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1 Introduction

Nash equilibrium is an immensely popular and long-established solution concept in economics.

By comparison, its generalized version, the correlated equilibrium of Aumann (1974), is a far less

frequent choice in economic modelling. Clearly, the two solution concepts have their merits and

drawbacks: Nash equilibrium is believed to have a high predictive power and does not require

a mediation or a correlation device, while the correlated equilibrium is superior in terms of

computational complexity and arises naturally in a range of simple learning processes.1

In this paper we bring to light the synergy produced when the two concepts happen to

coincide, in relation to the robustness of equilibrium outcome to the presence of incomplete

information. To motivate our notion of robustness, we first take a step back to discuss an

important issue in the field of economics – the need to predict.

1.1 The need to predict, and strong robustness to incomplete infor-

mation

A major difficulty in the profession of economics is the perpetual requirement to provide accu-

rate predictions in a realm affected by uncertainty and randomness. Similarly to weather

forecasters, economists are repeatedly evaluated by their ability to produce solid assessments.

When the latter deviate from the eventual outcomes to a significant degree, doubts may be cast

not only over the treatment of the available empirical data and its validity, but also over the

suitability of the underlying theoretical model.

The work of Kajii and Morris (1997) (henceforth KM) partially deals with this concern

by introducing the notion of equilibrium robustness to incomplete information. Roughly spea-

king, an equilibrium in a complete-information scenario is robust if, when some uncertainty is

introduced, there exists an equilibrium that is “sufficiently close” to the original one. Thus,

existence of a robust equilibrium in a game-theoretical model reinforces that model, because

allowing limited uncertainty may lead only to small changes in the predicted behavior. The

practical implications are clear – an economist who advises policy makers would be rather con-

fident in her recommendations if they are based on a robust equilibrium, even when there is

some unmodelled uncertainty regarding the agents’ true characteristics.

The current work continues this quest by defining and characterizing a stricter robustness

notion – strong robustness to incomplete information. We say that a Nash equilibrium in

a complete-information game u is strongly robust if, under uncertainty about the individual

payoffs but with each player knowing that his payoffs are those in u with high probability, all

1See, e.g., Papadimitriou and Roughgarden (2008) for a discussion of computational complexity, and Foster

and Vohra (1997) and Hart and Mas-Colell (2000) for results on convergence to correlated equilibria.
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Bayesian-Nash equilibria in the incomplete-information game are sufficiently close (in terms

of the induced action distribution) to the equilibrium in u. Thus, when some uncertainty is

introduced, the effect on all possible equilibrium outcomes should be minor.

It is obvious that the imposition of the closeness requirement on all equilibria in nearby

games makes strong robustness a hugely demanding notion. At the same time, this requirement

is very beneficial for an analyst who either designs or models a strategic interaction between

rational agents. Whenever a strongly robust Nash equilibrium exists, the analyst can be sure

that the behavior of the agents remains sufficiently close to the designed or predicted outcome,

as long as the agents’ behavior in nearby incomplete-information games is consistent with any

equilibrium.

The main result of this paper provides a characterization of a strongly robust Nash equi-

librium in a framework with a continuum of individual actions. Under a set requirements

(inspired by Dasgupta and Maskin (1986)) on the payoff functions that limit the extent of pos-

sible discontinuity,2 our main theorems show that a Nash equilibrium is strongly robust if and

only if it is the unique correlated equilibrium. In other words, it is precisely the coincidence of

being a Nash and a correlated equilibrium that makes such an equilibrium strongly robust.3

In the last part of this paper we review and extend the conditions that guarantee the

existence of a unique correlated equilibrium in games with a continuum of actions. This will, via

our main result, imply the existence of a strongly robust Nash equilibrium in various economic

environments, such as Tullock contests, certain types of Bertrand and Cournot competition,

network games, patent races, the median-voter problem and pure-location Hotelling games.

1.2 The main contribution and relation to the literature

The first and main contribution of this paper is the formulation and characterization of strong

robustness to incomplete information. Our notion of strong robustness preserves the spirit of

informational robustness of KM,4 but is far stricter since strong robustness requires the closeness

of all, not just some, equilibria in incomplete information settings to the complete-information

Nash equilibrium that is being approximated. Similarly to Proposition 3.2 of KM concerning

2The conditions in Dasgupta and Maskin (1986) guarantee the existence of a (mixed-action) Nash equilibrium

in a game, and our set will also be sufficient for equilibrium existence. Although Dasgupta and Maskin were only

concerned with equilibrium existence, variants of their conditions are useful in the proofs of our main results

since, like them, we make extensive use of (weak) convergence of probability measures and of the corresponding

integrals of payoff functions.
3The uniqueness of a correlated equilibrium has been known to imply a different type of robustness, w.r.t.

payoff perturbations (see Viossat (2008)).
4The work of KM was preceded by the approaches of Fudenberg et al. (1988), Dekel and Fudenberg (1990),

and Carlsson and van Damme (1993).
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finite games, the uniqueness of a correlated equilibrium5 implies its robustness also in our

setting with a continuum of actions, albeit requiring conditions on payoffs and necessitating a

non-trivial proof. Strong robustness of a Nash equilibrium is, moreover, equivalent to its being

the unique correlated equilibrium in the game.

From a practical perspective, this equivalence result ensures that the behavior of rational

economic agents is always sufficiently close to the designed outcome as long as a unique cor-

related equilibrium is guaranteed. From a theoretical point of view, the result highlights the

role of correlated equilibria in determining the sensitivity of a Nash equilibrium to the presence

of incomplete information. The main example in Section 3.1 of KM showcases what may go

wrong in terms of robustness even if a game u has a unique, pure-action Nash equilibrium: when

there is a correlated equilibrium that is distinct from the latter, there may be some incomplete-

information games nearby in which the (unique) Bayesian-Nash equilibrium approximates the

correlated, and not the unique Nash, equilibrium of u.

The motivation for allowing a continuum of actions to be available to each player in our

framework6 comes partially from the fact that the existing results on the uniqueness of a

correlated equilibrium, necessary and sufficient for it being strongly robust, are mostly in the

continuum setting. An earliest example is due to Milgrom and Roberts (1990), who showed,

as an application of their characterization of undominated action sets in supermodular games,

that a Bertrand oligopoly with differentiated products has a unique correlated equilibrium for

certain families of demand functions. Also relying on supermodularity techniques, Amir (1996)

proved the uniqueness of a correlated equilibrium for a Cournot duopoly with a log-concave

strictly decreasing inverse demand function. Liu (1996) went beyond two firms, and showed

the uniqueness for linear Cournot oligopolies. His result was generalized by Neyman (1997),

who proved the existence of a unique correlated equilibrium in every potential game with a

compact and convex set of actions and a strictly concave smooth potential function. The

latter class of potential games partially includes network games, as shown by Bramoullé et al.

(2014) and Ui (2016). Generalizing the work of Neyman (1997), Ui (2008) showed, under the

condition of Rosen (1965) for Nash equilibrium uniqueness in smooth concave games, that the

same equilibrium is also the unique correlated one.7 Recently, Hart and Mas-Colell (2015)

proved the uniqueness of a correlated equilibrium in social strictly concave games, without any

payoff-smoothness requirements.

We also contribute to this line of work by showing that every Tullock rent-seeking game

5Since in our setting the existence of a (mixed-action) Nash equilibrium will be guaranteed, if a correlated

equilibrium is unique then it must be a Nash equilibrium.
6We also concomitantly admit uncountable, measurable state-spaces in incomplete information approxima-

tions of a complete information game.
7Ui (2008) also generalized the original condition of Rosen.
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(contest), and every equivalent patent race, have a unique correlated equilibrium.8 Certain

features of Tullock contests (discontinuity of payoffs when all efforts vanish, and the sum of

payoffs not being strictly concave) make them unsuitable for the frameworks of both Ui (2008)

and Hart and Mas-Colell (2015), and thus necessitate a separate approach. It will also be

observed that a correlated equilibrium is unique in two-player constant-sum games whenever

their Nash equilibrium is unique and consists of pure actions; this implies correlated equilibrium

uniqueness in median-voter problems and pure-location Hotelling games, which are non-concave

and discontinuous. We thereby expand the known part of the domain of games with a unique

correlated equilibrium by adding to it important sets of non-smooth and non-concave games.

