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Abstract

We establish existence of a pure-strategy Bayesian Nash equilibrium in

Bayesian games with convex and compact action sets that have a continu-

ous and concave potential at any state of nature. No assumptions are made

on the information structure in these game; in particular, there may be un-

countably many states of nature or information types, and in the latter case

the common prior need not be absolutely continuous w.r.t. the product of its

marginals. As an application, we show that Bayesian Nash equilibrium exists

in many well-known games and their generalizations that have semi-quadratic

payo¤s, including Bertrand and Cournot oligopolies with linear demand.

Journal of Economic Literature classi�cation numbers: C62, C72, D82.

Key words: Bayesian games, Bayesian potential, equilibrium existence, con-

cave payo¤s, absolute continuity, information structures.

1 Introduction

The extensive use of Bayesian games in economic theory, particularly in the sub�elds

of auctions and industrial organization, has been made possible by the fact that

quite general categories of games with incomplete information possess a Bayesian

Nash equilibrium (henceforth, BNE). For �nite games with a discrete information
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structure, the existence of BNE has been known since that concept�s introduction in

the fundamental work of Harsanyi (1967), but it was the work of Milgrom and Weber

(1985) that proved BNE existence with remarkable generality: players�action and

type sets were allowed to be (possibly uncountable) metric spaces, compact in the

case of actions and separable and complete in the case of types.1

There are two conditions that are jointly required for Milgrom and Weber�s BNE

existence result. One is the continuity2 of the players�payo¤ functions on the set

of action pro�les for any realization of the players� types; this condition has since

been generalized in multiple works to allow for some modes of discontinuity (see,

e.g., Carbonell-Nicolau and McLean (2018) and the literature survey in Section 5.1

therein). The other condition requires the joint distribution of the players�types to

be absolutely continuous with respect to the product of its marginal distributions.

The usefulness of the absolute continuity condition is demonstrated by its applica-

bility in many of the benchmark cases considered in economic theory, such as those

where the players�types are independently distributed, or merely have joint density,

and also when the type sets are �nite or countable. Most of the literature devoted to

extensions of the Milgrom and Weber result has, too, assumed "absolute continuity of

information"3 or its variants,4 while focusing on a relaxation of the payo¤ continuity

assumption. Restricting attention to absolutely continuous information is de�nitely

not a matter of convenience, however. That is because BNE may fail to exist without

that restriction even if each player has �nitely many actions, as was shown by Simon

1All topological assumptions on the type sets were subsequently removed in the BNE existence

result of Balder (1988).
2While Milgrom and Weber (1985) originally required equicontinuity of payo¤s, this was reduced

to continuity in Balder (1988).
3That is how we will refer to the second condition of Milgrom and Weber (1985) from now

on. An alternative term for absolutely continuous information is "di¤use information," as used by

Stinchcombe (2011).
4The reader is again referred to the literature survey in Carbonell-Nicolau and McLean (2018).

The majority of relevant works are in the Harsanyi types setting, for which the absolute continuity

condition was stated originally. In those papers that adopt the state-space setting (such as Yannelis

and Rustichini (1991) and He and Yannelis (2016)), the absolute continuity condition needs to

be replaced because it only applies to a distribution of types. To remain within the absolutely

continuous information paradigm, Yannelis and Rustichini (1991) consider countable partitions of

the space of states of nature, while He and Yannelis (2016) assume that the space is countable.
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(2003) and Hellman (2014).

An interesting case of non-absolutely continuous information is obtained, for in-

stance, when the types are a non-atomic continuum, but the information revealed by

each type is purely atomic, that is, given his type, each player knows with certainty

that the others�types belong to a �nite or countable set.5 Hellman and Levy (2017)

characterize the exact circumstances in which a BNE exists for such "purely atomic"

Bayesian games with �nitely many actions. Thus, a BNE may exist, but not neces-

sarily so, in a general Bayesian game with a payo¤ function that is continuous at any

state of nature. A natural question that arises is whether there are interesting classes

of games which, if played at every state of nature, would guarantee existence of a

BNE in the corresponding Bayesian game for all varieties of information structures

(and, in particular, for non-absolutely continuous ones).

It has long been known that two-player zero-sum games are one such class. Mamer

and Schilling (1986) and Einy et al. (2008) have shown that when a game is zero-sum

at every state of nature6 and the payo¤ function is continuous at each action sepa-

rately at every state, then a BNE exists for general information structures, without

any need for absolute continuity of information. In this work, we will present another

class of games for which the fact that they are played at each state will imply BNE

existence for any information structure.

