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Abstract

In this paper we offer two contributions to the field of credit auctions. First, we

compare first- and second-price credit auctions and provide solvency-dependent conditions

such that one mechanism dominates the other in terms of expected payoffs of all the parties

involved. In addition, we present a new possibility of using bid caps in credit auctions.

We study the equilibria in the capped mechanisms and show that bid caps can increase

the expected payoffs of all sides, a win-win situation.
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1 Introduction

Credit auctions are auctions where the winning bidder may default after the price is set. Such

defaults occur whenever the auctioned assets (or projects) are costly such that bidders rely

on future income and financial markets to cover their expenses. Due to the potential grave

damages, researchers are constantly searching for ways to minimize such occurrences. In this

paper, we support the general effort by studying known and new methods to limit the expected

losses.

The credit-auction problem begins similarly to any private-value standard auction. First,

private values are distributed and bids are made, such that the winning bidder is set along

with the agreed price. Next, with a slight deviation from the usual set-up, the winning bidder

defaults with a certain probability, which depends on the agreed price. This probability function

is referred to as a solvency function. A defaulting winner loses a fixed endowment, collected by

the seller along with the auctioned asset.

Our solvency-function notion plays a key role in the first part of the paper, surrounding the

comparison of first- and second-price credit auctions (FPCAs and SPCAs, respectively). We

show that a 2-concave solvency function determines bidders’ non-decreasing measure of absolute

risk aversion. Such risk aversion leads to less aggressive bidding under the first-price mechanism,

and higher expected solvency rates. Therefore, FPCAs prove superior than SPCAs in terms

of expected payoffs, for the seller and bidders combined. On the other hand, we also prove

that the above arguments and result completely reverse once the solvency function is 2-convex,

implying a non-decreasing measure of absolute risk aversion, and second-price superiority.

The second part of the paper concerns new ways to deal with defaults. The three well-known

methods are: renegotiation, reselling the asset, and penalties.1 To differ, we propose a forth

approach – using bid caps.

Our bid-cap approach has several unique features. First, bid caps are a preliminary for-

mal part of the auction that restrict overbidding beforehand, while other solutions are applied

ex-post. For example, most auctions do not (or, at least, should not) formally enable a rene-

gotiation or a resale. When they do, the outcome tends to be poor since bidders can a-priori

overbid only to later enforce a new deal at their own terms. Second, the implementation of

bid caps is simple and cheap, whereas extracting damages or conducting renegotiations tend to

be costly and involve many litigations. For example, in 1996 a block of radio frequencies was

sold by the US Federal Communications Commission to companies that later defaulted since

1For more on these three methods see, e.g., Spulber (1990), Waehrer (1995), Rhodes-Kropf and Viswanathan

(2000), Zheng (2001), Board (2007), and Decarolis (2009), among many others.
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they could not sustain the high bids.2 Another famous example is the case of ITV digital, a

company that won the 2002 auction for the rights to broadcast the English Football League

games with a £315 million winning-bid; a bid it later failed to pay.3 In both cases, litigations

proceeded for many years after the default had occurred. Both examples also illustrate the

problem of timing. When dealing with broadcast rights, radio frequencies, or railways projects

– time is money, literally. One cannot sell broadcast rights after the league ends, just as one

cannot bring back the lost time for not commencing an infrastructure project. Thus, the ability

to ex-ante implement bid caps is a significant advantage.

In the second part of the paper we prove that bid caps are profitable for the seller in case the

latter’s expected payoff is decreasing, from a certain point onwards, as a function of the agreed

price. Moreover, we prove that bid caps can also increase bidders’ expected payoff, with a slight

exemption of high-valuations bidders, who are affected by the reduced probability of winning.

Nevertheless, we exemplify how such bidders also profit from a cap, once the distribution of

private values is convex such that the cap bares limited effect over their probability of winning.

1.1 Related literature

The literature on credit auctions has grown substantially in recent years,4 so we will focus on

papers most relevant to ours. Parlane (2003) and Board (2007), continued the work of Waehrer

(1995), by studying first- and second-price credit auction. Both prove that the latter mechanism

is superior for the seller in various scenarios, while Board (2007) also suggests that, under small-

recovery rates, the seller may prefer a FPCA as it guarantees higher solvency rates. Though

related, the two papers have several important differences with ours. We provide conditions

such that the relevant mechanism is superior to all parties involved, and show that the first-

price mechanism is superior for a broad set of solvency functions. This distinction is based on

the different motivation for a default. Parlane (2003) and Board (2007) consider a strategic

approach, where bidders evidently base their decision to default on the agreed price and private

valuations. We, however, consider a price-dependent exogenous solvency function, motivated

2See Wall Street Journal, “NextWave’s Tactics at Wireless Auction Are Under Fire” on May 6, 1996. Addi-

tional comments on the legal issues concerning this auction are given in Pardo (2001).
3See The Financial Times, “Turmoil as ITV Digital Owners Throw in Towel”, March 28, 2002; and BBC

News, “Football League loses damages bid”, June 23, 2006.
4See, among many others, Spulber (1990), Rhodes-Kropf and Viswanathan (2000), Zheng (2001), Rhodes-

Kropf and Viswanathan (2005), Engel et al. (2006), Spagnolo et al. (2006), Conley and Decarolis (2012),

Decarolis (2013), Chillemi and Mezzetti (2014), and Chang et al. (2015).
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by the information asymmetry in financial markets (which will be broadly explained later on).

Our distinction between mechanisms is based on bidders’ risk preferences as in Matthews

(1987) and Eso and White (2001). Matthews (1987) shows that bidders with decreasing absolute

risk aversion (DARA) prefer the second-price mechanism, while reverse preferences point to the

first-price mechanism as superior. In a similar spirit, Eso and White (2001) shows that DARA

leads to less aggressive bidding, indicating that a seller facing such bidders would tend to reduce

the imposed risk. We combine the two results through our credit-auction model. That is, we

show that the solvency function determines whether bidders have a DARA or an increasing

one. In return, bidders aggressiveness is set (as in Eso and White (2001)), directly affecting

the expected solvency rates. Thus, our final conclusions are in-line with Matthews (1987), as

the risk preferences determine the superior mechanism.