In order to demonstrate the scope of our strong robustness notion, we will offer a formal survey

of what is known on that domain, as its constituent games have a strongly robust NE in light

of our main result.

1.3 Structure of the paper

The rest of the paper is organized as follows. In Section 2 we present the basic complete-

information framework, and extend it to incomplete information. In Section 3 we define and

explain the notion of strong robustness to incomplete information. In Section 4 we present

our main result on the equivalence of the existence of a strongly robust Nash equilibrium and

the uniqueness of a correlated one. In Section 5 we survey the games for which a correlated

equilibrium is known to be unique and state uniqueness results of our own.

2 Preliminaries

Our basic framework is laid out in Section 2.1, where we formally define games with a continuum

of pure actions. It is then extended in Section 2.2 to accommodate incomplete information.

2.1 Games with a continuum of pure actions

Fix a finite set of players N = {1, 2, ..., n}. The set Ai of (pure) actions of each player i is

assumed to be a compact and full-dimensional9 convex subset of a Euclidean space Rmi , and

A = ×i∈NAi ⊂ RΣi∈Nmi denotes the set of players’ action profiles. A game is given by an

n-tuple u = (ui)i∈N , where ui : A→ R is the payoff function of player i.

8For the proof of equivalence between patent races and Tullock contests see Baye and Hoppe (2003), who

follow the model of Loury (1979).
9The assumption of full dimension entails no loss of generality, since otherwise Ai can be replaced by an

equivalent strategy set of lower, full, dimension.
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To formally treat mixed actions, some general notations are in order. For a positive integer

m and a compact set B ⊂ Rm, denote by M(B) the set of Borel probability measures on

B. When needed, any b ∈ B will be identified with a Dirac measure supported on {b}, and

hence B may be viewed as a subset of M(B). We shall endow M(B) with the topology of

weak convergence of measures, in which M(B) is metrizable and compact.10 In general, for any

product set C = ×i∈NCi and any j ∈ N , the notation cj will refer to a generic element of the

set Cj, and c−j – to a generic element of the set C−j = ×i 6=jCi.
A mixed action of player i will be an element of M(Ai), and an element of M(A) will be

referred to as an action distribution. Similarly to the definition used by Hart and Schmeidler

(1989), an action distribution µ ∈M(A) is a correlated equilibrium (henceforth, CE) of a game

u if, for any player i and any Borel-measurable function ψi : Ai → Ai,∫
A

ui (a) dµ (a) ≥
∫
A

ui (ψi (ai) , a−i) dµ (a) . (1)

In fact, if µ is a CE, then Ineq. (1) holds for any Borel-measurable function11 ψi : Ai →M(Ai),

with ui (ψi (ai) , a−i) being defined as
∫
Ai
ui (bi, a−i) dψi (ai) (bi) in this case. See Appendix A.1

for the proof of this claim.

Given a mixed-action profile ν = (νi)i∈N , with each νi ∈ M(Ai) being a mixed action of

player i, let ν̂ = ×i∈Nνi ∈M(A) be the product action distribution that is induced by ν when

the individual action choices are independent. The expected payoff ui(ν) of player i in the

latter scenario is given by

ui(ν) =

∫
A

ui (a) dν̂ (a) . (2)

A mixed-action profile ν is a Nash equilibrium (henceforth, NE) of u if ν̂ is a CE. This is

equivalent to the requirement that ui (ν) ≥ ui (ai, ν−i) for every player i and ai ∈ Ai.

2.2 Incomplete information games

In an incomplete information game, the underlying uncertainty is described by a measurable

space (Ω,z) of states of nature and a countably additive probability measure P on Ω, which

is the common prior belief of the players about the actual state. The information of player i

is given by a σ-subfield zi of z; the interpretation is that given any E ∈ zi, player i knows

whether the realized state of nature belongs to E. The payoffs to player i are determined by

a state-dependent payoff function Ui : A × Ω → R that is measurable w.r.t. the product σ-

algebra (Borel Sets)×z. The incomplete information game with the above attributes will be

denoted by U =
{

(Ω,z) , {zi}i∈N , {Ui}i∈N
}

. We shall henceforth assume that payoff functions

10Recall that under this topology a sequence {µk}∞n=1 ⊂ M(B) converges to µ ∈ M(B) if and only if

limk→∞
∫
B
f (a) dµk (a) =

∫
B
f (a) dµ (a) for any continuous f : B → R.

11That is, ψi (ai) (B) is a measurable function of ai for every Borel subset B of Ai.
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in all complete and incomplete information games are bounded in absolute value by the same

exogenously fixed constant.

A (behavioral) strategy of player i is a zi-measurable function σi : Ω → M(Ai), i.e.,

σi (ω) (B) is an zi-measurable function of ω for every Borel set B ⊂ Ai. A strategy profile

is an n-tuple σ = (σi)i∈N , where σi is a strategy of player i. Given such σ, the expected payoff

to player i is

U i (σ) :=

∫
Ω

Ui (σ (ω) , ω) dP (ω) , (3)

where Ui (σ (ω) , ω) denotes the extension of Ui (·, ω) into mixed-action profiles, which is done

by the same procedure as in Eq. (2).12

A strategy profile σ is a Bayesian-Nash equilibrium (henceforth, BNE) of U if U i (σ) ≥
U i (τi, σ−i) for every player i and for every strategy τi of i. Given a BNE σ, its induced action

distribution µ (σ) ∈M(A) is given by

µ (σ) (B) =

∫
Ω

[∫
A

χB (a) d
(
σ̂ (ω)

)
(a)

]
dP (ω)

for every Borel subset B of A, where χB denotes the indicator function of the set B.

3 Strong robustness to incomplete information

To accurately define strong robustness, we first need to make precise the sense in which an

incomplete-information game U can approximate a (complete-information) game u. We will

consider an incomplete-information game U as being close to u if, with high probability, each

player i knows that his payoff in U is given by ui. Formally, for any δ ≥ 0, an incomplete-

information game U is said to be a δ-elaboration of u if for every player i there exists an event

Ωi (U , u) ∈ zi such that

Ωi (U , u) ⊂ {ω | Ui (a, ω) = ui (a) for all a ∈ A} ,

and P (∩i∈NΩi (U , u)) = 1 − δ. Note that the above notion of a close incomplete-information

game is in line with that of KM for finite games, with the additional possibility of an uncountable

state space.

We shall use these δ-elaborations to define strong robustness of NE, a notion that preserves

the spirit of informational robustness of KM but is far more demanding.

Definition 1 Given a complete-information game u, its NE ν is strongly robust (to incomplete

information) if, for any sequence {Uk}∞k=1 of incomplete information games where each Uk is a

12The integrand in Eq. (3) is bounded and Borel-measurable by, e.g., Proposition 7.29 in Bertsekas and Shreve

(2004), and hence U i is well-defined.
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δk-elaboration of u that possesses some BNE σk and limk→∞ δk = 0, the sequence {µ
(
σk
)
}∞k=1

of action distributions induced by {σk}∞k=1 weakly converges to the action distribution ν̂ of ν.

In other words, an NE of u is strongly robust if its induced product action-distribution is

close to the action distributions of BNE in every incomplete-information elaboration that is

sufficiently close to u.

Notice that the definition allowsus to choose any BNE in an elaboration Uk, and so strong

robustness requires all corresponding BNE sequences to approximate ν. This is the main diffe-

rence between our strong robustness and KM-robustness for finite games, as the latter notion

only requires elaborations near u to have some BNE that approximate ν. The corresponding de-

finition for our class of games could have been termed just robustness, and would require ν̂ to be

approximable by {µ
(
σk
)
}∞k=1 for some selection of BNE {σk}∞k=1 in any sequence {Uk}∞k=1. But

since our focus is on the farthest possible extent to which robustness can constrain equilibrium

outcomes, it is the strong robustness that we need.

There are two other distinctions between strong robustness and KM-robustness that we

would like to point out. Unlike KM-robustness, Definition 1 employs a sequential statement,

which obviates the need to specify a particular metric that governs weak convergence of action

distributions.13 Also, the KM-robustness is defined for action distributions in general, while

strong robustness only applies to NE and presupposes the existence of an NE in u. This

difference is in appearance only. In the KM set-up of finite games, the existence of a mixed-

action NE is guaranteed and any robust action distribution is clearly an NE. Hence, KM-

robustness in actuality applies only to NE. The reason we focus on a strongly robust NE is

to exclude cases where an equilibrium does not exist and all action distributions are strongly

robust by default.