The popular concept of a potential game, introduced in Monderer and Shapley

(1996), quickly found its way into the incomplete information paradigm: Heumen

et al. (1996) de�ned a Bayesian potential game as one in which, at every state

of nature, a potential game is played;7 Ui (2009) extended that de�nition to more

general (in�nite) information structures and action sets. A Bayesian potential is then

5Stinchcombe (2011) generically characterized the non-absolutely continuous information struc-

tures as those in which there exists a non-null event, "perhaps not in any player�s information

set, conditional on which two or more players can infer the value of some continuously distributed

random variable" (see Stinchcombe 2011, p. 657).
6In what follows, we will mostly use the language of the "states of nature" model of incomplete

information that supersedes a simpler model of Harsanyi types. In the context of the latter model,

"state" will refer to any realization of the players�types.
7That is, at every state of nature, the payo¤ di¤erences of a player that are brought about by

his unilateral deviations are precisely mimicked by a �ctitious payo¤ function (the potential) that

is common to all players.
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de�ned as a state-dependent potential function for the state games. It has been well

understood that any maximizer of the expectation of a Bayesian potential for such

a game over the set of all pure Bayesian strategy pro�les is a BNE of the Bayesian

potential game. However, outside a rather speci�c context that will be discussed

later, there has been no attempt to establish existence of a BNE in Bayesian potential

games with a general (possibly non-absolutely continuous) information structure by

�rst proving the existence of a maximizer for the expected Bayesian potential.

When the space of states of nature in a game is uncountable, what stands in the

way of proving the existence of such a maximizer is the fact that topologies that

make the set of pure Bayesian strategies of each player compact are in general too

weak to guarantee continuity of the expected Bayesian potential.8 However, it turns

out that, with action sets being convex subsets of a Euclidean space, the topological

tension between continuity and compactness does not arise when a Bayesian potential

is not only continuous but also concave in all states of nature. The proof is based

on the result of Balder and Yannelis (1993), who have shown � in the context of

expected utilities de�ned for a variety of sets of contingent consumption plans �that

for concave and continuous state-utilities the expected utility is upper semi-continuous

in the weak topology on the set of contingent plans. Here we will show that, with some

measurability-related �xes, the latter result can be applied to Bayesian games whose

Bayesian potential is continuous and concave at each state, thereby establishing9

(weak) upper semi-continuity of the expectation of the Bayesian potential on the

set of pure Bayesian strategy pro�les, which is (weakly) compact. This implies the

existence of a Bayesian potential maximizer, and hence of a BNE in pure strategies.

This argument for BNE existence does not exploit any particular attributes of the

information structure, and thus our existence result holds in fullest possible generality

8With actions in a Euclidean space Rm, (pure) Bayesian strategies can be viewed as bounded or,

more generally, integrable Rm-valued functions of the state of nature, and hence as elements of a

corresponding L1 space. In the strong, or norm, topology induced by L1 on the Bayesian strategy

sets, the expected payo¤s are continuous (assuming, e.g., that the payo¤s are continuous at each

state, and also integrably bounded), but that is not the case in the weak topology on L1 (see, e.g.,

Example 2 in Milgrom and Weber (1985)). However, it is the weak, and not the strong, topology

in which the Bayesian strategy sets tend to be compact (see, e.g., Einy et al. (2008), and, more

generally, Corollary 2.5 of Balder and Yannelis (1993)).
9This requires an additional, mild, integrability assumption on the Bayesian potential.
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in that respect.10

The method of �nding a BNE as a maximizer of a common, real or �ctitious, ex-

pected payo¤ function has been considered previously, in a strand of literature that

grew out of the work of Radner (1962). Radner considered "team games," where

the players have a common payo¤ (hence, a potential) that is a concave quadratic

polynomial in the players�actions (belonging to the real line). He showed existence

of a maximizer of the expected payo¤ in pure Bayesian strategies, under the assump-

tion that uncertainty a¤ects only the linear term of the payo¤, and that the players�

signals and the coe¢ cients of the linear term have a joint normal distribution;11 the

strategy of each player in the unique maximizer was shown to be linear in the player�s

signal. The games of Radner (1962) were found to be very useful in studying infor-

mation e¤ects in linear Cournot and Bertrand oligopoly models, as it was (implicitly)

recognized that some speci�cations of Radner�s quadratic payo¤ function can serve as

concave Bayesian potentials for linear oligopoly games with incomplete information

on various parameters (see Raith (1996) for a unifying approach and a survey). The

