� and the distribution of the contestants'

types F is uniform on [0; 1].

By (11) the optimal e�ort is

x(�) = �2=2

Notice, that also here the optimal e�ort function does not depend upon n. The cuto�

equation is

�2=4 + 2�n � �n�1 = 0

For n = 2, this has a solution of �� = 4=9. By (10) this yields an optimal reward function of

R(x) = 2x=3� (2x)1=2=2� 8 � 29
37(2x)1=2

Notice that the expected payment is �1145
4374

which is negative.
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4.2 Maximization of the highest e�ort

In a similar way to the case where the designer maximizes the total e�ort we obtain,

Proposition 7 In the additively separable environment, when the designer wishes to maxi-

mize the expected value of the highest e�ort, the optimal reward is given by

R(x) =

 
c(�(x); x) +

Z �(x)

��
[F (�)n�1 � c�(�(~x); ~x(�)]d�

!
=F (�(x))n�1 � �(x) (12)

where �(x) is the inverse function of the equilibrium e�ort x(�) which is given by

F (�)n�1 + c�x(�; x(�))
1� F (�)
f(�)

= cx(�; x(�)) (13)

and the cuto� �� is the � that maximizes the designer's pro�ts from the set f� 2 [�; �] :

x(�)F (�)n�1 � c(�; x(�)) +
�
� � 1�F (�)

f(�)

�
F (�)n�1 + c�(�; x(�))

1�F (�)
f(�)

= 0g (if the set is empty

�� = �).

Example 4 Consider the additively separable case where the designer maximizes the highest

e�ort. The cost function is c(x; �) = x2=� and the distribution of the contestants' types F is

uniform on [0; 1].

From this speci�cation, we can rewrite (13) as

�n�1 � 2x(�)
�2

(1� �) = 2x(�)

�

This implies the equilibrium e�ort function

x(�) =
�n+1

2
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The inverse function is �(x) = (2x)1=(n+1). The cuto� equation is given by

�2n=4 + 2�n � �n�1 = 0

(For n = 2, this has a solution at �� = :486:)

The optimal reward is then

R(x) =
2n+ 2

4(2n+ 1)
(2x)

n+2
n+1 � (2x)

1
n+1

�
n� 1
n

�
� (2x)�

n�1
n+1

�
��n

n
+

��2n+1

4(2n+ 1)

�
For large n this reward approaches to the increasing reward function R(x) = x

2
� 1.

Again we can compare equilibrium e�orts. Since the equilibrium e�ort equations, (7)

and (9), do not change, the result of Corollary (2) holds here (for those that choose to

participate).

Corollary 4 In the additively separable case, the equilibrium e�ort function when the de-

signer maximizes the expected highest e�ort is point-wise smaller than the equilibrium e�ort

when the designer maximizes the expected total e�ort.

When the designer cares about total e�ort his payo� for including each individual type

is higher than when the designer cares about maximum e�ort.3 Therefore, we have the

following.

Corollary 5 In the additively separable case, the set of types of participants when the de-

signer maximizes the expected total e�ort is larger (and includes) than the set of types of

participants when the designer maximizes the expected highest e�ort.

3It may be possible that a type with a negative payo� to the designer is included in order to include lower

types with higher payo�s. This does not matter since when the designer cares about total e�ort the bene�t

for including lower types will be higher as well as the cost for including those negative types will be lower.
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5 Multiple Rewards

So far, we analyzed the optimal reward when an e�ort-dependent reward R(x) is awarded

only to the winner. We now extend the analysis to the case of multiple e�ort-dependent

rewards where the contestant with the highest e�ort wins the reward R1(x), the contestant

with the second highest e�ort wins the reward R2(x); and so on until all the rewards are

allocated. That is, Rk(x) is the reward for the contestant with the k-highest e�ort who exerts

an e�ort of x: In this extended environment we can ask what are the optimal structures and

the optimal number of e�ort-dependent rewards. Moldovanu and Sela [2001], using our

environmental assumption of convexity of the cost function, show that it may be optimal

to allocate several prizes. Since their rewards were not only �xed but independent of e�ort,

it is interesting to examine if their result holds in our environments where the designer has

more exibility.