It can be readily seen that the implications of there being a strongly robust NE in u are

quite stark: such an NE is necessarily unique, and its action distribution must be the only CE in

the game. For the sake of completeness, we state this observation in the following proposition.

Proposition 1 If a complete-information game u possesses a strongly robust NE ν, then ν̂ is

the unique CE of u. In particular, if a strongly robust NE exists, then it is unique.

(The proofs of Proposition 1 and all subsequent results are deferred to the Appendix.)

We conclude that a necessary condition for an NE ν to be strongly robust is the uniqueness

of a CE in the game. In the next section we establish conditions under which the uniqueness

of a CE is both necessary and sufficient for the existence of a strongly robust NE.

13No specific metric on M(A) that induces the topology of weak convergence, including the Lévy–Prokhorov

metric, seems to be sufficiently appealing to make an ε, δ-statement preferable to our (equivalent) statement in

terms of sequence convergence.
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4 Strong robustness of a unique CE

Our main result, which identifies a strongly robust NE with a unique CE, will be proved

under a set of conditions requiring partial continuity of the payoff functions. We will present

two versions of the result. Theorem 1 below assumes continuity of payoffs in the interior of

the action-profile set A. Theorem 2, on the other hand, allows discontinuity of payoffs along

“diagonal” curves in A, when the action sets of all players are one-dimensional.

The following three conditions will be used in the statement of Theorem 1:

(a) each payoff function ui(a) is continuous in a whenever ai is an interior point of Ai;

(b) each payoff function ui (ai, a−i) is lower semi-continuous in ai for a fixed a−i; and

(c) the sum
∑

i∈N ui is upper semi-continuous on A.14

These continuity conditions resemble those that were introduced in Dasgupta and Maskin

(1986), and were shown therein to be sufficient for the existence of a mixed-action NE in a

complete-information game. Specifically, our condition (b) is a strengthened, and (c) an exact,

version of the conditions in Theorem 5 of Dasgupta and Maskin (1986). Condition (a) is not,

however, directly comparable with their requirement of partial continuity. As may be expected,

under our conditions, u also possesses a mixed-action NE. We state this claim separately, for

later reference:

Remark 1 If u satisfies (a), (b), and (c), then it possesses a mixed-action NE (the proof is

given in Appendix A.3).

Our main result, Theorem 1, extends Proposition 1 to a full characterization of strong

robustness, by showing an equivalence between the existence of a strongly robust NE and its

being a unique CE under conditions (a)–(c).

Theorem 1 Consider a complete-information game u which satisfies (a), (b), and (c). Then

an NE ν is strongly robust if and only if its induced action distribution ν̂ is the unique CE.

In other words, the existence of a strongly robust NE is tantamount to the uniqueness of a

CE in the game. In particular, the quest for strongly robust distributions may be reduced to

finding conditions that ensure CE uniqueness. We pursue this latter goal in the next section

which reviews and extends the known settings that possess a unique CE.

14The mentioned lower (upper) semi-continuity is respectively defined by the requirements that

lim infk→∞ ui
(
aki , a−i

)
≥ ui (ai, a−i) and lim supk→∞

∑
i∈N ui

(
ak
)
≤
∑

i∈N ui (a), for any sequence {ak}∞k=1 ⊂

A that converges to a.
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We shall now show that the equivalence result in Theorem 1 remains in force even when

some discontinuity of payoffs occurs in the interior of A, along appropriately defined “diagonal”

curves. To facilitate the exposition and the proof, we will assume that all action sets are one-

dimensional, i.e., that each Ai is a closed non-degenerate interval [ai, ai] ⊂ R. For technical

reasons (the need for which will become clear in the proof), it will be further assumed that each

payoff function ui is defined on (or can be extended to) a superset A+ = ∪i∈N [ai − δ, ai + δ]×
A−i of A, for some δ > 0, in such a way that all player i’s actions above ai are weakly dominated

by ai, and all actions below ai are weakly dominated by ai, when other players are restricted

to A−i.

Condition (a) on the continuity of each individual payoff function ui when i’s own actions

are in the interior of Ai will be replaced by the following assumption, based on the continuity

requirement posited in Section 4 of Dasgupta and Maskin (1986). Let {D (i)}i∈N be a collection

of finite sets, and let {fdij : R → R}i 6=j∈N,d∈D(i) be a collection of strictly monotonic and

continuous functions. Define

A∗ (i) := {a ∈ A+ | ∃j 6= i, ∃d ∈ D(i) s.t. aj = fdij(ai)}.

We shall assume that:

(a’) for every i ∈ N, the set of discontinuity points of the payoff function ui on A+ is a subset

of A∗ (i).

Our earlier condition (b) will also be replaced by a (somewhat strengthened) version of weak

lower semi-continuity of Dasgupta and Maskin (1986). Specifically, we will assume that:

(b’) there exist 0 < λ1, ..., λn < 1 such that, for every i ∈ N and a ∈ A,

λi lim inf
ε→0+

ui(ai − ε, a−i) + (1− λi) lim inf
ε→0+

ui(ai + ε, a−i) ≥ ui(a).

By Theorem 5 of Dasgupta and Maskin (1986), any u that satisfies (a’), (b’), and (c)

possesses a (mixed-action) NE. Furthermore, strong robustness of that NE is subject to the

same characterization as in Theorem 1:

Theorem 2 Consider a complete-information game u which satisfies (a’), (b’), and (c). Then

an NE ν is strongly robust if and only if its induced action distribution ν̂ is the unique CE.

5 Applications: survey of games with a unique CE

In this section we examine various settings in which the uniqueness of a CE is known, or can

be proved, and to which our results on the existence of a strongly robust NE may therefore be
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applied. In Section 5.1 we consider “smooth” games – those with continuously differentiable

payoff functions – for which the question of CE uniqueness was addressed, in fullest generality to

date, by Ui (2008). The class of smooth games for which Ui’s conditions for CE uniqueness hold

includes, inter alia, Cournot oligopolies with linear demand, strictly concave potential games,

and a subclass of network games. Attention will also be drawn to some types of smooth Ber-

trand oligopolies with differentiated products, where the CE is unique by the supermodularity

arguments of Milgrom and Roberts (1990).

Sections 5.2, 5.3 and 5.4 concern games that are not necessarily smooth. Section 5.2 is

dedicated to Tullock contests, in which the payoff functions are not differentiable at a boundary

point of the set of action profiles. We prove that the unique NE of a Tullock contest is also its

unique CE, and therefore strongly robust. Section 5.3 discards the differentiability assumption

altogether. In that section, we recall the notion of a socially concave game that is due to Even-

dar et al. (2009), and the result of Hart and Mas-Colell (2015) on CE uniqueness in socially

strictly concave games. The latter class of games includes various imperfectly discriminating

contests (such as those arising from patent races), Cournot oligopolies with linear demand

and possibly non-differentiable costs, and equilibrium implementation games for quasi-linear

exchange economies. Section 5.4 provides examples of discontinuous games with a unique CE

(whose strong robustness is established by appealing to a more potent Theorem 2). They

include two classical two-player constant-sum games, namely the median-voter problem and a

pure-location Hotelling game.

5.1 Smooth games

Following Ui (2008), a game u is called smooth if every payoff function ui is continuously

differentiable on A. Ui’s work generalized the results of Rosen (1965) by showing that the

unique NE is also the unique CE in Rosen’s games. Ui uses a condition that is weaker than

Rosen’s, but in the interest of brevity we will confine ourselves to the original condition of

Rosen in this exposition which Ui termed strict monotonicity of payoff gradients.

Formally, u has strictly monotone payoff gradients (SMPG)15 if, for every a 6= a′,∑
i∈N

[∇iui(a)−∇iui(a
′)] (ai − a′i) < 0. (4)

An easy way to verify the SMPG condition, assuming that all payoff function are twice conti-

nuously differentiable, is to consider the matrix [∂2ui (a) /∂ai∂aj]; if it is negative definite then

u has SMPG.16 For any game u with SMPG, every payoff function ui is strictly concave in ai.
17

15Ui (2008) allows weighted sums in Ineq. (4). By dividing each player’s payoff by a positive constant, if

needed, an equivalent game for which Ineq. (4) holds can always be obtained.
16See Lemma 3 and the proof of Corollary 6 in Ui (2008).
17See Lemma 5 in Ui (2008).
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The main result of Ui (2008) shows that any smooth game with SMPG has a unique CE

which is also the unique NE.18 Since our continuity conditions (a)–(c) hold trivially for any

smooth game, the unique NE is strongly robust by Theorem 1.