�rst explicit use of Radner�s game as a concave Bayesian potential was in Ui (2009),

who applied Radner�s BNE characterization in a study of e¢ cient information use

in a class of Bayesian games with quadratic payo¤s, that includes linear oligopolies

alongside other well-known payo¤ speci�cations.12

Our result on BNE existence applies in the above-mentioned contexts when play-

ers� actions are restricted to be compact intervals,13 because, for those Bayesian

10There is a considerable strand of literature on "equilibrium puri�cation," studying existence

of pure strategy BNE in Bayesian games, that began with Radner and Rosenthal�s (1982) work on

�nite-action games with independent non-atomic types and private values. Although Radner and

Rosenthal�s framework and results have been signi�cantly extended in several directions (see, e.g.,

He and Sun (2019), Khan and Zhang (2014) and the references therein), the assumptions on the

information structure that are needed for equilibrium puri�cation remain quite restrictive, and in

particular leave out non-absolutely continuous information structures and type sets with atoms.
11When all parameters of the quadratic payo¤ function are uncertain and have a general distribu-

tion, Radner o¤ered a su¢ cient condition for the maximum existence, that implicitly links together

the information structure in the game and the distribution of its parameters.
12These speci�cations include variants of games considered in Crémer (1990) and Morris and Shin

(2002).
13When players�actions belong to R, Theorem 5 in Radner (1962) has already established the

existence of a maximum for the expectation of Radner�s function (with the only uncertainty being
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games, Radner�s payo¤ function constitutes a Bayesian potential that is continuous

and concave at each state. But our result also extends the scope of what has al-

ready been shown for those Bayesian games with quadratic payo¤s in two important

respects. First, since it asserts BNE existence without any restriction on the infor-

mation structure, players� signals and the game parameters need not have a joint

normal distribution, and, in fact, need not have joint (or any) density at all. And

second, the speci�c quadratic form of payo¤s can be generalized to a semi-quadratic

one, which allows components that are non-linear (but concave) functions of own

actions, because a concave Bayesian potential would still be easily constructible for

such games.14

The paper is organized as follows. In Section 2 we describe the general set-up and

recall the notions of a Bayesian game, Bayesian potential and BNE. Section 3 contains

our BNE existence result and remarks on its possible extensions. Applications are

discussed in Section 4.

2 Bayesian potential games

2.1 Bayesian games

Let N = f1; :::; ng be a �nite set of players. Games are played in an uncertain envi-
ronment. The underlying uncertainty is described by a probability space (
;z; �) ;

where 
 is a set of states of nature, z is a �-�eld of measurable events, or subsets

of 
; and � is a countably additive probability measure on (
;z) ; representing the

common prior belief of the players about the actual state of nature: Private informa-

tion of player i 2 N is given by a �-sub�eld zi of z; consisting of events that are

discernible by i:

Each player i 2 N has a set Ai of actions, which is a convex and compact subset of

on the linear term�s parameters, and with a joint normal distribution of those parameters and the

players�signals). Notice, however, that this does not imply existence of a maximum when action

sets are taken to be some compact intervals, unless the pure Bayesian strategy pro�le that is the

Radner�s maximizer happens to have values in the restricted action sets at every state of nature.
14Such a potential would not, however, necessarily have a quadratic form, and hence won�t be

amenable to Radner�s (1962) analysis.
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Rdi for some di 2 N.15 The product set A = A1� :::�An � Rd (where d :=
Pn

i=1 di)

is thus also convex and compact: Each i 2 N has a payo¤ function ui : 
 � A !
R. We will assume that ui is z 
 B (A)-measurable16 and integrably bounded (i.e.,
supa2A jui(�; a)j is �-integrable): A game will be identi�ed with the collection of its
above-described attributes, G = (N; (
;z; �) ; (zi; Ai; ui)ni=1) :

A (pure Bayesian) strategy of player i 2 N in the game G is an zi-measurable

function xi : 
! Ai: The set of all strategies of player i will be denoted by Xi: Each

player i evaluates his ex-ante prospect in the game via the expected payo¤ function

Ui on the product set X = X1 � :::�Xn of strategy pro�les, given by

Ui(x) =

Z



ui(!; x(!))d� (!) (1)

for any x = (x1; :::; xn) 2 X: As usual, x 2 X is a (pure-strategy) Bayesian Nash

equilibrium of the game G; or BNE for short, if it is a Nash equilibrium of the

normal form of G, namely, if the inequality Ui(x) � Ui(yi; x�i) holds for every i 2 N
and yi 2 Xi; where (yi; x�i) 2 X denotes the strategy pro�le obtained from x by

substituting yi for xi:

2.2 Potential games

In our de�nition of a Bayesian potential we extend the original notion of van Heumen

et al. (1996) that was stated for �nite information structures (and appropriately adapt

the de�nition of Ui (2009) for general structures). We say thatG = (N; (
;z; �) ; (zi; Ai; ui)ni=1)

a Bayesian potential game if there exists an z 
 B (A)-measurable and integrably
bounded function p : 
 � A ! R that satis�es the following: for �-almost every

! 2 
; every i 2 N; and every a 2 A, bi 2 Ai;

ui(!; (bi; a�i))� ui(!; a) = p(!; (bi; a�i))� p(!; a) (2)

(where (bi; a�i) 2 A is the action pro�le obtained from a by substituting bi for ai).

