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Abstract

We prove the existence of a behavioral-strategy Bayesian Nash equilibrium,

without assuming absolute continuity of information, in two-player common-

value contests where each player�s probability to win is continuous in e¤orts

outside the zero-e¤ort pro�le and non-decreasing in his own e¤ort. In particu-

lar, equilibrium exists even if both players have a continuum of interdependent

information types without joint density.
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1 Introduction

Tullock contests and their variants are widely used in modeling R&D races, politi-

cal contests, and rent-seeking and lobbying activities.1 In recent years, systematic

progress has been made in establishing equilibrium existence in contests with incom-

plete information for general classes of information structure and endowments, includ-

ing both the discrete setting (as in Einy et al. (2015) and Ewerhart and Quartieri

(2020)) and the setting with a continuum of information types (as in Ewerhart (2014)

�Department of Economics, Ben-Gurion University of the Negev, Beer Sheva, Israel. e-mail:

orih@bgu.ac.il.
1See Tullock (1980), and Corchón (2007) for an extensive survey.
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and Haimanko (2021)). In common with nearly all results on Bayesian Nash equi-

librium existence,2 absolute continuity of information is essential for the existence

results in those works. Introduced by Milgrom and Weber (1986), absolute continu-

ity of information requires the joint distribution of the players�types to be absolutely

continuous with respect to the product of its marginal distributions. While always

in e¤ect in a discrete setting, this condition is not innocuous when there is a con-

tinuum of information types: in applications, players�types are usually assumed to

be independent, or to have joint density, in order for information to be absolutely

continuous.3

It is easy to encounter scenarios with a continuum of types where the absolute

continuity condition does not hold. As in "purely atomic" games of Hellman and Levy

(2017), each player�s type may have a continuous distribution, but reveal, at each

realization, a �nite set of possible values of another player�s type rather than yield

a continuous posterior distribution.4 Some representations of information advantage

can in particular have such a structure: one player�s type may fully reveal the type

of his rival, whereas the rival�s type may only point at �nitely many possibilities

and give away their distribution.5 In this note we show that in a sizeable class of

contests absolute continuity of information is not, in fact, required for the existence of

a Bayesian Nash equilibrium, and hence information structures as in above scenarios,

inter alia, can be admitted in these contests.

The contests in our class have two players, and the value for winning is common

(given any realization of information types). These unquestionably restrictive features

bring with them a signi�cant technical bene�t, somewhat hidden from view. Namely,

they make a contest strategically equivalent to a two-person zero-sum game. Indeed,

modify each player�s payo¤ by adding to it the cost incurred by his rival. This does

2See, e.g., Carbonell-Nicolau and McLean (2018) for a survey of results on equilibrium existence

in Bayesian games.
3Under such assumptions, the information is indeed absolutely continuous by Proposition 3 in

Milgrom and Weber (1986).
4Consider, for instance, players 1 and 2, such that player 1�s type X1 has the uniform distribution

on [0; 1] ; and player�s 2 type X2 is determined by a fair lottery over
�
X1;

1
2X1

	
. Then, knowing X1

reveals the two equiprobable values for X2; knowing X2 fully reveals X1 if X2 > 1
2 ; and discloses

that X1 is either X2 or 2X2 with equal probability if X2 � 1
2 .

5An example is obtained by the following modi�cation of X2 in the preceding footnote: let

X2 := 2X1 if X1 � 1
2 ; and X2 := 2X1 � 1 otherwise. Then knowing X1 fully reveals X2, but

knowing X2 only discloses that X1 is either 1
2X2 or

1
2X2 +

1
2 with equal probability.
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not a¤ect strategic considerations but now the sum of (modi�ed) payo¤s is equal to

the common value for winning, which is independent of players�choices of e¤ort. The

expected (modi�ed) payo¤s add up to the expected common value, making the game

constant-sum, and hence, after a shift of scale, zero-sum.

The zero-sum feature is known to be conducive to equilibrium existence without

assuming absolute continuity of information �that assumption is not needed for the

classical result of Mamer and Schilling (1986) that guarantees existence of a saddle

point in distributional strategies in a large class of zero-sum two-person Bayesian

games in which the payo¤ functions are separately continuous in the players�actions.