Moving on to the second part of the paper, there are a few recent papers that considered

new ways to deal with defaulting. Calveras et al. (2004) suggest using surety bonds against

abnormally low tenders in procurement auctions. This line of work is followed by Burguet et

al. (2012) and Decarolis (2014) as they examine the way rents could be used to prevent low

tenders from bidding too aggressively in limited-liability auctions. Nevertheless, to the best

of our knowledge, bid caps were not formally considered in the literature in the context of

FPAs or SPAs, but were considered in all-pay auctions (see, e.g., Che and Gale (1998), Gavious

et al. (2002), and Sahuguet (2006)). In the all-pay framework, previous results indicate that

caps can either improve bidders’ expected payoff or the seller’s. We, on the other hand, focus

on increasing the expected payoff of all sides simultaneously. This goal is plausible due to

the equilibrium sub-optimality in credit auctions. Moreover, a win-win theoretical result has

practical implications, as well. For example, in 2003 the Tel Aviv city council auctioned the

rights to operate the city’s parking lots. The city council had an estimated total cost of operation

(TCO) and every bid that exceeded the estimated TCO by more than 15% was eliminated.5 A

group of bidders appealed against the usage of bid caps claiming that the bound is biased. Our

win-win outcome gives the required theoretical basis for the usage of bid caps.

Though the lack of theoretical studies, there are other known examples of bid-caps use. For

example, in US auctions to explore and drill oil and gas on federal offshore lands. In these

auctions, conducted by the U.S. Mineral Management Service (MMS) since 1954, rejections of

the highest bids are not uncommon, particularly on drainage tracts (see Haile et al. (2010) for

more information on these auctions). Though the policy of the MMS concerning risky bids

differs from our binding bid cap, it produces the same effect. For example, in cases bidders

have a rational expectations over the rejection threshold of the MMS, the two policies coincide.

5See Haaretz, ”Whoever gives a too good offer, cannot win the auction”, Feburary 2, 2003.
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2 The model

Let N � t1, . . . , nu be a set of n risk-neutral buyers, who bid for a single indivisible good. Each

bidder i P N has a private valuation vi P V � rV , V s � R�, drawn independently and randomly

according to a non-atomic, cumulative distribution function (CDF) F with density f .

The auction begins when every bidder i P N places a non-negative fixed endowment w ¤ V

and a bid bi P V . Denote by b � pb1, . . . , bnq a vector of n bids. The winning bidder ib is set

to be the highest bidder, with a symmetric tie-breaking rule. In a FPCA the winning bidder

pays his own bid, while in a SPCA the winner pays the second highest bid.6 All other bidders

neither pay nor receive, anything. Let pb be the agreed price, which is the cost of the winning

bidder.

After the winning bidder and cost are determined, the winner remains solvent with a certain

probability, determined by a solvency function S : R� Ñ r0, 1s. Formally, for every realized

agreed price pb, the quantity Sppbq is the probability that bidder ib remains solvent, pays the

agreed price pb, and collects the object. If the winner defaults, he loses the endowment w, while

the seller collects the endowment w and keeps the item. In both cases, the payoffs of all non-

winning bidders are zero. We assume that S is a decreasing, twice continuously-differentiable

function.

A strategy βi of bidder i P N is a measurable function βi : V Ñ R� from the set of values

to the set of non-negative real numbers. Fix a profile of strategies β. The expected payoff of

the seller is

Rsellerpβq � ErSppβqpβ � p1 � Sppβqqws

� ErSppβqppβ � wqs � w,

where pβ is the random agreed price, given β. The payoff of the winning bidder, as a function

of a realized agreed price pb and a private value v, is

uppb, vq � Sppbqpv � pbq � p1 � Sppbqqw

� Sppbqpv � w � pbq � w. (1)

Therefore, the expected payoff of bidder i, with a private value v, is

Ripβ|vq � E
�
uppβ, vq1ltβipvq¡maxj�i βju

�
,

and a profile β is an equilibrium if Ripβ|vq ¥ Ripbi, β�i|vq, for every bidder i, for every private

value v, and for every bid bi.

6The provided results for SPCA also apply to the English auction.

4



2.0.1 The solvency function

In our model there are two related (and rather important) assumptions. The first concerns the

i.i.d. private valuations, and the second concerns the stochastic solvency function that depends

on the agreed price. Since private values are not uncommon in the context of credit auctions,7

we focus on the less-obvious second assumption.

The basic idea behind a credit auction is that bidders cannot immediately cover their bids.

Namely, bidders do not have enough funding to pay for their high valuations, and solvency

depends on the ability to raise funds in financial markets. However, in financial markets bidders

face the problem of credibly signalling their ability to repay the loan (i.e., signal their private

value). In fact, an auction is organized specifically because one cannot credibly extract the

private values of agents. Hence, bidders cannot rely on private values and differentiation occurs

through the agreed price.

Another interpretation and motivation to our solvency function and model lay in the field of

procurement auctions, where bidders bid to win some project (e.g., the drilling rights example

mentioned in the introduction). In such cases, private values are the certainty equivalent of the

project (or asset, in case of spectrum auctions), and there is an essential need for a third-party

funding, since there is a basic time discrepancy between the project and the realization of value.

Hence, the information asymmetry and uncertainty are evident, and conditioning on private

values becomes impossible.

Our solvency-function model deals with this problem through two supporting efforts. On

the one hand, the solvency function is general. It may depend on exogenous parameters, such

as the distribution of private valuations, status of financial markets and financial institutions,

number of bidders, and so on. On the other hand, the solvency function changes by the

endogenously-derived agreed price. Therefore, it depends on the markets’ available and credible

information, and reflects the information asymmetry upon which the lenders’ decisions are

based. In addition, our use of a general probability function enables us to capture the essence

of defaulting, without restricting ourselves neither to a specific information structure, nor to a

specific financial structure.