Proposition 8 A multi-reward contest fRi(x)gi�1 has ex-ante equivalent payo�s to a single

reward contest R(x) if E[Ri(x)j�(x)] = F (�(x))n�1R(x) for the following environments:4

(i) the multiplicative-separable case, when a contestant of type � with the k�highest e�ort

receives payo� of Rk(x) � �:

(ii) the independent case (the reward is independent of �), when a contestant of type �

with the k�highest e�ort receives payo� of Rk(x):
4The expression E [Ri(x)j�(x)] is the expected reward of each contestant given the equilibrium bid func-

tion. For example, if there is only one reward, this expected value is F (�(x))n�1R1(x); and if there are two

rewards, this expected value is F (�(x))n�1R1(x) + (n� 1)F (�(x))n�2(1� F (�(x)))R2(x).
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(iii) the additively separable case, when the winner receives payo� of R1(x) + �, and the

contestant of type � with the k-highest e�ort receives payo� of Rk(x) when k > 1.

Proof. See Appendix.

The three environments are chosen to ensure that surplus is not created nor destroyed

simply by the mere fact of giving a non-�rst place prize { there is no intrinsic value to

being runner-up.5 Proposition 8 implies that all prize structures that have E[Ri(x)j�(x)] =

F (�(x))n�1R(x) where R(x) is the optimal reward in the case of unique dependent-e�ort

reward are optimal. The proof simply comes from the fact that these are substitutable in

both the contestant's expected surplus and the designer's expected pro�ts. And since we use

both equations to eliminate the rewards (to solve for the optimal e�ort) they do not appear

in the form of the designer's expected payo� that we maximize.

Proposition 8 shows that general all-pay auctions with e�ort-dependent rewards over a

number of prizes have equivalence if the equilibrium bid function is monotonic. This allows

us to easily analyze a range of problems including those with a disadvantage to the winner:

everyone may want to try to beat the fastest gun�ghter in town, the tallest building may be

a clearer target for terrorism, etc. In the following example we generate a peculiar example

of an optimal contest with two contestants where there is only a prize for the loser.

Example 5 Consider the independent case with two contestants where the designer maxi-

mizes the total e�ort. The cost function is c(x; �) = x2=� and F is uniform on [0; 1].

5Some other possibilities do not share this property: For example, in the additively-separable case if a

contestant of type � with the i-highest e�ort receives Ri(x) + � for all i. In this case, the equivalence would

disappear since giving additional prizes (say of value �) would create surplus.
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In this example we have shown that the optimal reward function for the winner is R(x) =

2x=3 and the equilibrium e�ort is given by �(x) =
p
2x: We then have F (�(x))n�1R(x) =

(2x)3=2=3:One can maintain the same revenue by giving a prize of zero to the \winner" and an

e�ort-dependent reward to the loser. This would be set such that (1��(x))R2(x) = (2x)3=2=3:

Thus, the optimal rewards are

R1(x) = 0; R2(x) =
(2x)3=2=3

1�
p
2x

Notice that this reaches in�nity as x! 1=2 (this is the e�ort chosen by the highest type,

�(1=2) = 1), since there is an almost certain chance of winning and getting paid nothing.

6 Concluding remarks

In this paper, we study the design of contests when the designer has full exibility over what

reward function to use. We solve our problem of �nding the optimal reward by indirect

means. First, we solve for the optimal e�ort function. This is done by looking at the virtual

cost of increasing an e�ort for a speci�c type. Second, we solve for the reward that induces

the e�ort function. Here, an increase in the e�ort is reected by an increase in the overall

reward paid to contestants. This at �rst glance appears to contradict Kaplan et al. (2002),

who found an increase in the rewards may lead to a decrease in the expected e�ort. However,

by the analysis here one can see how such an example can exist: increase the e�ort when it is

costly (marginal cost is high) and decrease the e�orts when such an increase would be cheap

(marginal cost is low). Hence, one can increase the rewards while leading to a decrease in

the expected e�ort.
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We �nd new surprising results such as the reward to winning may be not only increasing,

but decreasing in the e�orts. It is easy to envision contests where the reward to winning is

increasing in the results. These bonuses for good performances may be external rewards to

winning, extra payment from the designer, or simply getting the reward sooner. On the other

hand, it is not so obvious to dream up a scenario where the reward is actually decreasing in

e�ort. This comes in the case of contests where the reward is increasing over time. This can

happen if money is raised for the winner of a contest similar to the X prize where not only

is the prize money kept aside earning interest, but where the organizers continue to raise

funds. The reason that this is in fact, a decreasing reward is that inventing early requires

more e�ort.