This existence result is not directly applicable to Tullock contests, however, because

the payo¤s in these contests �with the player�s probability of winning being the

ratio between his e¤ort and the total e¤ort in the simplest version �are separately

discontinuous at the zero e¤ort pro�le.6 We will deal with the discontinuity issue

by also admitting contests with a positive lower bound on e¤orts. First, it will be

shown that equilibrium in behavioral strategies exists in contests constrained by a

positive e¤ort �oor. That constraint ensures that the expected payo¤s are separately

continuous in the two strategies,7 without the need to assume absolute continuity of

information, and equilibrium existence follows from Sion�s (1958) minimax theorem

because of the aforementioned zero-sum strategic nature of the contest. It will be

then shown that a limit point of a sequence of equilibria in constrained contests, as

the e¤ort �oor is allowed to drop to zero, is an equilibrium in the unconstrained

contest.8

Except for allowing non-absolutely continuous information, our class of contests

is a two-player common-value version of the class considered in Haimanko (2021).

It is very general in terms of conditions on the contest success function, requiring

only two features that are inspired by the speci�c functional form of probabilities

of winning in Tullock contests: we need the player�s probability of winning to be

6Also, on a more technical level, Mamer and Schilling�s (1986) metrizability assumption on type

sets is unduely restrictive. We do not utilize their result also for this reason.
7We will use the weak topology of Balder (1988) on behavioral strategy sets, in which they are

compact; all forthcoming references to continuity and limits of strategies are with respect to this

topology.
8Similar "limit" approaches have been employed in nearly all recent results on equilibrium ex-

istence in contests (see Einy et al. (2013), Ewerhart (2014), Ewerhart and Quartieri (2020) and

Haimanko (2021)).
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continuous with respect to all e¤orts whenever the e¤ort pro�le is non-zero, and

to be non-decreasing in the player�s own e¤ort. Our equilibrium existence result

generalizes Haimanko�s (2021) corresponding result9 when there are only two players,

by removing the need to assume absolute continuity of information. If, in addition

to the above two properties of the player�s probability of winning, that probability

is also strictly concave in the player�s own e¤ort and equal to 1 if the player is the

only one exerting positive e¤ort, and if the costs are concave �making the contest

what was termed as generalized (concave) Tullock contest in Einy et al. (2015) and

Haimanko (2021) �then any equilibrium must be in pure strategies, as was observed

in Haimanko (2021). Thus, pure-strategy equilibrium in particular exist in two-player

common-value Tullock lotteries and Tullock contests with concave impact functions,

for all, not necessarily absolutely continuous, information structures.

The paper is organized as follows. Section 2 presents our class of contests and

recalls the concepts of Bayesian behavioral strategies and equilibrium. Section 3

explains the strategic equivalence of our contests to zero-sum games and states the

equilibrium existence result, which is proved in Section 4. Section 5 concludes.

2 Two-player common-value contests with incom-

plete information

2.1 The model

We adopt Haimanko�s (2021) model of contest, and adjust it to re�ect the two-

player common-value setting but discard the assumption of absolute continuity of

information. In our set-up, two players, i = 1; 2; compete for a prize: The information

endowment of each i is given by a measurable type-space (Ti; Ti) that is countably
generated. The players have a common prior probability p on the product space

(T; T ) := (T1 � T2; T1 
 T2) of type-pro�les. No relation is assumed between p and
the product p1 
 p2 of its marginals, and hence information need not be absolutely
continuous in the sense of Milgrom and Weber (1986).

Upon privately observing their respective types, players simultaneously choose

9See Proposition 1 therein. The other equilibrium existence results of Haimanko (2021) are not

in the common-value setting.

4



their e¤ort levels from a bounded interval [0;M ] : The common value for the prize

given by a a function V : T ! R+, i.e., if t 2 T is the realized type pro�le then
value is V (t) � 0. The type-dependent cost of e¤ort of player i is described by

ci : T � [0;M ] ! R+. The following assumptions are made on the functions V and

ci :

(i) V is T -measurable and ci is T 
 B ([0;M ])-measurable;10

(ii) V and ci(�;M) are bounded;
(iii) for any t 2 T; the functions ci(t; �) are non-decreasing and continuous.
The prize is awarded according to a T 
 B

�
[0;M ]2

�
-measurable success function

� : T � [0;M ]2 ! [0; 1]2; where �1+�2 � 1: That is, for each e¤ort pro�le x 2 [0;M ]
2 ;

�i (x) is the probability that player i will be the recipient of the prize if x is realized.