In what follows we review examples of smooth games with SMPG: strictly concave potential

games (in Section 5.1.1); a subclass of network games (in Section 5.1.2); and differentiable

Cournot oligopolies with linear demand (in Section 5.1.3). In Section 5.1.4 we point out that

some types of smooth Bertrand oligopolies also have a unique CE (which is then a strongly

robust NE), but in this case the argument, put forward in Milgrom and Roberts (1990), exploits

log-supermodularity of these oligopolies instead of the SMPG condition.

5.1.1 Concave potential games

An important class of games which is relevant to our context is that of potential games, defined

by Monderer and Shapley (1996). A game u is a potential game if there exists a function

P : A → R such that for every player i, every action profile a = (ai, a−i), and every action

a′i 6= ai, ui(a
′
i, a−i) − ui(a) = P (a′i, a−i) − P (a). In words, the potential function P mimics

player i’s payoff changes obtained by his unilateral deviations. Monderer and Shapley (1996)

showed that potential games include congestion games as well as Cournot oligopolies with linear

demand.

Neyman (1997) showed that for any game u with a continuously differentiable and strictly

concave potential function, its unique NE is also a unique CE. By our Theorem 1, the unique

NE is strongly robust.

Two additional comments are in order. First, although u with a continuously differentiable

potential need not be smooth, it is (trivially) strategically equivalent to a smooth potential

game. For the latter, a potential is strictly concave if and only if the game has SMPG (by Lemma

4 of Ui (2008)), which is an alternative way to deduce strong robustness of the unique NE of

u. Based on the discussion following Corollary 6 in Ui (2008), we further remark that a twice

continuously differentiable game u is a potential game if and only if the matrix [∂2ui (a) /∂ai∂aj]

is symmetric for each a ∈ A; in order for the potential to be strictly concave, the matrix must

be negative definite. As has been mentioned already, this negative definiteness alone (without

the symmetry) suffices for SMPG, and hence for strong robustness of the unique NE.

5.1.2 Network games

The class of smooth potential games includes a subclass of network games, in which the players’

payoffs depend on the realized action profile a ∈ RN
+ and on the network (i.e., a graph) that

18See Proposition 5 in Ui (2008).
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links different players to one another.19 Bramoullé et al. (2014) follow the model of Ballester

et al. (2006) in their study of network games with linear best-response functions. They consider

a network game u in which player i’s payoff is

ui(ai, a−i) = ai − 1
2
a2
i − δ

∑
j 6=i

gijajai,

where δ > 0, the values gij ∈ {0, 1} indicate whether players i and j are linked or not, and

gij = gji for every i 6= j; w.l.o.g., each player i can be constrained to use actions from an

undominated set Ai = [0, 2] . Bramoullé et al. (2014) constructed a potential function for u,

which is strictly concave precisely when the matrix [1 + δgij] is positive definite. In the latter

case, the NE of the game is also its unique CE by the result of Neyman (1997). While their

interest lied primarily in NE stability w.r.t. continuous Nash tâtonnement (and, indeed, a

unique NE turns out to be stable), that NE is also strongly robust by Theorem 1.

5.1.3 Cournot oligopoly with linear demand and differentiated products

In a Cournot oligopoly model with linear demand for differentiated products, each firm i ∈ N
chooses a non-negative output level ai of its product from some compact Ai ⊂ R+ and incurs

a production cost of ci(ai), where each function ci is assumed to be continuously differentiable,

strictly increasing and convex. For each firm i, the inverse demand function for its product is

given by Pi(a) = Bi +
∑

j∈N Aijaj, and the net-profit function of firm i is therefore

ui (a) =

(
Bi +

∑
j∈N

Aijaj

)
ai − ci (ai) . (5)

As observed in Example 1 of Ui (2008), if the matrix [(1 + δij)Aij] is negatively definite (where

δij denotes the Kronecker delta), then the game has SMPG, and hence its NE is a unique CE

that is strongly robust by Theorem 1.

When Aij = −1 and Bi = Bj =: B > 0 for any i and j, the standard single-product

oligopoly model with linear demand is obtained. The matrix [−(1 + δij)] is negative definite,

and the uniqueness of CE follows. This fact is also a direct corollary of the main result of

Neyman (1997), who observed in Section 2 of his paper that such an oligopoly has a continuously

differentiable and strictly concave potential function.

5.1.4 Bertrand oligopoly with differentiated products

In their study of supermodular games, Milgrom and Roberts (1990) showed that NE provide

bounds on the set of rationalizable actions of each player. Specifically, they proved that the

19For a broader review of these games see, for example, Bramoullé et al. (2014), Blume et al. (2015), and

Section 5.3 of Ui (2016).
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set of serially undominated actions20 of each player i in a supermodular game has a largest

element ai and a smallest element ai,
21 and that the corresponding action profiles a = (ai)i∈N

and a = (ai)i∈N are the largest, and respectively the smallest, NE in the game. As no CE

can, with positive probability, prescribe strictly dominant actions to any player i, an obvious

corollary is that uniqueness of a pure-action NE in the game implies its being a unique CE.

Following Milgrom and Roberts (1990),22 we apply the above corollary to Bertrand compe-

tition. Consider a Bertrand oligopoly consisting of the set N of firms, each selling a different

product. Each firm i has a constant unit cost ci > 0, and faces a twice continuously differen-

tiable demand Di(a), where a ∈ ×i∈N [ci, p] is a price vector. It is assumed that the products

are substitutes and the elasticity of demand of firm i is a non-increasing function of the other

firms’ prices. The latter condition is equivalent requiring that ∂2 log(Di(a))/∂ai∂aj ≥ 0, for

every profile a and every j 6= i, and it holds for various demand types (including, e.g., linear,

CES, and logit demand functions). The payoff of every firm i is given by ui(a) = (ai− ci)Di(a).

Under the above conditions, the log-transformed game log u = (log ui)i∈N is supermodular,

and hence the result on the existence and the role of the NE a and a applies to both log u

and u. For several families of demand functions, including linear, CES and logit, Milgrom and

Roberts (1990) furthermore show that the game log u (and thus u) has a unique NE. This, by

the arguments above, implies that a = a a unique CE of u. Since u is smooth, our continuity

conditions (a)–(c) hold trivially, and that NE is strongly robust by Theorem 1.

5.2 The Tullock rent-seeking game

Many economic settings, ranging from political races to investments in R&D, can be modelled

as contests where players exert effort to win the competition and the winner receives a re-

ward.23 The Tullock rent-seeking game (see Tullock (2001)), or Tullock contest, is a complete-

information game u = (ui)i∈N of this type.

In a Tullock contest with n ≥ 2 players, every player i exerts an effort ai ∈ R+ for a chance

to win a single prize, e.g., an economic rent. The success function p = (pi)i∈N specifies the

probability of each contester to receive the prize based on the realized effort profile a, and is

assumed to have the following form: for each player i and any profile a = (ai)i∈N that is distinct

from the zero-effort profile 0,

pi(a) =
fi(ai)∑
j∈N fj(aj)

,

20Undominated actions are those that survive the iterative process of eliminating strongly dominated actions.
21In a supermodular game the action sets Ai are lattices, and largest and smallest elements of a subset of Ai

are defined w.r.t. the lattice order on Ai.
22See Section 4, Example (2), of Milgrom and Roberts (1990).
23See, for example, Dasgupta and Stiglitz (1980), Dixit (1987) and Skaperdas (1996) among many others.
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where {fj : R+ → R+}j∈N are effort impact functions of the players. These functions are

assumed to be twice differentiable, strictly increasing, concave, and vanishing at 0. If a is the

zero-effort profile 0, then p(0) can be an arbitrary strictly positive probability vector.

All efforts are costly. Each effort is identified with its cost, and the value of the prize to

each player is normalized to 1, giving rise to net utilities (ui)i∈N where

ui(ai, a−i) = pi(a)− ai (6)

for every i ∈ N and a ∈ Rn
+. Note that this formulation also allows for the case of player-specific

general costs of effort. Namely, given a twice-differentiable, strictly increasing and convex cost

function ci : R+ → R+ with ci(0) = 0, one can obtain an equivalent game with payoffs given

by (6) by redefining each player i’s effort impact function to be equal to fi ◦ c−1
i .