3 FPCA vs. SPCA

The comparison between FPCAs and SPCAs starts with an equilibrium analysis of the two

mechanisms. As most studies, we focus on a symmetric, increasing equilibrium. In the following

7See, e.g., Waehrer (1995), Rhodes-Kropf and Viswanathan (2005), and Board (2007).
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proposition we prove that both equilibria are strictly increasing, continuous, and generate

convex expected payoffs for bidders, where convexity is considered with respect to the private

valuation. (All proofs are deferred to the Appendix.)

Proposition 1. In FPCAs and SPCAs there exist symmetric, strictly increasing, continuous

equilibria, denoted βF and βS respectively, such that bidders’ expected payoffs are strictly increas-

ing and convex in the private valuations. In FPCAs, the equilibrium βF is also differentiable.

The results of Proposition 1 are quite orthodox. First, the SPCA equilibrium βS follows

from the known phenomenon where, in SPAs, every bidder’s bid generates a zero payoff had

the bidder needed to pay his own bid. That is, the equilibrium sustains upβSpvq, vq � 0, which

also shows that bidders bid more aggressively in the SCPA than in the FPCA. In addition,

using an envelope argument, one can see that a bidder’s expected payoff changes according to

the effective probability of obtaining the asset. That is, the derivative of a bidder’s expected

payoff (w.r.t. the private valuation) equals the expected product of the probabilities to win and

remain solvent. The latter effective probability must be an increasing function in the private

valuation, thus explaining the convexity property.

Given the mentioned equilibria profiles, we can now compare the two mechanisms. We say

that one mechanism dominates another if the former generates a higher expected payoff for

the seller and bidders. The following theorem shows that dominance hinges on the convexity-

concavity properties of S.

Theorem 1. If the solvency function is 2-concave, then the FPCA dominates the SPCA.

However, if the solvency function is 2-convex, then the FPCA is dominated by SPCA.

The intuition behind Theorem 1 is traced to the influence of S over the risk preferences of

bidders. If S is 2-concave, then bidders have a non-decreasing absolute risk aversion (ARA).

Recalling the results of Matthews (1987) and Eso and White (2001), both building on Lemma

1 of Maskin and Riley (1984), we know that such bidders prefer the first-price mechanism

over the second-price, by the reduced risk (i.e., in a standard setting, the price in the second-

price auction is a mean-preserving spread of the price under the first-price mechanism). In

our context, bidders’ non-decreasing ARA leads to higher expected solvency rates under the

first-price mechanism. Hence, the latter is preferable to all sides, seller and bidders alike. This

intuition reverts completely once the solvency function is 2-convex, leading to a non-increasing

ARA, and superiority of the second-price mechanism. Nevertheless, it is imperative to note that

2-concavity, defined by the concavity of �1{S, is weaker than log-concavity, whereas 2-convexity

is stronger than convexity. The set of log-concave functions includes a long list of distributions
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such as: normal, exponential, uniform, logistic, beta, gamma, χ2, and many others. Thus, the

condition is met for a wide set of probability distributions, all lead to the first-price dominance.

4 Bid caps in credit auctions

In the following section, we track the second goal of this paper — the introduction of bid caps.

For the sake of clarity, we describe the unfolding of a capped auction. As a preliminary stage,

the seller posts a bid cap b̄ that defines the set of acceptable bids. After bidders observe the cap

and receive their private valuations, they submit bids. Since the bid cap b̄ is binding, every bid

strictly above the cap is eliminated, and the auction continues as in the uncapped mechanism.

The bid cap generates a pooling effect, as shown in Proposition 2. The simpler effect occurs

in the SPCA as every bidder, who originally bid above the cap, now bids b̄ while all other

bidders remain unaffected. The intuition is clear. A deviation from a high bid to a lower one,

strictly below the cap, is suboptimal in terms of winning the competition and remaining solvent.

The more complicated effect occurs in FPCAs since some bidders, who originally bid below

the cap, deviate to b̄ in equilibrium. That is, the pooling effect occurs downwards and upwards.

The upwards effect follows from the increase in the expected payoff of bidders who originally

bid b̄. The bid cap eliminates higher bids, thus increases their probability of winning, while

the agreed price is fixed at b̄. Consequently, even a bidder with a smaller, yet sufficiently

close, valuation gains from bidding b̄. In equilibrium, the upwards-pooled bidders balance the

discontinuous increase in the probability of winning with the excess agreed price they are willing

to pay.

Proposition 2. For every bid cap b̄ and for every bidder with valuation v:

(i) an equilibrium in the capped SPCA is β�pvq � mintβSpvq, b̄u;

(ii) an equilibrium in the capped FPCA is

β�pvq �

$'&
'%
βFpvq, if v   c̄,

b̄, if v ¥ c̄,

(2)

for some c̄ ¤ β�1
F pb̄q, where c̄ increases with b̄.

The value c̄, which we refer to as the upwards-pooling bound of b̄, is the value of the bidder

who is indifferent between bidding b̄ and giving his original bid βFpc̄q. This indifference is

7



derived from the fact that every pooled bidder has a negative marginal effect on the probability

of winning the auction with a bid of b̄. That is, the more bidders bidding b̄, the smaller the

probability of winning with such a bid. Thus, the upwards pooling effect weakens with every

additional pooled bidder. It should be noted that for a sufficiently low cap, such an indifferent

bidder may not exist, since b̄ might be the optimal bid for all bidders.

4.1 Increasing payoffs using bid caps

We can now address the issue of bid caps in credit auctions. For the purpose of our analysis,

we consider the seller’s payoff usellerppbq � Sppbqppb � wq � w. The monotonicity of useller is

crucial for the implementation of a cap, in the sense that no cap should be used if usellerppbq is

a strictly increasing function. So, if usellerppbq is decreasing from a certain price onwards, a bid

cap can increase the seller’s expected payoff. Formally, define p0 to be the threshold price, such

that usellerppbq is increasing if and only if pb ¤ p0. Theorem 2 states that, in a SPCA, every cap

b̄ ¥ p0 increases (potentially weakly) the seller’s expected payoff.

Theorem 2. In a SPCA and if a threshold price p0 exists, then every bid cap b̄ ¥ p0 increases

the seller’s expected payoff.