While the environment we study here is restricted to contests, it is possible to use the

same tools to study optimal design with e�ort-dependent rewards in the classical auction

mechanisms.
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A Appendix

A.1 Proof of Proposition 1

Using the envelope theorem on the contestant's maximization problem (1) yields

�0(�) = F (�)n�1V�(�; R(x(�)))� c�(�; x(�))
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Assume that all contestants with value � � � take part in the auction and that �(�) = 0.

Then by integration we obtain

�(�) =

Z �

�

[F (~�)n�1V�(~�;R(x(~�)))� c�(~�; x(~�))]d~�

From the maximization problem, we also have

�(�) = F (�)n�1 � V (�;R(x(�)))� c(�; x(�))

The comparison of the contestant's expected payo�s gives us the desired result. �

A.2 Proof of Proposition 2

Straightforward substitution of (5) into (2) implies that an equilibrium strategy x(�) must

be given by the implicit function

F (�)n�1R(x(�))� ĉ(�; x(�)) =
Z �

�

�ĉ�(~�; x(~�))]d~� (14)

while RHS of (14) is the expected payo� of a contestant given this strategy.

Substituting (14) in the designer's expected payo� (3) yields the following designer's

problem

max
x
n

Z �

�

�
x(�)� ĉ(�; x(�)) +

Z �

�

ĉ�(~�; x(~�))]d~�

�
dF (15)

By using of integration by parts, we can rewrite the last term as follows

Z �

�

Z �

�

ĉ�(e�; x(e�))de�dF = Z �

�

ĉ�(�; x(�))d��
Z �

�

F (�)ĉ�(�; x(�))d� =

Z �

�

ĉ�(�; x(�))
1� F (�)
f(�)

dF

Thus, the designer's problem is
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max
x
n

Z �

�

�
x(�)� ĉ(�; x(�)) + ĉ�(�; x(�))

1� F (�)
f(�)

�
dF

Since the designer is indirectly choosing x(�) through the reward function. We can look at

the �rst-order condition to �nd the induced optimal e�ort

1 + ĉ�x(�; x(�))
1� F (�)
f(�)

= ĉx(�; x(�)) (16)

Notice that our assumptions on c imply the same assumptions on ĉ = c
�
. These assumptions

imply that as � increases the LHS of (16) increases and the RHS increases. When x increases,

the LHS of (16) decreases and the RHS increases. Thus, there is a monotonic solution to

this equation.

Given the optimal e�ort x(�); the optimal reward is obtained by changing variables from

� to x in equation (14). Therefore, the optimal reward is simply

R(x) =

�
ĉ(�(x); x)�

Z x

0

ĉ�(�(~x); ~x)d�(~x)

�
=F (�(x))n�1

where �(x) is the inverse of x(�). �

A.3 Proof of Proposition 3

The equilibrium e�ort does not depend on the number of contestants n. The reward must

be strictly positive for participation. Thus, the optimal reward given by (6) can be written

as a fraction of two functions, z1(x)=z2 (x)
n�1 where

z1(x) =

�
ĉ(�(x); x)�

Z x

0

ĉ�(�(~x); ~x)d�(~x)

�
z2(x) = F (�(x))
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Then, the derivative of the reward function is given by

z2 (x)
n�2 [z2 (x) z

0
1(x)� (n� 1)z02 (x) z1(x)]
z2 (x)

2n�2

Since by our assumptions all the parameters here are �nite, for large enough n this derivative

must be negative. �

A.4 Proof of Proposition 4

As in the case of maximization of total e�ort, we can use equation (14) to substitute for

F (�)n�1R(x(�)) in the designer's expected payo� (4) and use integration by parts to simplify.