Since all efforts above 1 are strictly dominated by effort 0 for all players, it can be assumed

w.l.o.g. that player i’s action set is Ai = [0, 1]. Tullock contests may thereby be viewed as

belonging to our basic framework, and one can easily verify that they meet requirements (a)–

(c). Moreover, it has already been established by Szidarovszky and Okuguchi (1997) that a

Tullock contest has a unique (pure-action) NE. In the following theorem we prove that the same

equilibrium is also the unique CE, which implies its strong robustness via Theorem 1.

Theorem 3 The NE of a Tullock contest is also its unique CE, and therefore is strongly robust.

In a Tullock contest, each pi is strictly concave in ai for a fixed a−i 6= 0−i, and convex in

a−i for a fixed ai; this implies that the payoff function ui has the same properties. In addition,

each ui is continuously differentiable on Rn
+\{0}. Since the sum

∑
i∈N ui(a) =

∑
i∈N ai is linear

in a, Tullock contests have SMPG on Rn
++ by an observation made in Goodman (1980). The

lack of differentiability of the payoff functions at 0 prevents, however, a direct application of

Proposition 5 of Ui (2008) on CE uniqueness, and necessitates the separate approach that

we have taken. The proof of Theorem 3 has an additional merit of being quite short and

straightforward, with the main auxiliary function H inspired by the method of proof in Liu

(1996).

5.3 Socially concave games

The class of socially concave games, introduced in Even-dar et al. (2009) and, with greater

generality, in Hart and Mas-Colell (2015) contains games that arise in several widely used

models such as Tullock contests, patent races (see Section 5.3.2), Cournot oligopolies with

linear demand (see Section 5.3.3), and quasi-linear exchange economies (see Hart and Mas-

Colell (2015)). This class of games is also important in our context since they tend to have a

unique CE.
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Let us now formally define socially concave games. A game u is socially (strictly) concave

if the sum of payoffs
∑

i∈N ui(a) is (strictly) concave in a, and every payoff function ui (ai, a−i)

is convex in a−i. Note that the combination of these two conditions immediately implies that

player i’s utility function is concave in ai for a fixed a−i.

Hart and Mas-Colell (2015) showed that socially strictly concave games have at most one

CE. In addition, by Remark 1, conditions (a)–(c) imply the existence of an NE, which is in

particular a CE. This leads to the following Corollary:

Corollary 1 Any socially strictly concave game u that satisfies (a), (b), and (c) has an NE

which is also the unique CE, and therefore is strongly robust. If all actions sets are intervals

in R, (a) and (b) above can be replaced by (a’) and (b’).

The proof is omitted since it follows directly from our theorems 1, 2 and Proposition 10 of

Hart and Mas-Colell (2015).

Remark 2 It is well-known that any concave function on a convex polytope is lower semi-

continuous (see, e.g., Gale et al. (1968)). Hence, if u is a socially concave game in which each

action set Ai is a polytope, then condition (b) [or (b’), when Ai ⊂ R] holds trivially, and

condition (c) is equivalent to

(c’) the sum
∑

i∈N ui (a) is a continuous function.

5.3.1 Imperfectly discriminating contests

Tullock contests do not fall under the purview of Corollary 1 since they do not have a strictly

convex sum of payoffs, and we must rely on Theorem 3 for the CE uniqueness result. Howe-

ver, the following (rather big) family of imperfectly discriminating contests does satisfy the

conditions of Corollary 1.

Consider a contest where the action (effort) set of every player i is a closed bounded interval

Ai and player i’s payoff is given by ui(a) = pi(a) − ci(ai) for every action profile a. Let

us assume that (pi(a))i∈N is a concave-sum sub-probability vector24 such that pi(ai, a−i) is

a convex function of a−i for a fixed ai, and the cost function ci : Ai → R+ is continuous

and convex. Notice that u is a socially concave game which satisfies (a) [or (a’)] and (c’)

whenever p = (pi)i∈N does so. Thus, in light of Remark 2, Corollary 1 applies to imperfectly

discriminating contests when they are strictly socially concave:

24That is,
∑

i∈N pi(a) is a concave function and
∑

i∈N pi(a) ≤ 1 (the latter means that the prize may be

withheld with positive probability).
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Corollary 2 An imperfectly discriminating contest u has an NE which is also the unique CE,

and therefore is strongly robust, provided that p = (pi)i∈N satisfies (a) [or (a’)] and (c’), and

that either
∑

i∈N pi is strictly concave or ci is strictly convex for every i ∈ N .

5.3.2 Patent races

Baye and Hoppe (2003) consider the patent-race model of Loury (1979), where firms compete

over an infinite-life patent. Baye and Hoppe prove that the patent race is strategically equivalent

to an imperfectly discriminating contest, which is a variant of the Tullock competition. We will

now show that this contest also meets the requirement of Corollary 2.

A patent race is an n-firms game where each firm i chooses to invest ai ∈ R+ in R&D for a

patent of value v > 0. Given ai, the probability of firm i to reach a discovery until time t ≥ 0 is

1 − e−h(ai)t, where h : R+ → R+ is a strictly increasing, concave, twice-differentiable function.

Taking a positive interest rate r, the payoff of firm i is given by

ui(ai, a−i) =

∫
R+

h(ai)ve
−t[r+

∑
j∈N h(aj)]dt− ai

= v
h(ai)

r +
∑

j∈N h(aj)
− ai.

Since all sufficiently high investments are strictly dominated by the null investment (i.e., ai = 0),

it can be assumed w.l.o.g. that every player i’s action set is some bounded closed interval

Ai ⊆ R+.

Evidently, if r tends to zero, the patent race is strategically equivalent to a Tullock contest,

as noted in Theorem 3 of Baye and Hoppe (2003). Moreover, when r > 0 and after a division of

all payoffs by v, the game u is included in the scope of Corollary 2 even if h is merely continuous.

Claim 4 The patent-race game has an NE which is also the unique CE, and therefore is

strongly robust.

5.3.3 Cournot oligopoly

Consider the standard (single-product) Cournot oligopoly model with linear demand, given by

the description in Section 5.1.3 with Aij = −A < 0, Bi = B > 0 for any i and j, but discard

the assumption that the cost functions are continuously differentiable. Each cost function

ci : Ai → R+ is now assumed to be continuous, convex, and strictly increasing.

The results on smooth games are not applicable to such an oligopoly, but, with payoff

functions given by ui (a) =
(
B−A

(∑
i∈N ai

))
ai− ci (ai), the game u is clearly socially strictly

concave. Since it trivially satisfies (a) and (c’), Corollary 1 applies.
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When a duopoly is considered, CE is unique under much more general conditions on the

inverse demand that the firms face: it only needs to be strictly decreasing and log-concave (see

Theorem 2.3 and Corollary 2.4 in Amir (1996)).25 Amir showed that such a duopoly can be

viewed as an ordinally supermodular game, which implies, via the previously mentioned method

of Milgrom and Roberts (1990),26 that the unique Cournot equilibrium is also a unique CE.

5.4 Discontinuous zero-sum games

In this section we will show the existence of a unique CE in two classical, discontinuous and

zero-sum-equivalent games: the median-voter problem (see Section 5.4.1) and a pure-location

Hotelling game (see Section 5.4.2). In these games, the discontinuity in payoffs occurs at interior

action profiles that lie along strictly increasing curves, which necessitates the use of Theorem

2, instead of Theorem 1 as in the previous sections. To further demonstrate the applicability

of Theorem 2, we will also consider a two-bidder first-price auction with common values and

complete information, where the payoffs are discontinuous along the diagonal but a unique CE

is known to exist, and hence an appeal to Theorem 2 is required (see Section 5.4.3).27

The main tool in establishing the uniqueness of a CE will be the following observation:

Remark 3 Consider a two-player zero-sum game u. If µ is a CE of u, it is easy to see that

µAi
(the marginal distribution induced by µ on Ai) is an optimal strategy of each player i, and

the action-profile (µA1 , µA2) is an NE. Thus, if u has a unique NE, which is moreover in pure

actions, then that NE is the unique CE of u.

Since any two-player constant-sum game u is obviously strategically equivalent to a zero-

sum game, the last conclusion in Remark 3 also applies to such u: if u has a unique, pure-action

NE, then it is the unique CE of the game.