Such p will be called a Bayesian potential for G.17

15See Remark 1 for a generalization that allows the action sets to depend on the state of nature.
16Here and henceforth, B (K) will denote the Borel �-�eld on a Borel set K in some Euclidean

space.
17See Remark 2 for more general notions of Bayesian potentials.
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If p is a Bayesian potential forG then the expected potential (function) P : X ! R,

given by

P (x) =

Z



p(!; x(!))d� (!) (3)

for any x = (x1; :::; xn) 2 X; obviously retains the property expressed in (2) in that

it precisely mimics all unilateral deviations of each player in terms of his expected

payo¤. That is,

Ui(yi; x�i)� Ui(x) = P (yi; x�i)� P (x) (4)

for every i 2 N and every x 2 X; yi 2 Xi: Thus, if G is a Bayesian potential game

then its normal form is a potential game in the usual sense (of Monderer and Shapley

(1996)). In particular, any maximizer x 2 X of P is a BNE of G:

3 BNE Existence

The existence of a Bayesian potential that is concave and upper semi-continuous at

almost every state implies existence of a BNE in the game without any assumption

on the information structure. In particular, the set of states of nature 
 may be

uncountable, and players�private information may be given by �-�elds that are not

generated by partitions of 
:

Theorem. If G = (N; (
;z; �) ; (zi; Ai; ui)ni=1) has a Bayesian potential p, and

p(!; �) is a concave and upper semi-continuous18 function on A for �-almost every

! 2 
; then G possesses a (pure-strategy) BNE.

Proof. We begin by recalling the notion of an L1 space. In what follows, � will

denote a �-�eld on 
 that is equal to either z or zi for some i 2 N; and by B � Rm

we will mean either A � Rd or Ai � Rdi for some i 2 N:
The Banach space L1 ((
;�; �) ;Rm) consists of all (equivalence classes19 of) Rm-

valued, �-measurable and �-integrable functions on 
; with the L1-norm given by

kxk1;Rm =
Z



kx (!)kRm d� (!) (5)

18It is well-known that any concave function on a convex polytope is lower semi-continuous (see,

e.g., Gale et al. (1968)). Hence, if A is a polytope then we, in e¤ect, assume that p (!; �) is
continuous.
19The underlying equivalence relation identi�es any two �-measurable functions that coincide

�-almost everywhere on 
.
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for every x 2 L1 ((
;z; �) ;Rm) ; where k kRm denotes the Euclidean norm on Rm:

The topology that the L1-norm induces on L1 ((
;�; �) ;Rm) is called strong. The

weak topology on L1 ((
;�; �) ;Rm) is the minimal one in which, for every y 2
L1 ((
;�; �) ;Rm)(�the space of equivalence classes of all Rm-valued, bounded and
�-measurable functions on 
), the linear functional x 7�!

R


hx(!); y(!)i d� (!) is

continuous (where h; i denotes the scalar product on Rm).
The strong (respectively, the weak) topology on L1 ((
;�; �) ;Rm) induces the

strong (respectively, the weak) topology and on its subset L1 ((
;�; �) ;B) that con-

sists of �-measurable and �-almost everywhere B-valued functions, where B � Rm is
a given convex and compact set. Corollary 2.5 of Balder and Yannelis (1993) implies

that L1 ((
;�; �) ;B) is weakly compact. In particular, it is also weakly (and hence

strongly) closed.

We will now apply the above to the issue at hand. Notice that X; the set of

strategy pro�les in G; can be naturally viewed as a convex subset of the weakly

compact (and also strongly closed) L1 ((
;z; �) ;A) :20 We will �rst show that X

is a strongly closed subset of L1 ((
;z; �) ;A) : To this end, let
�
xk
	1
k=1

� X be a

strongly (k k1;Rd-)convergent sequence:21 In particular,
�
xk
	1
k=1

is a Cauchy sequence

w.r.t. k k1;Rd :
For each i 2 N and k � 1; xki 2 Xi represents an equivalence class in L1 ((
;zi; �) ;Ai).