Denote by 0 2R2 the zero vector: We impose the following conditions on �; for
every t 2 T :
(iv) �1(t; �) is continuous on [0;M ]

2 nf0g;
(v) �1 (t; (x1; x2)) is non-decreasing in x1 for a �xed x2, any non-increasing in x2

for a �xed x1.

De�nition 1. An incomplete-information contest is given by the collection G =

(N; f(Ti; Ti)g2i=1 ; p; V; fcig2i=1; �) of the above-described attributes, such that (i)�(v)
are satis�ed. If the allowable e¤orts of both players are additionally constrained to

lie in an interval [m;M ] ; where 0 < m < M; the resulting contest will be denoted

by G (m) and called a constrained contest, with an additional convention that G (0)

refers to G:

For any realized type pro�le t 2 T and any e¤ort pro�le x 2 [0;M ]2 ; the payo¤
of each player i in a contest G is given by his expected share of the prize net of his

cost of e¤ort, namely,

ui (t; x) = �i (t; x) � V (t)� ci(t; xi); (1)

ui is clearly T 
 B
�
[0;M ]2

�
-measurable and bounded.

10Here and henceforth, given a Borel set S � Rm for some m � 1; B (S) will denote the �-algebra
of Borel subsets of S. The measurability of real-valued functions will be required w.r.t. the Borel

�-algebra on their stated range.
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2.2 Bayesian strategies and equilibrium

Given 0 � m < M; a pure (Bayesian) strategy of player i in a contest G (m) is

a Ti-measurable function si : Ti ! [m;M ]; that is, upon learning his type ti; the

player chooses e¤ort si(ti): The more general concept of a behavioral strategy allows

randomness in the type-dependent choice of e¤ort: a behavioral strategy of i in G (m)

is a mapping �i : Ti�B ([m;M ])! [0; 1] ; such that �i (ti; �) is a probability measure
on [m;M ] for every ti 2 Ti and �i (�; A) is Ti-measurable for every A 2 B ([m;M ]) :
Any pure strategy is canonically identi�able with a behavioral strategy.11

We denote by �i (m) the set of behavioral strategies of player i in G (m), and note

that any �i 2 �i (m) for m > 0 can be viewed as a strategy in �i (0) in an obvious

fashion; henceforth, �i (m) for m > 0 will be regarded as a subset of �i (0). The

product set � (m) = �1 (m) � �2 (m) contains the corresponding strategy pro�les.
For any � = (�1; �2) 2 � (0) ; the expected payo¤ of player i = 1; 2 is given by12

Ui(�) =

Z
T

Z
[0;M ]2

ui (t; x)�1(t1; dx1)�2(t2; dx2)p(dt): (2)

De�nition 2. For any 0 � m < M; a behavioral strategy pro�le �� = (��1; �
�
2) 2

� (m) constitutes a Bayesian Nash equilibrium (or BNE, for short) of a contest G (m)

if

U1(�
�) � U1(�1; ��2) and U2(��) � U2(��1; �2) (3)

for any �1 2 �1 (m) and �2 2 �2 (m). If �� consists of pure strategies then it is a
pure-strategy BNE.

2.3 A special case: two-player generalized Tullock contests

Tullock (1980) considered a family of success functions that ascribe probabilities of

winning in proportion to "impacts" of individual e¤orts: for a given r > 0; the success

function � = �r in an r-Tullock contest is de�ned, for each x 2 [0;M ]2 nf0g; by the
ratio �r1 (x) =

xr1
xr1 + x

r
2

; with constant marginal costs of e¤ort. The case of r > 1

represents "increasing returns to aggressive bidding" (see Baye et al. (1994)) because