5.4.1 The median-voter problem

The median voter problem, also known as a Hotelling-Downs game, is a simple model of biparti-

san political competition with a one-dimensional policy space. Following Persson and Tabellini

25For the results of Amir (1996) to hold, it must be further assumed that there exists Q > 0 such that the

inverse demand function P satisfies QP (Q) − ci(Q) < 0 for every Q > Q and i = 1, 2. This assumption is

satisfied if, e.g., for each firm i, Ai = [0, qi] for some qi > 0, and all output levels above qi are strictly dominated

by output 0.
26In fact, an extension due to Milgrom and Shannon (1994) of this method is required to deal with ordinally

supermodular games.
27Although not zero-sum, such an auction is a continuous-sum game on account of the equal values that

bidders have for the auctioned object.
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(2000) (Section 3.2, p. 49 – 51), we assume that there are two players (i.e., candidates), and

that their action sets, representing possible policy promises, are the interval [0, 1]. Voters, of

which there is a continuum, have single-peaked preferences over the policy space, and their

ideal points are continuously distributed on [0, 1] with a strictly positive density function f .

The game begins by each player i = 1, 2 choosing an action in Ai = [0, 1], in a possibly

mixed fashion. Given a realized action profile a = (a1, a2), every voter with an ideal point

x ∈ [0, 1] votes for player i whose action ai is the closest to x, with a symmetric tie-breaking

rule. For every profile a, denote by Wi(a) the mass of voters who vote for i; that is,

Wi(a) =



∫ a1+a2
2

0
f(x)dx, if ai < a−i,

1
2
, if ai = a−i,∫ 1
a1+a2

2
f(x)dx, if ai > a−i.

The payoff function of every player i is then given by

ui(a) =


−1, if Wi(a) < W−i(a),

0, if Wi(a) = W−i(a),

1, if Wi(a) > W−i(a),

which defines a two-player zero-sum game u.

Note that the action ai = m, where m is the median voter (characterized by the equation∫ m
0
f(x)dx = 1

2
), guarantees player i the payoff of 0, and leads to a strictly positive payoff if

his opponent uses any (mixed) action that is different from m. It follows that m is the unique

optimal strategy for each player in the zero-sum game u, and therefore (m,m) is its unique,

pure-action NE. By Remark 3, that NE is also the unique CE. Moreover, one can easily verify

that conditions (a’), (b’), and (c) hold in this framework,28 and so the unique pure NE is

strongly robust by Theorem 2.

5.4.2 Hotelling model of pure location

A pure-location Hotelling game is a classical motivating scenario for a more general Hotelling

(1929) duopoly model of spatial competition. In a location game, each firm i = 1, 2 chooses

a location (sale point) in the interval [0, 1], which may represent the main street in a town,

and hence A1 = A2 = [0, 1]. Both firms offer for sale the same product, and charge the same

mill price for each unit of the good and at each sale point. Unit-demand customers are located

28Notice that (a’) holds for fdij(ai) = 2m− ai with |D(i)| = 1; (b’) holds for λ1 = λ2 = 1
2 , and (c) is satisfied

trivially because u is constant-sum.
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along [0, 1]; the continuous distribution of their locations has a positive density function f .

Each customer patronizes the closest seller, with a symmetric tie-breaking rule, and both firms’

objective is to maximize their respective market shares. The corresponding constant-sum game

u may thus be described in terms of the functions Wi from Section 5.4.1: ui(a) = Wi(a) for

each a ∈ A and i = 1, 2.

Just as in, e.g., Corollary 1 of Ben-Porat and Tennenholtz (2016) (taken for k = 1), it can

be seen that the location game u has a unique, pure-action NE, in which both firms choose

the location of the median customer m. By Remark 3, that NE is also the unique CE of the

game. As conditions (a’), (b’), and (c) hold for the game u, the unique NE is strongly robust

by Theorem 2.

5.4.3 Two-bidder first-price auction with common values

Consider an auction in which two bidders with the common value of 1 for the auctioned object

submit bids in A1 = A2 = [0, 1], of which the highest wins and is paid (with a symmetric

tie-breaking rule). Each payoff function ui is therefore given by

ui(a) =


1− ai, if ai > a−i,

1
2

(1− ai) , if ai = a−i,

0, if ai < a−i.

The restriction to two bidders and equal value is undoubtedly severe, but that is the only

context in which such an auction is guaranteed to have a unique NE and CE (see Section 3.1

in Dütting et al. (2014)). Conditions (a’), (b’), and (c) obviously hold for the game u,29 and

hence the unique NE is strongly robust by Theorem 2.
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A Appendices

A.1 Extending CE to mixed-action deviations

Proposition 2 If µ is a CE then Ineq. (1) holds for any Borel-measurable function ψi : Ai →

M(Ai), with ui (ψi (ai) , a−i) in Ineq. (1) being defined as
∫
Ai
ui (bi, a−i) dψi (ai) (bi) .

Proof. Suppose that Ineq. (1) does not hold for some i ∈ N and some measurable

ψ′i : Ai → M(Ai). It is well known (see, e.g., Corollary 3.1.2 of Borkar (1995)) that condi-

tional distribution µ (· | ai) ∈ M(A−i), induced by µ on A−i given ai, can be defined for every

ai ∈ Ai in such a way that the stochastic kernel (ai, B) 7→ µ (B | ai) is Borel-measurable in

ai for any Borel subset B of A−i. By assumption, the stochastic kernel (ai, B) 7→ ψ′i (ai) (B)

is also Borel-measurable in ai for any Borel subset B of Ai. By Proposition 7.29 of Bertsekas

and Shreve (2004) on integration involving Borel-measurable stochastic kernels, the functi-

ons (ai, bi) 7→
∫
A−i

ui (bi, a−i) dµ (a−i | ai) and ai 7→
∫
A−i

ui (ψ
′
i (ai) , a−i) dµ (a−i | ai) are Borel-

measurable. Hence the graph of the (non-empty-valued) correspondence

Ψi(ai) := {bi ∈ Ai |
∫
A−i

ui (bi, a−i) dµ (a−i | ai) ≥
∫
A−i

ui (ψ
′
i (ai) , a−i) dµ (a−i | ai)}

22



is also Borel-measurable. By the measurable choice theorem, the correspondence Ψi possesses

a single-valued measurable selection ψi.

Clearly, ∫
A−i

ui (ψi(ai), a−i) dµ (a−i | ai) ≥
∫
A−i

ui (ψ
′
i (ai) , a−i) dµ (a−i | ai)

for every ai ∈ Ai, and integrating both terms w.r.t. µAi
(the marginal distribution induced by

µ on Ai) yields ∫
A−i

ui (ψi (ai) , a−i) dµ(a) ≥
∫
A−i

ui (ψ
′
i (ai) , a−i) dµ (a) .

Therefore, ψi violates Ineq. (1) because ψ′i does so, contradicting the assumption that µ is a

CE.

A.2 Proof of Proposition 1

Proof. Let µ′ be any CE of u. Consider a 0-elaboration U0,µ′ of u in which (Ω,z) is the set of

action profiles A with the Borel σ-algebra on it, P = µ′ and, for each player i, zi = {Bi×A−i |
Bi ⊂ Ai is a Borel set} and Ui ≡ ui in a state-independent fashion. It follows from Proposition

2 that a strategy profile τ in which τi(a) = ai for every i ∈ N and a ∈ A is a pure-action

BNE of U0,µ′ , with µ (τ) = µ′. It therefore follows from Definition 1 that ν̂, the product action

distribution of the strongly robust ν, must coincide with the CE µ′. Thus ν̂ must coincide with

any CE of u, and hence it is the unique CE.

A.3 Proof of Remark 1

Proof. Assume that u satisfies (a), (b), and (c). As in the proof of Proposition 5.1 in Reny

(1999), it can be seen that (b) implies lower semi-continuity of each ui (νi, ν−i) in νi when

players use mixed strategies. Furthermore, it follows from (a) and the Portmanteau theorem

that ui (νi, ν−i) is continuous at any point ν as long as νi ∈ M(Ai) satisfies νi(∂(Ai)) = 0.