Since kyik1;Rdi � kyk1;Rd for any y 2 L1
�
(
;z; �) ;Rd

�
and its restriction yi to

(any) di coordinates;
�
xki
	1
k=1

� Xi is a Cauchy sequence in L1 ((
;zi; �) ;Ai) w.r.t.

k k1;Rdi : Being a Banach space, L1
�
(
;zi; �) ;Rdi

�
is complete, and so is its strongly

closed subset L1 ((
;zi; �) ;Ai) : Therefore,
�
xki
	1
k=1

k k1;Rdi -converges to a limit
xi 2 L1 ((
;zi; �) ;Ai) : Moreover, since xi is Ai-valued modulo an zi-measurable

function that vanishes �-almost everywhere, it can be assumed that xi is, in fact,

Ai-valued (and zi-measurable). In other words, xi 2 Xi for each i 2 N; and thus

x = (x1; :::; xn) 2 X: But, clearly,
�
xk
	1
k=1

converges to x 2 X in k k1;Rd :22 This
20This is done by identifying any x = (x1; :::; xn) 2 X with the A-valued function ! 7�!

(x1 (!) ; :::; xn (!)); modulo the set of z-measurable functions that di¤er from it on a null set of

the measure �:
21Now and henceforth, concrete functions will be used to represent the corresponding equivalence

classes.
22This is because



x� xk


1;Rd �

Pn
i=1



xi � xki 

1;Rdi :
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shows that X is a strongly closed subset of L1 ((
;z; �) ;A) :

Due to a well-known equivalence between the strong and weak closedness of convex

sets in a Banach space (see, e.g., Corollary 23 in Royden (1988)), a convex and

strongly closed X is also weakly closed. It is, moreover, a subset of the weakly

compact L1 ((
;z; �) ;A) : Therefore, X is weakly compact.

The expected potential function P can be (well-)de�ned by (3) on the entire

L1 ((
;z; �) ;A).23 Since the Bayesian potential p is integrably bounded by assump-

tion, its concavity and continuity properties stated in the premise of the theorem

allow an appeal to Theorem 2.8 of Balder and Yannelis (1993), which asserts weak

upper semi-continuity of the expectation P on L1 ((
;z; �) ;A) : In particular, P is

weakly upper semi-continuous on the weakly compact subset X of L1 ((
;z; �) ;A) :

As such, P attains its supremum on X at some x 2 X: Clearly, x remains a maxi-

mizer of P also when genuine strategy pro�les in X are considered (instead of their

equivalence classes). A standard argument, based on (4), now establishes that x is a

BNE of G. �

Remark 1 (Extension of the theorem to games with state-dependent

action sets). Given a space of states of nature (
;z; �) and information �elds

(zi)ni=1 for players in the set N; consider a generalized concept of a Bayesian game,

in which the action set of each player i at any state ! 2 
 is a convex and compact
Ai (!) � Rdi; that is, the action set may depend on the state of nature. Let us

now denote by Ai and A the corresponding set-valued functions Ai : 
 ! 2R
di and

A : 
! 2R
d
(where the latter is given byA (!) = A1 (!)�:::�An (!) for every ! 2 
),

further assuming that the graph of A (respectively, Ai) is z 
 B
�
Rd
�
-measurable

(respectively, zi 
 B
�
Rdi
�
-measurable) and that supa2A(!) kakRd is �-integrable. A

Bayesian strategy of player i is then an zi-measurable function xi : 
 ! Rdi with

the property that xi (!) 2 Ai (!) for �-almost every ! 2 
; in order for the expected
payo¤s (Ui)

n
i=1 to be well-de�ned by (1), we also assume that each payo¤ function

ui : 
�Rd ! R is z
B
�
Rd
�
-measurable and satis�es jui (!; a)j �  i (!)+Mi kakRd

for every ! 2 
 and a 2 Rd, where  i : 
 ! R+ is some �-integrable function and
23Indeed, extend p arbitrarily from 
 � A to 
 � Rd (preserving measurability). Then, for any

x; y 2 L1 ((
;z; �) ;A) that are identical �-almost everywhere, de�ning P (x) and P (y) by (3)

produces equal expressions.
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Mi > 0 is a constant. Assumptions of an identical nature will be made on a Bayesian

potential function p : 
� Rd ! R.