11Speci�cally, a pure strategy si is identi�ed with �
si
i 2 �i (m) for which �sii (ti; �) is the Dirac

measure concentrated on si(ti):
12If � = (s1; s2) is a pure-strategy pro�le then the expected payo¤ is simply Ui(�) =R
T
ui (t; (s1(t1); s2(t2))) p(dt):
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that is when the impact function xri is convex. In the complementary case of r � 1;
the returns to e¤ort are non-increasing also at the level of the probability of winning:

the ith component of the r-Tullock success function is then strictly concave in i�s

own e¤ort xi whenever his rival�s e¤ort is positive. The property of strict concavity is

preserved when, for each player i; a general e¤ort-impact function gi : T�R+ ! R+ is
allowed (assumed to be strictly increasing, continuous, concave, and with gi(�; 0) � 0),
in which case � is de�ned, for any t 2 T and x 2 [0;M ]2 nf0g; by

�1 (t; x) =
g1 (t; x1)

g1 (t; x1) + g2 (t; x2)
: (4)

The speci�cation in (4) generalizes Szidarovszky and Okuguchi (1997) model,

who assumed that the impact functions are in addition twice di¤erentiable. We

now present a further extension, generalized (concave) Tullock contests �based on

identically called contests considered in Einy et al. (2015) and Haimanko (2021)

outside the two-player common-value framework �that satisfy in addition to (i)�(v)

of Section 2.1 the following requirements, for any t 2 T :
(vi) �1 (t; (x1; x2)) is strictly concave in x1 for a �xed x2 > 0 and strictly convex

in x2 for a �xed x1 > 0;

(vii) the functions ci(t; �) are convex and strictly increasing;
(viii) �1 (t; (x1; 0)) = 1 and �1 (t; (0; x2)) = 0 for any 0 < x1; x2 � M (that is, a

player receives the prize with certainty if only his e¤ort is positive).13

The r-Tullock contests with r � 1; and more general contests that satisfy (4), fall
within the domain of generalized Tullock contests. But the category of generalized

Tullock contests extends much further. For instance, as noted in Haimanko (2021),

� in a generalized Tullock contest may be a convex combination of several contest

functions, each of the form (4) for a distinct set of impact speci�cations, corresponding

to the case where the winning is determined via one of several criteria whose choice

is perceived to be random a priori. As far as BNE existence in generalized Tullock

contests is concerned, only pure strategies are relevant:

Fact 1 (Haimanko (2021)). For any 0 � m < M; if a generalized Tullock contest

13For our purpose, it would in fact be enough to assume, as in Haimanko (2021), that there

exist �1 2 ( 12 ; 1] and �1 2 [0;
1
2 ) such that �1 (t; (x1; 0)) � �1 and �1 (t; (0; x2)) � �

1
. Generalized

Tullock contest would thereby contain cases where the prize is given, with some probability, w.r.t.

extraneous probability distribution, unrelated to e¤orts.
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G (m) has a BNE, then it has a pure-strategy BNE.14

3 BNE existence

The Milgrom andWeber (1986) condition of absolutely continuous information, which

is common to nearly all BNE existence results with a continuum of information types,

turns out to be fully dispensable in regard to the contests that we consider. Our

existence result is mainly driven by the fact that these contests are strategically

equivalent to (two-player) zero-sum Bayesian games.15 The reason for this equivalence

is the following. Modify the payo¤s ui in (1) by adding to ui the cost incurred by the

other player and subtracting half the value, i.e., let

h1 (t; x) := [�1 (t; x) � V (t)� c1(t; x1)] + c2(t; x2)�
1

2
V (t)

and

h2 (t; x) := [�2 (t; x) � V (t)� c2(t; x2)] + c1(t; x1)�
1

2
V (t)

for every t 2 T and x 2 [0;M ]2; clearly,

h1 + h2 � 0: (5)

Also modify the expected payo¤s accordingly, based on (2), i.e., let

Hi(�) =

Z
T

Z
[0;M ]2

hi (t; x)�1(t1; dx1)�2(t2; dx2)p(dt):

Then maximizing Hi (�) in the variable �i is equivalent to maximizing Ui (�), and

also

H1 (�) +H2 (�) = 0 (6)

for every � 2 � (0) :
Several obvious implications of conditions (i) �(v) and (5) on the modi�ed payo¤

function of player 1 are stated below.