Now the designer's expected payo� becomes

n

Z �

�

�
x(�)F (�)n�1 � ĉ(�; x(�)) + ĉ�(�; x(�))

1� F (�)
f(�)

�
dF (17)

The �rst-order condition of this yields the optimal (pro�t-maximizing) x(�)

F (�)n�1 + ĉ�x(�; x(�))
1� F (�)
f(�)

= ĉx(�; x(�)) (18)

Since F n�1(�) is increasing in �, the same arguments as before guarantees a monotonic

solution. From equation (14), we �nd the optimal reward:

R(x) =

�
ĉ(�(x); x)�

Z x

0

ĉ�(�(~x); ~x)d�(~x)

�
=F (�(x))n�1 (19)

where �(x) is the inverse of x(�) that satis�es (18). �
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A.5 Proof of Proposition 5

The equilibrium strategy x(�) is given by the implicit function

F (�)n�1[� +R(x(�))]� c(�; x(�)) =
Z �

�

[F (~�)n�1 � c�(~�; x(~�))]d~� (20)

while the expected payo� of a contestant given this strategy is

�(�) =

Z �

�

[F (~�)n�1 � c�(~�; x(~�))]d~�

As before, we can use (20) to �nd the reward as a function of the equilibrium e�ort

R(x) =

�
c(�(x); x) +

Z x

0

[F (�(~x))n�1 � c�(�(~x); ~x)]d�(~x)
�
=F (�(x))n�1 � �(x)

By substituting this reward into the designer's payo� and using integration by parts, we

obtain

n

Z �

�

�
x(�)� c(�; x(�)) + �F (�)n�1

�
dF � n

Z �

�

Z �

�

h
F (~�)n�1 � c�(�; x(�))

i
d~�dF(21)

= n

Z �

�

�
x(�)� c(�; x(�)) +

�
� � 1� F (�)

f(�)

�
F (�)n�1 + c�(�; x(�))

1� F (�)
f(�)

�
dF

The �rst-order condition of this yields the optimal e�ort function

1 + c�x(�; x(�))
1� F (�)
f(�)

= cx(�; x(�))

As before, our assumptions on c satisfy the second-order conditions. The designer also

has the option of having a cuto� type in order to not include lower types for when the

expression within the integral is negative. It is important to notice that this expression

within the integral does not necessarily increases in �:�
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A.6 Proof of Proposition 6

Since the optimal equilibrium e�ort is the same as in the multiplicatively separable case

when the value function is independent-type, the di�erence between the two rewards is that

now the reward is larger by

Z x

0

[F (�(~x))n�1d�(~x)=F (�(x))n�1 � �(x):

The derivative of this with respect to x is

F (�(x))2n�2�0(x)�
R x
0
[F (�(~x))n�1d�(~x) � (n� 1)F (�(x))n�2F 0(�(x))�0(x)

F (�(x))2n�2
� �0(x)

=
�
R x
0
[F (�(~x))n�1d�(~x) � (n� 1)F 0(�(x))�0(x)

F (�(x))n
< 0

Thus, the reward is also decreasing for large n. �

A.7 Proof of Proposition 8

We can rewrite the contestant's expected surplus, (14) and (20), as the following two equa-

tions (the �rst holds for environments (1) and (2), while the second holds for environment

(3))

E[Ri(x(�))]� ĉ(�; x(�)) =
Z �

�

�ĉ�(~�; x(~�))]d~�

F (�)n�1� + E[Ri(x(�))]� c(�; x(�)) =
Z �

�

[F (~�)n�1 � c�(~�; x(~�))]d~�

The designer's payo� changes from (3) and (4) to the following two formulas, respectively,

n

Z �

�

x(�)dF � n
Z �

�

E[Ri(x(�))]dF
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Z �

�

x(�)dF n � n
Z �

�

E[Ri(x(�))]dF

When we use the contestant's surplus equations to substitute for the expected rewards in

the above two formulas (depending upon the environment and whether the designer's goal

is total or maximum e�ort), we arrive at exactly the same formulas for the designer's payo�

as before: (15), (17) and (21). Thus, both the induced e�ort and the respective payo�s will

remain the same. �

28