An additional conclusion, based on the SPCA’s pooling effect, concerns the optimal cap b̄opt.

Since bidders are only pooled downwards towards p0, the seller’s optimal cap is the threshold

price b̄opt � p0. Nevertheless, assuming that S is unknown to the seller (otherwise he could

simply rank bids using S), his ability to fix the optimal cap is limited. Yet, the seller can still fix

a sufficiently high cap and guarantee a weak increase in expected revenue, in case a threshold

price p0 exists. In addition, the continuity of the seller’s payoff suggests that even a cap below

(but sufficiently close to) p0 increases the seller’s expected payoff in equilibrium. The following

theorem shows that similar results hold in FPCAs, as well.

Theorem 3. In a FPCA, there exists a neighbourhood of p0 in which every bid cap b̄ strictly

increases the seller’s expected payoff. In addition, the optimal cap b̄opt is lower than p0.

The result that the optimal cap is bounded away from p0 is somewhat puzzling. It suggests

that the seller actually prefers pooling bidders at a price below p0, although p0 maximizes his

payoff function. The solution is traced to the influence of the threshold price over the payoff

function. If indeed a threshold price exists and the seller’s payoff function is differentiable, it

implies that useller is concave in the neighbourhood of p0. In other words, a small decrease in

the pooling price carries a limited effect over the payoff. On the other hand, by fixing a cap
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below p0, the seller pools additional low-evaluation bidders, thus increasing the probability that

the agreed price equals the cap. The additional pooling compensates for the marginal loss in

the agreed price.

4.1.1 The bidders’ payoffs

The effect of bid caps on bidders’ expected payoffs depends on their private valuations. The

pooling effect along with the convexity of expected payoffs divide the set of bidders into three

categories: low-valuation bidders, average-valuation pooled bidders, and high-valuation pooled

bidders. The low-valuation bidders are bidders who bid below the cap in the capped auction.

These bidders’ payoffs are unaffected by the cap in any way. Their equilibrium strategies and

payoffs are identical in the capped and uncapped auctions. The set of pooled bidders consists of

high- and average-valuation bidders, who bid the cap in the capped mechanisms. Their payoffs

are significantly affected by the cap. On the one hand, high-valuation bidders may lose from

the introduction of a cap, since they cannot give high bids and win the auction with a high

probability. On the other hand, average-valuation pooled bidders gain from the introduction of

a cap by the increased probability of winning. The following lemma summarizes these results.

Lemma 1. Fix a cap b̄, and denote vb̄ as the valuation that induce a bid of b̄ in the uncapped

mechanism. There exists a private value v0 ¡ vb̄ such that b̄ increases (potentially, weakly) the

expected payoff of a bidder with valuation v if and only if v ¤ v0.

The intuition and proof of Lemma 1 follow from two previous results: (i) bidders’ expected

payoffs are convex (Proposition 1); and (ii) the set of pooled bidders is convex (Proposition

2). In addition, note that pooled bidders pay the same price when winning, so their expected

payoffs are linearly increasing in private valuations. Therefore, by the single-crossing property,

the set of bidders who strictly gain from a cap is convex. Note that the increase in expected

payoffs, due to the implementation of a cap b̄, is weak for the non-pooled bidders and strict for

a convex set of average-valuation pooled bidders.

Although Lemma 1 states that a set of high-valuation bidders may lose from the introduction

of a cap, there is another possibility. The following example shows that a cap can increase the

expected payoff of all bidders.

Example 1. High-bids SPCA.

To increase the payoffs of high-valuation bidders using a cap, we need to ensure that the cap

generates a relatively low agreed price to compensate for the loss in the probability of winning
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the auction. We achieve this effect using two assumptions. First, we assume that no endowment

is needed (w � 0), which increases equilibrium bids, as can be seen in Proposition 1. Second,

we assume that the CDF F on the private valuation is convex. This convexity ensures that

a winning high-valuation bidder pays a relatively high agreed price (with high probability).

Alternatively, the convexity property secures a significant amount of high-valuation bidders,

such that the cap’s influence over the probability of winning is mild.

Claim 1. In a SPCA, assuming that no endowment is needed pw � 0q and F is convex, every

bid cap increases all bidders’ expected payoffs.

This result carries some resemblance to the work of Che et al. (2017) which studies an

auction-collusion context, and shows how the advantages of pooling hinges on the convexity-

concavity of private valuations. Note that a unification of Claim 1 and Theorem 2 implies

that a cap can simultaneously increase the seller’s and the bidders’ expected payoffs (a win-win

situation).

5 Summary and discussion

In this paper we offered two main contributions for designers of credit auctions. First, we

motivated the usefulness of first-price mechanisms relative to the second-price mechanisms.

Second, we studied the possibility of using bid caps in first- and second-price auctions. We

studied the equilibria in both auctions and showed that caps can increase the expected payoffs

of all sides.

Though we made a significant progress in the study of bid caps in FPCAs and SPCAs,

there is more to be done. For example, one can try extending Theorem 3 to cases where the

cap is bounded away from the threshold price p0. In such cases, one needs to show that the

upwards-pooling effect is weaker than the downwards-pooling effect, in terms of the seller’s

revenue, so that every bid cap above the threshold price increases the seller’s revenue. Another

possible question is whether the upwards-pooling effect can be used to increase seller’s revenue

in cases where the seller’s expected payoff is not necessarily decreasing.

The use of a public cap, compared to a private one, is another significant aspect for future

research. In our model, the cap is common knowledge. This generates the pooling equilibrium

and assures that bidders do not make the mistake of bidding above the cap. One can consider a

different set-up where the cap remains a private assessment of the seller. A private cap carries a

non-trivial influence over bidders’ strategies since they depend on bidders’ ex ante assessments
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of the seller’s cap. For example, the uncertainty regarding the cap may lead to cases where

bidders mistakenly bid above it.

In general, the main question of an optimal credit auction remains unanswered. Note that

the optimal solution may not be based on bid caps, but on other methods, such as higher

endowments or sequential auctions. Nevertheless, we hope that the current analysis sheds some

light on applicative methods for credit auctions.
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6 Appendix

Proposition 1. In FPCAs and SPCAs there exist symmetric, strictly increasing, continuous

equilibria, denoted βF and βS respectively, such that bidders’ expected payoffs are strictly increas-

ing and convex in the private valuations. In FPCAs, the equilibrium βF is also differentiable.