Fact 2. The modi�ed payo¤ h1 : T � [0;M ]2 ! R has the following properties:
(a) h1 is T 
 B

�
[0;M ]2

�
-measurable and bounded;

14See Fact 2 and its proof in Haimanko (2021).
15In the context of two-player all-pay auctions with common value, an equivalence to zero-sum

game has been already observed by, e.g., Pavlov (2013).
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(b) h1 (t; �) is continuous on [0;M ]2 nf0g for any t 2 T ;
(c) for any t 2 T and any x 2 [0;M ]2 ; limy1!x1+ h1 (t; (y1; x2)) � h1 (t; x) and

limy2!x2+ h1 (t; (x1; y2)) � h1 (t; x) :16

From now on, only modi�ed payo¤s will be considered in (constrained or uncon-

strained) contests, and thereby the contests will be viewed as zero-sum games. Thus,

as usual, �� 2 � (m) is a BNE of a contest G(m) if and only it is a saddle point (with
��i being an optimal strategy of player i, for i = 1; 2), namely,

H1 (�
�
1; �2) � val(G(m)) � H1 (�1; ��2) (7)

for any �1 2 �1 (m) and �2 2 �2 (m) ; with a uniquely determined value val(G(m))
of the game G(m):

BNE existence without absolute continuity of information has been known, due to

Mamer and Schilling (1986), for quite general separately continuous zero-sum games.

However, our contests have payo¤s that are discontinuous at the zero e¤ort pro�le.

Our theorem, stated next, will therefore be established in two stages. We will �rst

con�ne attention to constrained contests with positive lower bound m on e¤orts,

where the payo¤ functions are continuous by Fact 2(b), and show that the players

possess optimal strategies.17 We will then consider limits of those optimal strategies

as the lower boundm drops to zero, and prove that these limits are optimal strategies

in unconstrained contests.

Theorem. For any 0 � m < M , contest G(m) possesses a BNE. If, moreover,

G (m) is a generalized Tullock contest, then it possesses a pure-strategy BNE.

Our theorem generalizes Proposition 1 in Haimanko (2021) by dropping the ab-

solute continuity of information imposed there on common-value contests, at a price

of allowing just two players. In the last Section 5 we o¤er some comments on the

necessity of the main assumptions underlying our setting.

16Statement (b) clearly supersedes (c), except when x = 0.
17BNE existence in constrained contests will be established without an appeal to the result of

Mamer and Schilling (1986) because, unlike those authors, we do not assume that the type sets are

metric spaces.
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4 The proof

4.1 Part 1: Preliminary notions

For any �xed m 2 [0;M); we endow the behavioral strategy set �i (m) of each player
i with the weak topology of Balder (1988), as follows. Recall that pi denotes the

marginal distribution induced by p on (Ti; Ti) : A Ti
B ([m;M ])-measurable function
g : Ti� [m;M ]! R is called Carathéodory integrand if g(ti; �) is continuous for every
ti 2 Ti; and there exists a pi-integrable function ' on Ti such that jg (ti; xi)j � ' (ti)
for every (ti; xi) 2 Ti� [m;M ] : The weak topology on �i (m) is the coarsest topology
in which, for every Carathéodory integrand g : Ti � [m;M ] ! R; the functional
Img : �i (m)! R that is given for any �i 2 �i (m) by

Img (�i) =

Z
Ti

Z
[m;M ]

g(ti; xi)�i(ti; dxi)pi(dti)

is continuous. As observed in Haimanko (2021), this topology is metrizable because

(Ti; Ti) is countably generated.18

4.2 Part 2: Contests with m > 0

Here we consider a constrained contest G(m) with 0 < m < M: We �rst show that

player 1�s expected payo¤ function H1 (�1; �2) is weakly continuous in each strategy

separately. To this end, choose a regular conditional probability distribution p (� j t1)
on (T2; T2) (that exists as a consequence of, e.g., Theorem 10.2.2 in Dudley (2003)),

and, for a �xed �2 2 �2 (m) ; de�ne a T1 
 B ([m;M ])-measurable and bounded
function bh1;�2 : T1 � [m;M ]! R by

bh1;�2 (t1; x1) := Z
T2

Z
[m;M ]

h1 (t; (x1; x2))�2(t2; dx2)p (dt2 j t1) (8)

for every (t1; x1) 2 T1 � [m;M ] : Since h1 (t; x) is bounded and continuous in x 2
[m;M ]2 for a �xed t by Fact 2 (a,b), bh1;�2 (t1; �) is continuous on [m;M ] by the
bounded convergence theorem for every t1 2 T1; and hence bh1;�2 is a Carathéodory
18See Part 1 in Section 4.4 therein.
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integrand on T1 � [m;M ] : Furthermore,