The statement of our theorem and its proof will remain in force in this generalized

setting. The proof remains valid because, for any B : 
 ! 2R
m
with a � 
 B (Rm)-

measurable graph, convex and compact values, and �-integrable supb2B(!) kbkRm ; the
set L1 ((
;�; �) ;B) [of x 2 L1 ((
;�; �) ;Rm) with x (!) 2 B (!) for �-almost every
! 2 
] is still weakly compact, by Corollary 2.5 of Balder and Yannelis (1993).24

Similarly, by Theorem 2.8 of Balder and Yannelis (1993), the expected potential

function P will still be weakly upper semi-continuous on L1 ((
;z; �) ;A) :

Remark 2 (Extension of the theorem to generalized notions of poten-

tial). The notion of Bayesian potential does not depend on the private information

in the game, given by the �elds (zi)ni=1. This fact makes our theorem that much

stronger: the existence of a Bayesian potential with the attributes required by the

theorem guarantees existence of a BNE in a way that is robust in regard to spe-

ci�c details of the private information endowments. A somewhat weaker notion of

a weighted Bayesian potential (also due to van Heumen et al. (1996)) would have

preserved the existence claim and its robustness: p : 
�A! R is such a potential if

there exist a vector of positive weights (wi)
n
i=1 such that, for �-almost every ! 2 
;

every i 2 N; and every a 2 A, bi 2 Ai;

ui(!; (bi; a�i))� ui(!; a) = wi [p(!; (bi; a�i))� p(!; a)] : (6)

If one is ready to dispense with the requirement that BNE existence be indepen-

dent of the speci�c (zi)ni=1 ; then more general notions of potential may be used in

our theorem. For instance, one may allow each wi in (6) to be a strictly positive and

bounded zi-measurable function. Even more generally, one may consider Bayesian

best-response potentials de�ned in Ui (2009), whose expectation precisely mimics the

best responses of players to all Bayesian strategy pro�les of others.25

24The sets L1 ((
;z; �) ;A) and L1 ((
;zi; �) ;Ai) that are used in the original proof will need

to be rede�ned following this principle, by treating A and Ai as the set-valued functions on 
 and

not as �xed sets.
25See Theorem 5 in Ui (2009) for an example of a condition generalizing (6) that makes p a

Bayesian best-response potential.
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4 Applications

Our existence result can be applied in a number of well-recognized contexts, which

are presented in the following subsections. The player set N; the space (
;z; �) and

the private information �elds (zi)ni=1 will be �xed throughout.

4.1 Motivating model: oligopoly with linear demand

Cournot oligopoly is a showcase of the Bayesian potential usefulness. We consider the

following description of the model, partially based on Raith (1996). The members of

N are �rms; each i 2 N produces a separate good (also denoted by i), and its action

set Ai � R+ is a compact interval of possible output levels of good i: In choosing

output level ai; �rm i incurs a state-dependent production cost of ci(!; ai), where

ci : 
�Ai ! R+ is an z
B (Ai)-measurable function that is continuous and convex
in its second variable ai; and integrably bounded. The state-dependent linear inverse

demand (i.e., price function) of the �rms�output is given by

Pi(!; a) = Ai (!)�
X
j 6=i

" (!) aj � � (!) ai (7)

for every ! 2 
, a 2 A; where (Ai)
n
i=1 ; " and � are z-measurable and �-integrable

functions, with (Ai)
n
i=1 and � being strictly positive and " (!) 2 (� �(!)

n�1 ; � (!)] for

every ! 2 
: The state-dependent net-pro�t function of �rm i is therefore

ui (!; a) =

 
Ai (!)�

X
j 6=i

" (!) aj � � (!) ai

!
ai � ci (!; ai) ; (8)

for every ! 2 
 and a 2 A: It is easy to see that the following function p : 
�A! R

is a Bayesian potential for our incomplete information oligopoly:

p (!; a) =

nX
i=1

Ai (!) ai �
 
� (!)

nX
i=1

a2i + " (!)
X

1�i<j�n
aiaj

!
�

nX
i=1

ci (!; a) (9)

for every ! 2 
 and a 2 A: By our assumptions on (Ai)
n
i=1 ; ", � and (ci)

n
i=1 ; p is z


B (A)-measurable and integrably bounded, and it can be readily seen that the function
p (!; �) is concave and continuous for any �xed ! 2 
: Hence, the oligopoly falls within
the purview of our theorem �it has a BNE, and BNE existence is obtained without

any direct restriction on the information structure. In contrast, the BNE existence

12



result in Raith (1996) is predicated upon "; � being state-independent (i.e., known),

costs being linear, and all uncertain parameters having a joint normal distribution

with the players�private signals.