These two observations, together with the fact that any νi ∈ M(Ai) can be approximated by

probability measures on Ai for which ∂(Ai) is a zero-measure set, imply that the payoffs in

mixed strategies are payoff-secure. That is, for every ν ∈ ×i∈NM(Ai) and ε > 0, each player

i can secure a payoff of at least ui (ν) − ε. (The latter means that there exists νi ∈ M(Ai)

such that ui
(
νi, ν

′
−i
)
≥ ui (ν) − ε for any ν ′−i in some open neighborhood of ν−i.) Given the

payoff-security of the mixed-strategy extension of u, and condition (c) on pure-strategy payoffs,

the existence of a mixed-strategy NE in u follows from Proposition 5.1 and Corollary 5.2 of

Reny (1999).
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A.4 Proof of Theorem 1

The ”only if” direction of the theorem is given by Proposition 1. As for the ”if” direction,

consider a sequence {Uk}∞k=1 of incomplete information games and a sequence of corresponding

BNE {σk}∞k=1 such that each Uk =
{

Ωk, P k,
{
zk
i

}
i∈N ,

{
Uk
i

}
i∈N

}
is a δk-elaboration of u and

limk→∞ δk = 0. We will show that, for any subsequence of {µ
(
σk
)
}∞k=1 ⊂M(A) that converges

to some µ′ ∈ M(A), the limit µ′ is a CE of u. W.l.o.g., we will take such a subsequence to be

{µ
(
σk
)
}∞k=1 itself in our forthcoming considerations.

The following lemma will be instrumental in the rest of the proof.

Lemma 1 For any i ∈ N and any measurable function ψi : Ai → Ai,

lim inf
k→∞

U
k

i

(
σk
)
≥
∫
A

ui (ψi (ai) , a−i) dµ
′ (a) .

Proof of Lemma 1. Suppose to the contrary that, for some i ∈ N and some measurable

ψi : Ai → Ai,

lim inf
k→∞

U
k

i

(
σk
)
<

∫
A

ui (ψi (ai) , a−i) dµ
′ (a) . (7)

We will first show that such ψi can, w.l.o.g., be assumed to be continuous. Indeed, for any

ε > 0, by Lusin’s theorem, the given ψi is continuous on a compact subset Eε of Ai with

µ′(Eε × A−i) > 1 − ε. By applying the Tietze extension theorem to each coordinate of ψi |Eε ,

the restriction of ψi to Eε, this function may be extended to a continuous ψεi : Ai → Rmi . If

projAi
: Rmi → Ai is the projection onto Ai, which sends any ai ∈ Rmi into the point in Ai with

the shortest Euclidean distance from ai, then the composite function ψ
ε

i = projAi
◦ψεi : Ai → Ai

is continuous, and is identical to ψi on Eε. Since ui is bounded and limε→0+ µ
′(Eε × A−i) = 1,

clearly

lim
ε→0+

∫
A

ui

(
ψ
ε

i (ai) , a−i

)
dµ′ (a) =

∫
A

ui (ψi (ai) , a−i) dµ
′ (a) ,

and so ψi can be replaced in Ineq. (7) by ψ
ε

i for some sufficiently small ε without affecting that

inequality. Thus, it can be assumed w.l.o.g. that ψi for which Ineq. (7) holds is continuous.

Next, we will show that, w.l.o.g., it can be assumed that the values of the continuous ψi

in Ineq. (7) avoid the boundary ∂ (Ai) , i.e., that ψi : Ai → Ai\∂ (Ai) . To this end, for any

ε > 0 consider the closed and convex set Aεi that consists of all points in Ai whose Euclidean

distance from ∂ (Ai) is at least ε. As Ai has full dimension, Aεi is non-empty for all sufficiently

small ε, and the projection onto Aεi , projAε
i

: Rmi → Aεi , is well-defined. Since the function

ψ
ε

i = projAε
i
◦ ψi converges to ψi pointwise on Ai as ε→ 0, by assumption (b) on ui

lim inf
ε→0+

ui

(
ψ
ε

i (ai) , a−i

)
≥ ui (ψi (ai) , a−i)
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for every a ∈ A . Hence, by Fatou’s lemma,

lim inf
ε→0+

∫
A

ui

(
ψ
ε

i (ai) , a−i

)
dµ′ (a) ≥

∫
A

ui (ψi (ai) , a−i) dµ
′ (a) .

It follows that the continuous function ψi can be replaced in (7) by another continuous function

ψ
ε

i , for some sufficiently small ε, without affecting the inequality. Thus, it can be assumed

w.l.o.g. that the values of the continuous ψi in Ineq. (7) avoid the boundary ∂ (Ai) , i.e., that

ψi : Ai → Ai\∂ (Ai) . Consequently, by assumption (a) on ui, the function ui (ψi (ai) , a−i) is

continuous on A.

For any νi ∈ M(Ai), let ψi (νi) ∈ M(Ai) be the probability measure given by ψi (νi) (B) =

νi
(
ψ−1
i (B)

)
for every Borel set B in Ai.

30 Note that ψi can thus be applied to any M(Ai)-

valued strategy σki , thereby producing a new strategy, ψi
(
σki
)
, for player i in the game Uk. The

uniform boundedness of Uk
i (together with the fact that Uk

i = ui on a set with a µ
(
σk
)
-measure

tending to 1) now implies that

lim
k→∞

U
k

i

(
ψi
(
σki
)
, σk−i

)
= lim

k→∞

∫
Ω

Uk
i

(
ψi
(
σki (ω)

)
, σk−i (ω) , ω

)
dP k (ω)

= lim
k→∞

∫
Ω

ui
(
ψi
(
σki (ω)

)
, σk−i (ω)

)
dP k (ω)

= lim
k→∞

∫
A

ui (ψi (ai) , a−i) dµ
(
σk
)

(a) =

∫
A

ui (ψi (ai) , a−i) dµ
′ (a) ,

where the last equality follows from the weak convergence of {µ
(
σk
)
}∞k=1 to µ′ and the continuity

of ui (ψi (ai) , a−i) . Thus,

lim
k→∞

U
k

i

(
ψi
(
σki
)
, σk−i

)
=

∫
A

ui (ψi (ai) , a−i) dµ
′ (a) .

Combining this with Ineq. (7) shows that, for some k, U
k

i

(
ψi
(
σki
)
, σk−i

)
> U

k

i

(
σk
)
, in contra-

diction to the assumption that σk is a BNE of Uk.
Proof of Theorem 1. By taking ψi to be the identity function, Lemma 1 implies that

lim inf
k→∞

U
k

i

(
σk
)
≥
∫
A

ui (a) dµ′ (a) (8)

for every i ∈ N. On the other hand, by using the uniform boundedness of all payoff functions

(together with the fact that the payoffs are given by u on a set with a µ
(
σk
)
-measure tending

30In other words, if νi is the probability distribution of a random variable X, then ψi (νi) is the distribution

of ψi (X) .
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to 1) we obtain

lim sup
k→∞

∑
i∈N

U
k

i

(
σk
)

= lim sup
k→∞

∑
i∈N

∫
Ω

Uk
i

(
σk (ω) , ω

)
dP k (ω)

= lim sup
k→∞

∑
i∈N

∫
Ω

ui
(
σk (ω)

)
dP k (ω)

= lim sup
k→∞

∫
A

(∑
i∈N

ui (a)

)
dµ
(
σk
)

(a)

≤
∫
A

(∑
i∈N

ui (a)

)
dµ′ (a) =

∑
i∈N

∫
A

ui (a) dµ′ (a) ,

where the inequality follows from the Portmanteau theorem and the assumption (c) that∑
i∈N ui (a) is upper semi-continuous. Thus,

lim sup
k→∞

∑
i∈N

U
k

i

(
σk
)
≤
∑
i∈N

∫
A

ui (a) dµ′ (a) .

Combined with Ineq. (8), this leads to the conclusion that limk→∞ U
k

i

(
σk
)

exists and is equal

to
∫
A
ui (a) dµ′ (a) for every i ∈ N. Therefore, according to Lemma 1, for any i ∈ N and any

measurable ψi : Ai → Ai, the inequality
∫
A
ui (a) dµ′ (a) ≥

∫
A
ui (ψi (ai) , a−i) dµ

′ (a) holds,

which shows that µ′ is indeed a CE of u.

We have thereby shown that any accumulation point of {µ
(
σk
)
}∞k=1 is a CE of u. Since ν̂

has a unique CE and M(A) is compact, the sequence {µ
(
σk
)
}∞k=1 in fact converges to ν̂. As

the latter is true for any such sequence, ν is strongly robust by Definition 1.