H1 (�1; �2) (9)

=

Z
T

Z
[m;M ]2

h1 (t; (x1; x2))�1(t1; dx1)�2(t2; dx2)p(dt) (10)

=

Z
T1

Z
[m;M ]

�Z
T2

Z
[m;M ]

h1 (t; (x1; x2))�2(t2; dx2)p (dt2 j t1)
�
�1(t1; dx1)p1(dt1)(11)

=

Z
T1

Z
[m;M ]

bh1;�2 (t1; x1)�1(t1; dx1)p1(dt1) = Imbh1;�2 (�1): (12)

Thus, H1 (�1; �2) = Imbh1;�2 (�1); which shows that H1 (�1; �2) is continuous in 1�s own
strategy �1 by the de�nition of the weak topology on �1 (m) in Part 1 of the proof.

Similarly, H2 (�1; �2) is weakly continuous in player 2�s own strategy �2: Since H2 =

�H1 by (6); H1 is indeed weakly continuous in each strategy separately.
As H1 is also bilinear, and each strategy space �i (m) is convex and compact in

the weak topology, by Sion�s (1958) minimax theorem

inf
�22�2(m)

sup
�12�1(m)

H1 (�1; �2) = sup
�12�1(m)

inf
�22�2(m)

H1 (�1; �2) : (13)

By the separate weak continuity of H1; sup�12�1(m)H1 (�1; �2) is weakly lower semi-

continuous in �2 and inf�22�2(m)H1 (�1; �2) is weakly upper semi-continuous in �1:

Hence, the in�mum in inf�22�2(m) sup�12�1(m)H1 (�1; �2) is attained at a strategy

that is optimal for player 2 and the supremum in sup�12�1(m) inf�22�2(m)H1 (�1; �2)

is attained at a strategy that is optimal for player 1. The expression in (13) is the

value of the contest, val(G(m)); and the saddle point that has been found is a BNE

of G(m) as remarked in Section 3.

Finally, if G(m) is a generalized Tullock contest, existence of a pure-strategy BNE

now follows from Fact 1.

4.3 Part 3: Contests with m = 0

We now consider an unconstrained contest, G = G(0): Pick a sequence fmkg1k=1 �
(0;M) with limk!1mk = 0; and a sequence f

�
�k1; �

k
2

�
g1k=1 where �ki 2 �i (mk) (�

�i (0)) is an optimal strategy for player i (i = 1; 2) in G (mk) for each k (the existence

of such strategies was shown in Part 2). Since �i (0) is metrizable and compact in the

weak topology for each player i; f�ki g1k=1 has a subsequence that converges to some
��i 2 �i (0) ; it can be assumed w.l.o.g. that, for every player i; limk!1 �

k
i = �

�
i in the
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weak topology on �i (0) ; and that the bounded sequence fval (G (mk))g1k=1 converges
to a limit v. Our aim is to show that the pro�le of limit strategies �� 2 � (0) is a
saddle point in the unconstrained contest G(0); with v = val (G (0)) :

First, �x a strategy �2 2 �2 (0) that also belongs to �2 (m) for some 0 < m < M:

By arguing as in Part 2 of the proof,19 the function bh1;�2 (that can be de�ned on the
entire T1�[0;M ] by (8)) is a Carathéodory integrand on T1�[0;M ] ; and, replacingm
by 0 in equations (9)-(12), we also haveH1 (�1; �2) = I0bh1;�2 (�1): Since limk!1 �

k
1 = �

�
1

in the weak topology on �1 (0) ;

lim
k!1

H1
�
�k1; �2

�
= lim

k!1
I0bh1;�2 (�k1) = I0bh1;�2 (��1) = H1 (��1; �2) : (14)