As a particular case, whenAi = A for all i and " = �; we obtain Cournot oligopoly

with a single homogeneous good, which (in a complete information setting) served as

the �rst example of a potential game in Monderer and Shapley (1996). On the other

hand, when all (ci)
n
i=1 are taken to be zero, and the actions of �rms are the prices

they charge for their goods rather than the quantities that they produce, equation (7)

can be viewed as a description of a state-dependent linear demand for good i given

the vector a of prices, and hence (8) can be viewed as a payo¤ function in a Bertrand

oligopoly with price competition. Thus, such Bertrand oligopoly is also a Bayesian

potential game, with the ensuing claim of BNE existence.26

4.2 Games with semi-quadratic payo¤s

The �rst, quadratic, term of the �rm�s utility function (8) in the oligopoly model

of Section 4.1 points towards some natural generalizations. Common concave pay-

o¤s of quadratic form have been considered by Radner (1962) in the context of

"team games," for which he established the existence of a BNE under an implicit

integrability-related condition linking the game parameters and its information struc-

ture. We will follow Ui�s (2009) account27 that views those common payo¤s as

Bayesian potentials for a sizable category of payo¤ functions. Ui�s payo¤s will be

generalized in the following respect: the term that depends on the player�s own ac-

tion will not necessarily be linear.

Assume that Ai is a compact interval for each i 2 N; and that each i�s payo¤

function has the following, semi-quadratic, form:

ui (!; a) = �
1

2
qii (!) a

2
i � ai

X
j 6=i

qij (!) aj + fi (!; ai) + hi (!; a�i) ; (10)

26Notice also that linear costs of output can be added to payo¤ functions, and accommodated by

the potential.
27Following Radner (1962), Ui (2009) found closed-form expressions for the unique BNE equilibria

in certain contexts when the game�s linear parameters and the players�signals have a joint normal

distribution.
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for every ! 2 
 and a 2 A; where Q (!) = [qij (!)]n�n is an z-measurable, �-

integrable and symmetric matrix, fi : 
 � Ai ! R is z 
 B (Ai)-measurable and
integrably bounded, and hi : 
�A�i ! R is z
B (A�i)-measurable and integrably
bounded.28 It is easy to see that the game has a Bayesian potential, p; that is given

by

p (!; a) = �1
2

nX
i=1

nX
j=1

qij (!) aiaj +

nX
i=1

fi (!; ai) (11)

for every ! 2 
 and a 2 A:
We will henceforth assume that, at every ! 2 
; the matrix Q (!) is positive semi-

de�nite and each fi (!; �) is continuous and concave, which obviously implies that the
Bayesian potential p is concave (and continuous) in a: BNE existence is, therefore,

guaranteed by our theorem, regardless of what information structure is imposed on the

game. To compare, the su¢ cient condition in the general existence result of Radner

(1962) (namely, his Theorems 2 and 3) links together the information structure and

the parameters of the game,29 requires Q to be (strictly) positive de�nite, and, most

importantly, the functions (fi)
n
i=1 in (10) need to be linear in the second variable.

What Radner�s result a¤ords, however, is the possibility to work with an unrestricted

action set R, instead of a priori con�ning actions to compact intervals as we do.

Notice that when qii (!) = 2� (!), qij (!) = " (!) if i 6= j; fi (!; ai) = Ai (!) �
ci (!; ai) and hi � 0; (10) and (11) correspond to (8) and (9) in the case of Cournot
oligopoly with linear demand that was analyzed in Section 4.1. In the following

examples we will brie�y describe some other speci�c classes of incomplete information

games that the semi-quadratic functional form in (10) can accommodate.

Example 1 (Network games). In a network game, players�payo¤s depend

on the realized action pro�le a 2 RN+ and on the network (i.e., a graph) that links
di¤erent players to one another. We consider a semi-quadratic generalization of one

of the network game analyzed in Bramoullé et al. (2014) (based, in turn, on the

28Here, as usual, A�i stands for �j 6=iAj ; and a�i 2 A�i is obtained by omitting the ith coordinate
of a:
29If stated in the present set-up, the condition requires an z-measurable state-by-state maximizer

z of the potential p to have a �nite "distance" from at least one strategy pro�le x 2 X; in the sense
that