Proof. We begin our analysis with the second-price mechanism, where the equilibrium βS

is given by

βSpvq � v � w �
w

SpβSpvqq
. (3)

Fix a private value (PV) v P V . We first prove that a solution for y � v � w � w
Spyq

exists. If

v � V , then βSpvq � v solves the equation. Moreover, by the monotonicity and continuity of

S and the intermediate value theorem, a solution exists for every v ¡ V . Denote this solution

by βSpvq. Note that it solves the zero-profit condition upβSpvq, vq � 0, where upβSpvq, vq is

the payoff of a winning bidder as a function of an agreed price βSpvq. The function u is

strictly decreasing in its first argument, so a deviation upwards to y ¡ βSpvq is suboptimal. In

addition, the dependence of the agreed price on the second highest bid assures that deviating

downwards, to y   βSpvq, is also suboptimal. Hence, βS is an equilibrium. The monotonicity

and continuity of βS are straightforward from the symmetric equilibria and properties of u:

continuous; decreasing in first coordinate ; increasing in second coordinate.

Now consider the expected payoff uSpvq of a bidder with PV v. If uS is not strictly increasing

in v, there exist v1   v such that uSpv1q ¥ uSpvq. In this case, the bidder has a profitable

deviation to βSpv1q, contradicting the equilibrium analysis. Thus, we are left with the convexity

of bidders’ expected payoff. Let Y � maxj�i vj be the random variable defined by the maximal

valuation of all bidders excluding the given bidder with PV v. Hence,

uSpvq � E
�
rSpβSpY qqpv � w � βSpY qq � ws1ltY vu

�
� E

�
upβSpY q, Y q1ltY vu

�
� E

�
SpβSpY qqpv � Y q1ltY vu

�
� E

�
SpβSpY qqpv � Y q1ltY vu

�
,
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where the last equality follows from the relation upβSpvq, vq � 0. Differentiating w.r.t. v under

the integral sign, we get duSpvq
dv

� E
�
SpβSpY qq1ltY vu

�
. Since S is non-negative, the derivative

is increasing in v, establishing the convexity, as needed.

We move on to the first-price mechanism, where the equilibrium βF is defined by the differ-

ential equation and boundary condition

β
1

F pvq � �
pn� 1qfpvq

F pvq
�
upβFpvq, vq
u1pβFpvq, vq

, (4)

βFpV q � V � w �
w

SpβFpV qq
.

Fix a PV v. Since u1 is negative, βF is strictly increasing and differentiable, by definition. In

case v � V , then the boundary condition implies that βFpvq sustains upβFpV q, V qq � 0. By the

previous SPCA analysis, this is an optimal action given the equilibrium profile. So we focus on

a bidder with a PV v ¡ V who bids βFptq, while all other bidders bid truthfully according to

βF. Taking the first-order derivative, we get

BRpt, vq
Bt

� F n�1ptqu1pβFptq, vq
�
βF

1ptq �
pn� 1qfptq

F ptq
�
upβFptq, vq
u1pβFptq, vq

�

� �u1pβFptq, vqpn� 1qF n�2ptqfptq
�
upβFptq, tq
u1pβFptq, tq

�
upβFptq, vq
u1pβFptq, vq

�
,

where the second equality follows from plugging in βF
1ptq. A straightforward examination shows

that upβFptq,vq
u1pβFptq,vq

is decreasing in v. Hence,

BRpt, vq
Bt

½ 0, as t ¼ v, (5)

and t � v maximizes the bidder’s expected payoff, proving that βF is a symmetric, strictly-

increasing, differentiable equilibrium.

The monotonicity of a bidder’s expected payoff is, again, straightforward from the symmetric

equilibrium, so it remains to verify convexity. Differentiating the expected payoff w.r.t. v and

using the definition of βF yields

d

dv
tupβFpvq, vqF n�1pvqu � F n�1pvqSpβFpvqq.

Note that the term on the RHS is the bidder’s effective probability of obtaining the object.

If F n�1pvqSpβFpvqq is non-increasing in v, there exists a profitable deviation to a lower value

t   v (a lower agreed price with a higher effective probability), contradicting the equilibrium

analysis.
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Theorem 1. If the solvency function is 2-concave, then the FPCA dominates the SPCA.

However, if the solvency function is 2-convex, then the FPCA is dominated by SPCA.

Proof. Fix a bidder with a PV v. Let pβF, uFq and pβS, uSq be the bidder’s strategy

and expected payoff in equilibrium, in a FPCA and in a SPCA, respectively. Note that both

equilibria dictate a zero expected payoff for a bidder with PV v � V . We will prove that

u1Fpvq ½ u1Spvq whenever uFpvq � uSpvq, according to the condition over S, thus establishing

the part concerning the bidders’ expected payoffs.

Recall that bidders’ payoff equals uppb, vq � Sppbqpv � w � pbq � w, and Proposition 1

shows that u1Fpvq � F n�1pvqu2pβFpvq, vq. To differ, the expected payoff of a SPCA winning

bidder is uSpvq � ErupβSpYvq, vqsF n�1pvq, where Yv is the second-highest PV, given that v

is the highest. By a standard envelope argument, we get u1Spvq � F n�1pvqEru2pβSpYvq, vqs,

where we used the fact that upβSpvq, vq � 0 by the definition of βS. Hence, we need to prove

that u2pβFpvq, vq ½ Eru2pβSpYvq, vqs if upβFpvq, vq � ErupβSpYvq, vqs. This follows directly from

Lemma 1 of Maskin and Riley (1984) where u is decreasing in the agreed price pb, and �u11
u1

is either a non-increasing or a non-decreasing function of v. The last condition implies that

bidders have either a non-decreasing or a non-increasing absolute risk aversion. Taking the

relevant derivatives yields

�
u11pt, vq
u1pt, vq

� �
S2ptqpv � w � tq � 2S 1ptq
S 1ptqpv � w � tq � Sptq

,

B
Bv

�
�
u11pt, vq
u1pt, vq

�
�

SptqS2ptq � 2pS 1ptqq2

pS 1ptqpv � w � tq � Sptqq2
,

and the statements follow from the condition over S, since SptqS2ptq � 2pS 1ptqq2 ½ 0 is deter-

mined by the convexity-concavity properties of �1{S.