But �k1 is an optimal strategy for player 1 in every G (mk) with mk < m; and that

strategy therefore guarantees him the expected payo¤ of at least val (G (mk)) against

�2; by (7): Hence,

lim
k!1

infH1
�
�k1; �2

�
� lim

k!1
val (G (mk)) = v: (15)

From (14) and (15),

H1 (�
�
1; �2) � v: (16)

Now consider any strategy �2 2 �2 (0). For any 0 < m < M; let �2;m 2 �2(m)
(� �2(0)) be the strategy satisfying �2;m (t2; [m; a]) = �2 (t2; [0; a]) for any a 2 [m;M ]
and t2 2 T2:20 It follows from Fact 2(c) that

lim
m!0+

h1 (t; (x1;maxfx2;mg)) � h1 (t; x) : (17)

Hence,

lim sup
m!0+

H1(�
�
1; �2;m) = lim sup

m!0+

Z
T

Z
[0;M ]2

h1 (t; (x1;maxfx2;mg))��1(t1; dx1)�2(t2; dx2)p(dt)

(by Fatou�s lemma) �
Z
T

Z
[0;M ]2

lim sup
m!0+

h1 (t; (x1;maxfx2;mg))��1(t1; dx1)�2(t2; dx2)p(dt)

(by (17)) �
Z
T

Z
[0;M ]2

h1 (t; (x1; x2))�
�
1(t1; dx1)�2(t2; dx2)p(dt) = H1(�

�
1; �2);

showing that

lim sup
m!0+

H1(�
�
1; �2;m) � H1(��1; �1): (18)

19Now one must use the fact that h1 (t; x) is bounded and continuous in x 2 [0;M ] � [m;M ] for
a �xed t.
20In probabilistic terms, if X2 is a �2 (t2; �)-distributed random variable on [0;M ] ; then Y2 :=

maxfX2;mg is �2;m (t2; �)-distributed.
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Since (16) holds for any strategy of player 2 that belongs to �2(m) for some 0 < m <

M;

v � lim inf
m!0+

H1(�
�
1; �2;m);

and, by using (18), we conclude that

H1(�
�
1; �2) � v (19)

for any �2 2 �2 (0).
Similarly to (19), it can be shown thatH2(�1; ��2) � �v (and hence thatH1(�1; ��2) �

v) for any �1 2 �1 (0) : Thus, according to (7), �� = (��1; ��2) is a saddle point of G(0);
which is a BNE.

Finally, if G(0) is a generalized Tullock contest, existence of a pure-strategy BNE

follows from Fact 1.

5 Concluding remarks

Leeway exists for relaxing some of our assumptions. For instance, instead of a uni-

versal cap M on e¤orts, player- and type-dependent caps can be introduced as was

done in Section 5.1 of Haimanko (2021). Also, as far as the �rst part of the The-

orem (on BNE existence in behavioral strategies) is concerned, the monotonicity

condition (v) may be replaced by a far more permissive requirement that only ad-

dresses the behavior of �1 at 0, stipulating that lim infy1!0+ �1 (t; (y1; 0)) � �1 (t;0)
and lim supy2!0+ �1 (t; (0; y2)) � �1 (t;0) : These inequalities are all that is needed

to establish the property stated in Fact 2(c);21 however, as it is hard to envisage

applications in which the probability of a player to win fails to be non-decreasing in

his e¤ort, we chose to state the model with an explicit requirement (v).

It is not at present clear whether other central features of the model can be

lightened in a meaningful way. The assumption that there are just two players and

that the value is common, as well as an (implicit) requirement that the prize is given

with certainty to one of the players and never withheld, are essential for the contest

to be strategically equivalent to a two-person zero-sum game. The zero-sum game

structure is the one that, due to Sion�s minimax theorem, allows replacing full or

21In the �rst inequality in Fact 2(c), lim would then need to be replaced by lim inf, and in the

second inequality �by lim sup.
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partial continuity of (expected) payo¤s in all strategies jointly22 by separate continuity

as a precondition for BNE existence. The standard use of the absolute continuity of

information condition is precisely for establishing full23 or partial24 mode of continuity

of expected payo¤s, but here only separate continuity is needed, which makes absolute

continuity of information super�uous and leads to our result.
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