A.5 Proof of Theorem 2

Proof. The proof proceeds in the same way as the proof of Theorem 1. The only exception that

needs to be made is in the proof of Lemma 1, the first paragraph of which we follow verbatim,

establishing the fact that the inequality

lim inf
k→∞

U
k

i

(
σk
)
<

∫
A

ui (ψi (ai) , a−i) dµ
′ (a) . (9)

holds for a continuous function ψi : Ai → Ai. In what follows we will show that ψi can be

modified in a way that the integrand in the right-hand term in Ineq. (9) is continuous µ′-almost

everywhere.

By (b’) and Fatou’s lemma,

λi lim inf
ε→0+

∫
A

ui (ψi (ai)− ε, a−i) dµ′ (a) + (1− λi) lim inf
ε→0+

∫
A

ui (ψi (ai) + ε, a−i) dµ
′ (a)

≥
∫
A

ui (ψi (ai) , a−i) dµ
′ (a) .
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Assume, e.g., that

lim inf
ε→0+

∫
A

ui (ψi (ai) + ε, a−i) dµ
′ (a) ≥

∫
A

ui (ψi (ai) , a−i) dµ
′ (a) (10)

(the arguments in the case where the inequality holds for ψi (ai) − ε instead of ψi (ai) + ε

are symmetric). For any j 6= i, d ∈ D(i), and 0 < ε < δ, the sets Ai,j,d(ε) := {a ∈ A | aj =

fdij(ψi (ai)+ε)} are disjoint for different values of ε, and hence µ′(Ai,j,d(ε)) = 0 for any ε outside

some countable set. Since, as follows from (a’), the function ui (ψi (ai) + ε, a−i) is continuous in

a outside ∪j 6=i,d∈D(i)Ai,j,d(ε), this function is in fact µ′-almost everywhere continuous in a for any

ε belonging to some vanishing sequence in (0, δ). By Ineq. (10), the function ψi can therefore

be replaced in Ineq. (9) by some ψ′i(= ψi + ε) : Ai → [ai, ai + δ] , for which ui (ψ
′
i (ai) , a−i) is

µ′-almost everywhere continuous in a, and the inequality in (9) is preserved.

Now let ψ′′i := min(ψ′i, ai). As in the proof of Lemma 1, we obtain

lim
k→∞

U
k

i

(
ψ′′i
(
σki
)
, σk−i

)
= lim

k→∞

∫
A

ui (ψ
′′
i (ai) , a−i) dµ

(
σk
)

(a) ,

and, since ai dominates all actions higher than ai by assumption,

lim
k→∞

U
k

i

(
ψ′′i
(
σki
)
, σk−i

)
≥ lim

k→∞

∫
A

ui (ψ
′
i (ai) , a−i) dµ

(
σk
)

(a) . (11)

As ui (ψ
′
i (ai) , a−i) is µ′-almost everywhere continuous in a, the right-hand side in (11) is

equal to
∫
A
ui (ψ

′
i (ai) , a−i) dµ

′ (a) by the Portmanteau theorem, and so

lim
k→∞

U
k

i

(
ψ′′i
(
σki
)
, σk−i

)
≥
∫
A

ui (ψ
′
i (ai) , a−i) dµ

′ (a) . (12)

Ineq. (9) – which holds for ψ′i – and Ineq. (12) imply that U
k

i

(
ψ′′i
(
σki
)
, σk−i

)
> U

k

i

(
σk
)

for some

k, in contradiction to the assumption that σk is a BNE of Uk. This establishes the claim in

Lemma 1 under conditions (a’) and (b’), and the proof proceeds as that of Theorem 1 from

this point onward.

A.6 Proof of Theorem 3

Proof. Denote by a∗ the pure-action NE of the contest, whose existence and uniqueness was

established in Szidarovszky and Okuguchi (1997). For any a ∈ [0, 1]n, define

H(a) :=
∑
i∈N

[ui(a)− ui(a∗i , a−i)] = 1−
n∑
i∈N

ai −
n∑
i∈N

ui(a
∗
i , a−i).

Clearly, H(a∗) = 0. As has been observed in Section 5.2, each ui(a
∗
i , a−i) is a convex function of

a−i, which is also continuously differentiable whenever a−i 6= 0−i. It follows that H is concave

on [0, 1]n and continuously differentiable on [0, 1]n\ ∪i∈N ([0, 1]i × {0−i}) .
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Observe that at least two players exert positive effort in a∗, i.e., a∗ /∈ ∪i∈N ([0, 1]i × {0−i}) ,
since otherwise player i, for whom a∗−i = 0−i, would have no best response against a∗−i. As a

consequence, H is differentiable at a∗.

We shall now prove that H is non-positive. For every player j and every action aj ∈ [0, 1],

we can evaluate H(aj, a
∗
−j) and get

H(aj, a
∗
−j) = uj(aj, a

∗
−j)− uj(a∗j , a∗−j) +

∑
i∈N\{j}

[
ui(aj, a

∗
−j)− ui(a∗i , aj, a∗−i,−j)

]
=

= uj(aj, a
∗
−j)− uj(a∗j , a∗−j) ≤ 0,

where the last inequality follows from the fact the a∗ is an NE. Therefore a∗ is a critical point

of H, and, as the latter is differentiable at a∗ and concave on [0, 1]n, the profile a∗ is also a

global maximizer of H, which implies that H(a) ≤ H(a∗) = 0 for every a ∈ [0, 1]n. Because H

is non-positive, for every a ∈ [0, 1]n∑
i∈N

ui(a) ≤
∑
i∈N

ui(a
∗
i , a−i). (13)

Now consider any CE µ in the contest. The condition given in Ineq. (1) holds, in particular,

for each i ∈ N and the constant function ψ(ai) ≡ a∗i , i.e.,∫
ui (ai, a−i) dµ(a) ≥

∫
ui (a

∗
i , a−i) dµ(a). (14)

The combination of Ineq. (13) and Ineq. (14) shows that, for every i ∈ N ,∫
ui (ai, a−i) dµ(a) =

∫
ui (a

∗
i , a−i) dµ(a). (15)

In words, every player i is indifferent between following the realized suggestion ai of the CE µ

and deviating to the pure NE action a∗i .

Now assume that µ([0, 1]n \{a∗}) > 0. Then there exists i ∈ N such that µ({a | ai 6= a∗i }) >
0. It cannot be that, conditional on ai 6= a∗i , the CE µ puts weight 1 on a set with a−i = 0−i,

since otherwise

ψεi (ai) =

a
∗
i , if ai = a∗i ,

ε, otherwise,

would violate Ineq. (1) for every sufficiently small ε > 0. It follows that

µ({a | ai 6= a∗i and a−i 6= 0−i}) > 0. (16)

Finally, consider a function ψi : [0, 1]→ [0, 1] given by ψi(ai) =
ai+a

∗
i

2
. It follows from Ineq.
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(1) that ∫
ui(ai, a−i)dµ(a) ≥

∫
ui(ψi(ai), a−i)dµ(a)

=

∫
ui

(
ai+a

∗
i

2
, a−i

)
dµ(a)

>
1

2

∫
ui(ai, a−i)dµ(a) +

1

2

∫
ui(a

∗
i , a−i)dµ(a)

=

∫
ui(ai, a−i)dµ(a),

where the strict inequality follows from the strict concavity of ui in ai when a−i 6= 0−i and Ineq.

(16), and the last equality follows from (15). We have reached a contradiction, and therefore

must conclude that any CE µ of the contest is a Dirac measure concentrated on the pure-action

NE a∗.

A.7 Proof of Claim 4

Proof. Each function pi is clearly continuous, and so p = (pi)i∈N trivially satisfies (a) and

(c’). Next, pi(ai, a−i) = h(ai)
r+

∑
j∈N h(aj)

is convex in a−i since h is concave and the function 1
r+x

is

decreasing and convex in x ≥ 0 for any r > 0. Similarly, the sum

∑
i∈N

pi(a) =

∑
i∈N h(ai)∑

i∈N h(ai) + r

is strictly concave since h is strictly increasing and concave, and the function x
r+x

is increasing

and strictly concave in x ≥ 0 for any r > 0. Thus u is an imperfectly discriminating contest

that satisfies the assumptions of Corollary 2.
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