For the second part of the proof, recall that the expected payoff of the seller, conditional

on the agreed price pb, is usellerppbq � Sppbqppb � wq � w. Let RFpvq � usellerpβFpvqq � w

and RSpvq � ErusellerpβSpYvqqs � w denote the seller’s expected payoff, deducted the initial

endowment w and conditional on a highest valuation v, in a FPCA and in a SPCA respectively.

Since RFpvq � RSpvq in case v � V , we only need to prove that R1
Fpvq ½ R1

Spvq, according to

S, whenever RFpvq � RSpvq. To simplify the notation, denote y1 � βFpvq, y2 � βSpYvq, and

ȳ2 � βSpvq. The first-order derivatives of RF and RS are

R1
Fpvq � �

pn� 1qfpvq
F pvq

�
upy1, vq
u1py1, vq

rS 1py1qpy1 � wq � Spy1qs,

R1
Spvq � �

pn� 1qfpvq
F pvq

rRSpvq � Spȳ2qpȳ2 � wqs.
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Using the equality u1py1, vq � S 1py1qpv � w � y1q � Spy1q, the definition of βSpvq such that

upȳ2, vq � 0, and the assumption that RSpvq � RFpvq, where RFpvq � vSpy1q � w � upy1, vq,

yields the following equalities:

R1
Fpvq �

pn� 1qfpvq
F pvq

�
upy1, vq
u1py1, vq

ru1py1, vq � S 1py1qvs,

R1
Spvq � �

pn� 1qfpvq
F pvq

rvSpy1q � w � upy1, vq � w � vSpȳ2qs.

Thus, we need to show that �S 1py1q
upy1,vq
u1py1,vq

½ Spȳ2q � Spy1q. For that purpose, define the

function Hptq � �S 1ptq upt,vq
u1pt,vq

� Spȳ2q � Sptq. Note that Hptq is either decreasing or increasing

by the condition over S, since H 1ptq � upt,vq
pu1pt,vqq2

rSptqS2ptq � 2pS 1ptqq2s. In addition, upȳ2, vq � 0

suggests that Hpȳ2q � 0. Thus, y1 ¤ ȳ2 implies that Hpy1q ½ 0, and the result follows.

Lemma 2. (Monotonicity lemma). For every bidder with valuation v in a FPCA and given

the equilibrium βF, bidding βFpyq dominates bidding βFpxq when x   y   v and when v   y   x.

Proof. Consider a bidder with valuation v in a FPCA when all other bidders bid according

to βF. Assume x   y   v and define the function Φpt, x, yq by

Φpt, x, yq � F n�1pyqupβFpyq, tq � F n�1pxqupβFpxq, tq

� F n�1pyqrSpβFpyqqpt� w � βFpyqq � ws

� F n�1pxqrSpβFpxqqpt� w � βFpxqq � ws.

We know that F n�1pxq   F n�1pyq and βF is strictly increasing, implying that t� w � βFpxq ¡

t�w� βFpyq. Thus, the probability F n�1pyqSpβFpyqq of obtaining the object by bidding βFpyq

is strictly greater than the probability F n�1pxqSpβFpxqq of obtaining the object while bidding

βFpxq. Otherwise, a bidder with valuation y could increase his expected payoff by bidding

βFpxq. Since βF is an equilibrium, it follows that Φpy, x, yq ¥ 0. The fact that Φpt, x, yq is a

linear function in t along with the inequality F n�1pyqSpβFpyqq�F n�1pxqSpβFpxqq ¡ 0 suggests

that Φpv, x, yq ¡ 0 for every v ¡ y ¡ x, as needed.

Now assume v   y   x. For similar reasons, we know that F n�1pxqSpβFpxqq ¡ F n�1pyqSpβFpyqq

when x ¡ y. Therefore, the function Φpt, x, yq is linearly decreasing in t, and the fact that

Φpy, x, yq ¥ 0 suggests that Φpv, x, yq ¡ 0 for every v   y   x.

Proposition 2. For every bid cap b̄ and for every bidder with valuation v:

(i) an equilibrium in the capped SPCA is β�pvq � mintβSpvq, b̄u;
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(ii) an equilibrium in the capped FPCA is

β�pvq �

$'&
'%
βFpvq, if v   c̄,

b̄, if v ¥ c̄,

(2)

for some c̄ ¤ β�1
F pb̄q, where c̄ increases with b̄.

Proof. We consider only the case where the bid cap b̄ lies in the closed interval of possible

equilibrium bids. Whenever the cap is lower (or higher) than the minimal (resp. maximal)

possible bid, the result is trivial.

The proof for the capped SPCA is immediate. Once a cap b̄ is implemented in a SPCA, every

player with PV v   β�1
S pb̄q cannot gain by bidding b̄. If such a player bids b̄, then the probability

of winning increases whenever the conditional expected payoff is negative. Furthermore, bidding

bpvq R tβSpvq, b̄u is sub-optimal, as βS is an equilibrium in the original SPCA and bidders with

valuation close to v bid according to βS. If the PV of the bidder is v ¥ β�1
S pb̄q, he can either

bid b̄ or less. Bidding less than b̄ is suboptimal by the same reasoning that βS is an equilibrium

in the uncapped SPCA (i.e., it does not affect the agreed price, conditional on winning, while

decreasing the probability of winning the auction). Thus concluding the proof for the SPCA.