R



Pn
i=1

Pn
j=1 qij (!) (xi (!)� zi (!)) (xj (!)� zj (!)) d� (!) <1:
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model in Ballester et al (2006)), in which player i�s payo¤ is

ui(ai; a�i) = fi(ai)� 1
2
a2i � �

nX
j=1

gijaiaj;

where fi is an increasing, continuous and concave function that vanishes at 0, � > 0,

the values gij 2 f0; 1g indicate whether players i and j are linked or not, gii � 0

and gij = gji for every i 6= j; w.l.o.g., each player i can be constrained to use actions

in some compact interval Ai = [0;M ] : Thus, each player�s activity has decreasing

returns to scale, and he is subject to negative externality from being linked to other

players. By making fi; the externality parameter � and the link matrix [gij]n�n state-

dependent (in a measurable, integrable fashion), this game turns into a Bayesian

potential game, with a Bayesian potential p that is given by

p(!; a) =

nX
i=1

fi(!; ai)�
1

2

nX
i=1

a2i � � (!)

nX
1�i<j�n

gij (!) aiaj

for every ! 2 
 and a 2 [0;M ]n: The function p (!; �) is obviously continuous. It
is also concave if the matrix30 [�ij + � (!) gij (!)]n�n is positive semi-de�nite at each

state of nature, and a BNE then exists by our theorem.

Example 2 (Coordination games). In Ui�s (2009) two-player version of the

game of Morris and Shin (2002), each player needs to take an action serving two

possibly con�icting objectives: being close to (what is required by) the fundamental

state � (!) ;31 and being close to the action of the other player (in the spirit of Keynes�s

"beauty contest" example). His utility function additively combines two loss terms

representing the two objectives: for each i = 1; 2;

ui(!; a) = ��(ai � � (!))2 � (1� �)(ai � aj)
2

for some 0 < � < 1; and for every ! 2 
 and a 2 R2+: As a Bayesian potential, one
may use the function given by

p(!; a) = ��(a1 � � (!))2 � �(a2 � � (!))2 � (1� �)(a1 � a2)
2

30Here �ij is the Kronecker delta.
31In Ui�s (2009) speci�cation, � has a joint normal distribution with signals that the two player

obtain (and that constitute their private information).
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that is obviously continuous and concave in a. As long as �2 is �-integrable and action

sets are truncated from above (with a weak inequality), our theorem assures BNE

existence under any information structure.

Example 3 (Team-theoretical model of a �rm). Crémer (1990) considered

a model in which two agents with a common interest have uncertainly about a single

integrable parameter32 � (!) that a¤ects as follows their (identical) utilities:

u1(!; a) = u2(!; a) = � (!) (a1 + a2)�
B(a1 + a2)

2 � C(a1 � a2)
2

2
(12)

for some B;C > 0, and for every ! 2 
 and a 2 R2+: (The case of B > C corre-

sponds to strategic substitutability of actions, while the case of C > B to strategic

complementarity.) Our result guarantees BNE existence in general when the action

sets are weakly truncated from above, since the common utility �which is also a

Bayesian potential �is clearly continuous and concave in a: Moreover, the in�uence

of the parameter � on the actions�direct impact need not be linear: the �rst term in

(12) can be replaced by any integrably bounded function of ! that is continuous and

concave in a1 and a2 without a¤ecting BNE existence.

Our last example retains the quadratic form of utility functions but has multi-

dimensional strategy sets.

Example 4 (Routing problems). In a class of routing problems described

in Altman et al. (2007), a transportation network is modelled as a directed graph.

Each player i decides how to split his tra¢ c of size �i > 0 (that needs to pass from

an i-speci�c "source" node to a "destination" node on the graph) between the links

in the graph. The action set Ai of player i is thus a subset of [0;�i]
L (where L

denotes the set of links) of tra¢ c volume assignments that satisfy �ow-conservation

constraints,33 which is convex and compact. It is assumed that a per-unit common

congestion (dis)utility at a link l has the form cl (v) = bl + dlv for a total tra¢ c

volume v passing through l (where bl; dl < 0). Player i�s utility is then the total of

his (dis)utility experienced at all links, namely,

ui (a) =
X
l2L

"
bl + dl

nX
j=1

aj (l)

#
ai (l)

32See the previous footnote.
33For a full desription, see p. 2 in Altman et al. (2007).
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for each a =
�
(ai(l))l2L

�n
i=1

; where aj (l) denotes the volume of tra¢ c put by player

j through link l: Clearly, the function p that is given by

p (a) =
X
l2L

"
bl

nX
i=1

ai (l) + dl

 
nX
i=1

a2i (l) +
X

1�i<j�n
ai (l) aj (l)

!#
;

for any a =
�
(ai(l))l2L

�n
i=1

; is a potential for the game, and it is strictly concave and

continuous in a: The extension to the incomplete information case, with a concomitant

claim of BNE existence, can be performed e¤ortlessly (similarly to what has been

done, e.g., in Example 1), by adding uncertainty on the parameters (bl)l2L and (dl)l2L.
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