Moving on to the capped FPCA, we prove that a pooling equilibrium exists such that every

bidder with v ¡ c̄ bids b̄ for some c̄   β�1
F pb̄q, while all other bid according to βF. We start by

defining c̄. Denote by vb̄ � β�1
F pb̄q the valuation of a bidder who bids b̄ in the βF-equilibrium

of the uncapped FPCA, and consider a bidder with PV c ¤ vb̄. Let βc be a strategy where all

bidders with valuation below c bid according to βF and all the other bidders bid b̄. Given all

bidders bid according to βc, the probability that the c-valuation bidder wins the auction is

Gpcq �
n�1̧

k�0

�
n� 1

k



F n�1�kpcqp1 � F pcqqk

k � 1
�

1 � F npcq
np1 � F pcqq

¡ F n�1pcq,

where the second equality and the strict inequality hold for every F pcq P p0, 1q. Recall the

expected payoff uFpcq � F n�1pcqupβFpcq, cq of a bidder with valuation c in the uncapped FPCA,

and define uF̄pcq � Gpcqupb̄, cq to be the c-valuation bidder’s expected payoff assuming all

bidders bid according to βc.

By the increased winning probability, it follows that uF̄pvb̄q � uFpvb̄q ¡ 0, while an agreed

price of b̄ ¡ V assures that uF̄pV q � uFpV q   0. Since uF̄ and uF are continuous, there exists

c P pV , vb̄q such that uF̄pcq � uFpcq. Continuity also suggests that one can fix a maximal value

c̄   vb̄ such that uF̄pc̄q � uFpc̄q. We refer to c̄ as the upwards-pooling bound of b̄. In simple

terms, a bidder with private valuation c̄ is unaffected by the introduction of the bid cap b̄.
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Given that all other bidders bid according to βc̄, which is the strategy given in Eq. (2), the

c̄-bidder can either bid βFpc̄q or bid b̄, and get the same expected payoff as in the uncapped

auction.

Now we need to prove that every bidder with valuation v � c̄ bids according to the proposed

strategy. Note that any bid bpvq P pβFpc̄q, b̄q is suboptimal since a deviation to bpvq � ε ¡ βFpc̄q

for some small enough ε ¡ 0, induces the same probability of winning the auction, but with

an ε-reduced price. Thus, given all other bidders use the strategy βc̄, a bidder with valuation

v will bid b P rβFpV q, βFpc̄qs Y tb̄u. From this point on, and with a slight abuse of notation,

we assume that uF̄pvq is the expected payoff of a bidder with valuation v where all bidders bid

according to strategy β� � βc̄. That is,

uF̄pvq �

$'&
'%
F n�1pvqupβFpvq, vq, if v   c̄,

Gpc̄qupb̄, vq, if v ¥ c̄.

Define the function Ψpv, b̄q � Gpc̄qupb̄, vq � F n�1pc̄qupβFpc̄q, vq. By the indifference of a bidder

with valuation c̄, it follows that Ψpc̄, b̄q � 0, and explicitly

�
Gpc̄qrSpb̄qpv � w � b̄q � ws � F n�1pc̄qrSpβFpc̄qqpv � w � βFpc̄qq � ws

�
v�c̄

� 0.

Since b̄ ¡ βFpc̄q and Gpc̄q ¡ F n�1pc̄q, it follows that Gpc̄qSpb̄q ¡ F n�1pc̄qSpβFpc̄qq. Therefore

Ψpv, b̄q is linearly increasing in v. Thus, a bidder with valuation v � c̄ prefers bidding βFpc̄q

instead of bidding b̄ if and only if v   c̄. By the mentioned monotonicity lemma (given in the

Appendix) and the fact that βF is an equilibrium in the uncapped FPCA, the result follows.

A few remarks on the value of c̄ are in order. Since the equality uF̄pc̄q � uFpc̄q implies

Gpc̄qSpb̄q ¡ F n�1pc̄qSpβFpc̄qq, one can use an envelope argument to show that u1
F̄
pc̄q ¡ u1Fpc̄q.

Thus, a similar comparison of uF̄pc̄� εq and uFpc̄� εq for a small enough ε ¡ 0 will show that

uF̄pc̄� εq ¡ uFpc̄� εq and u1
F̄
pc̄� εq ¡ u1Fpc̄� εq. For this reason, it is easy to verify that every

cap b̄ has a unique upwards-pooling bound c̄. In addition, c̄ is an increasing, implicit function

of b̄. That is, under a small increase in b̄ to b̄� ε, the function uF̄pc̄q � Gpc̄qupb̄� ε, c̄q decreases,

and the equality uF̄pc̄q � uFpc̄q does not hold. Thus, the upwards-pooling bound of b̄ � ε is

greater than the upwards-pooling bound of b̄, as suggested.

Theorem 2. In a SPCA and if a threshold price p0 exists, then every bid cap b̄ ¥ p0 increases

the seller’s expected payoff.

Proof. In case a threshold price p0 exists, but the maximal possible bid in equilibrium

βpV q ¤ p0 is lower than p0, then any cap b̄ ¥ p0 has no affect on the auction. Thus, the case
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where p0 exists is only considered when some bidders can bid above p0 in equilibrium. Since the

pooling effect occurs only downwards, bounding bids above b̄ ¥ p0 does not affect bids below

b̄, and assures that any agreed price pb ¡ b̄ shifts to b̄. Under the assumption that usellerppbq is

decreasing if and only if pb ¥ p0, the cap increases the seller’s expected payoff Rseller.

Theorem 3. In a FPCA, there exists a neighbourhood of p0 in which every bid cap b̄ strictly

increases the seller’s expected payoff. In addition, the optimal cap b̄opt is lower than p0.

Proof. Assume that a threshold price p0 exists. If b̄ � p0, then the pooling effect shifts bids

below and above the cap to b̄. Since p0 is an extreme point of usellerppbq, the pooling upwards

and downwards strictly increases the seller’s expected payoff. By the continuity of useller the

same holds for every bid cap in the neighbourhood of p0.

To examine the optimal cap, define Hpc̄q to be the difference between the seller’s expected

payoff in the capped and the uncapped FPCA, where c̄ is defined in Eq. (2), and get

Hpc̄q � p1 � F npc̄qqrusellerpb̄q � ErusellerpβFpṽ1qq|ṽ1 ¥ c̄ss.

Note that Hpp0q ¡ 0 and HpV q � 0. In addition, each of the terms c̄ and b̄ is an increasing

and implicit function of the other, based on the equality Ψpc̄, b̄q � 0, given in the proof of

Proposition 2. Using the implicit function theorem, the first-order derivative of Hpc̄q is

H 1pc̄q � �nF n�1pc̄qfpc̄qusellerpb̄q � p1 � F npc̄qq
d

dc̄
rusellerpb̄qs

� nF n�1pc̄qfpc̄qusellerpβFpc̄qq.

Note that d
dc̄
rusellerpb̄qs � 0 and usellerpβFpc̄qq   usellerpb̄q in case b̄ � p0, since p0 is a local extreme

point of useller. Thus, H 1pp0q   0 and the optimal cap b̄opt   p0, as stated.

Lemma 1. Fix a cap b̄, and denote vb̄ as the valuation that induce a bid of b̄ in the uncapped

mechanism. There exists a private value v0 ¡ vb̄ such that b̄ increases (potentially, weakly) the

expected payoff of a bidder with valuation v if and only if v ¤ v0.

Proof. A bidder who bids below the cap, in equilibrium of the capped mechanism, is

unaffected by the cap. Thus, we can solely relate to bidders who bid the cap itself. The lowest

bidder who bids b̄ gets the same payoff in the capped and the uncapped mechanism. Moreover,

in each capped mechanism the probabilities and prices coincide to all b̄-bidders, so their expected

payoffs are linearly increasing w.r.t. PVs. On the other hand, Proposition 1 shows that in the

uncapped mechanism the expected payoffs are convex w.r.t. PVs. Hence, there could be only

one crossing, denoted v0, between the expected payoff functions of the capped and uncapped

19



mechanism. For every v ¤ v0, every bidder gains weakly from the introduction of the cap,

whereas bidders with PVs above v0 lose in expectation, as required. We now need to prove that

v0 ¡ vb̄.

Starting with the SPCA, denote vb̄ � β�1
S pb̄q and let ΦSPpvq be the difference between the

expected payoffs of a v-valuation bidder in the capped and the uncapped mechanism, given

v ¥ vb̄. Formally,

ΦSPpvq � pGpvb̄q � F n�1pvb̄qqupb̄, vq

� pF n�1pvq � F n�1pvb̄qqErupβSpṽ2q, vq|vb̄ ¤ ṽ2 ¤ vs,

where G is defined in the proof of Proposition 2 and ṽ2 is the second highest bid. Note that

Gpvb̄q ¡ F n�1pvb̄q, and u is decreasing in its first coordinate, so upb̄, vq ¥ ErupβSpṽ2q, vq|vb̄ ¤

ṽ2 ¤ vs for v sufficiently close to vb̄. Thus, if v is sufficiently close to vb̄, the v-valuation bidder

strictly gains from the cap, implying v0 ¡ vb̄.

We turn to the FPCA. Let ΦFPpvq be the difference between the expected payoffs of a

v-valuation bidder in the capped and the uncapped FPCA where v ¥ c̄ and c̄ is the upwards-

pooling bound of b̄. Specifically,

ΦFPpvq � Gpc̄qupb̄, vq � F n�1pvqupβFpvq, vq

� Gpc̄qrSpb̄qpv � w � b̄q � ws � F n�1pvqrSpβFpvqqpv � w � βFpvqq � ws,

and Φ1
FPpvq � Gpc̄qSpb̄q � F n�1pvqSpβFpvqq. In the proof of Proposition 2, we showed that

ΦFPpc̄q � 0 and concluded that Φ1
FPpc̄q ¡ 0. Similarly, for every v P pc̄, vb̄q one can show that

ΦFPpvq ¥ 0 implies that Φ1
FPpvq ¥ 0, and every bidder with valuation v P pc̄, vb̄q strictly gains

from the introduction of the cap b̄.

Claim 1. In a SPCA, assuming that no endowment is needed pw � 0q and F is convex, every

bid cap increases all bidders’ expected payoffs.

Proof. By Lemma 1, it is sufficient to prove that every bid cap b̄   V increases the expected

payoff of a V -valuation bidder. The difference between the expected payoff of a V -valuation

bidder in the capped and the uncapped auctions is ΦSPpV q, defined in the proof of Lemma 1.

We have

ΦSPpV q � pGpb̄q � F n�1pb̄qqupb̄, V q � p1 � F n�1pb̄qqErupβSpṽ2q, vq|b̄ ¤ ṽ2 ¤ V s

¥ pGpb̄q � F n�1pb̄qqSpb̄qpV � b̄q � Spb̄q
» V

b̄

pn� 1qfptqF n�2ptqpV � tqdt,
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where the inequality follows from the assumption that S is decreasing. Dividing by Spb̄q, where

Spb̄q ¡ SpV q ¥ 0, and integrating by parts yields

ΦSPpV q
Spb̄q

¥ pGpb̄q � F n�1pb̄qqpV � b̄q � F n�1pb̄qpV � b̄q �
» V

b̄

F n�1ptqdt

�
pV � b̄q

n

n�1̧

k�0

F kpb̄q �
» V

b̄

F n�1ptqdt.

Now define φpb̄q � pV�b̄q
n

°n�1
k�0 F

kpb̄q�
³V
b̄
F n�1ptqdt. Taking the first-order derivative of φ yields

φ1pb̄q �
pV � b̄q

n

n�1̧

k�0

kF k�1pb̄qfpb̄q �
1

n

n�1̧

k�0

F kpb̄q � F n�1pb̄q

¤
1

n

n�1̧

k�0

kF k�1pb̄qp1 � F pb̄qq �
1

n

n�1̧

k�0

F kpb̄q � F n�1pb̄q

�
1

n

�
n�1̧

k�0

�
kF k�1pb̄q � pk � 1qF kpb̄q

��
� F n�1pb̄q,

where the inequality follows from the convexity of F , which implies that 1�F pb̄q

V�b̄
¥ fpb̄q. Note

that the sum is telescoping and yields φ1pb̄q ¤ 0. Therefore, φpb̄q is a decreasing function and

φpV q � 0 implies that φpb̄q ¥ 0 for b̄   V , as needed.
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