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Abstract

We study a reverse contest with n agents, each of whom has both a linear reward function that

increases in the agent�s e¤ort and an e¤ort constraint. However, since the e¤ort (output) of the players

has a negative e¤ect on society the designer imposes a punishment such that the agent with the highest

e¤ort who caused the greatest damage is punished. We analyze the equilibrium of this model with

either symmetric or asymmetric agents. At all the equilibrium points, all the agents are active and all

have positive expected payo¤s. We characterize the properties of the agents�equilibrium strategies and

compare them to the well-known equilibrium strategies of the all-pay auction in which the agent with

the highest e¤ort wins a prize.

1 Introduction

In winner-take-all contests the agent who exerts the highest e¤ort (output) wins the contest (see, Tullock

1980, Rosen 1986, Hillman and Samet 1987 and Hillman and Riley 1989). In such environments, the agents

have an incentive to win or to be �rst by exerting the highest e¤ort or by producing the best output in order

to win the prize. However, there are environments in which being the winner is not necessarily the goal of

the agents and they might not want to be �rst nor the winner. An example of an environment in which it

is not necessarily desirable to be the winner is common value auctions with incomplete information. In such

�I would like to thank Yaakov Kareev, Judith Avrahami and David Budescu who gave me the idea for this paper.
yThis paper was previously titled "It�s not always best to be �rst."
zDepartment of Economics, Ben-Gurion University of the Negev, Beer�Sheva 84105, Israel. Email: anersela@bgu.ac.il
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auctions, the phenomenon of winner�s curse is likely to occur according to which the winner will have the

tendency to overpay (see, among others, Kagel and Levin 1986, Thaler 1988 and Bajari and Hortascu 2003).

In this paper, we study a model in which the disadvantage of winning is even stronger than in common value

auctions since we assume that only the �rst (best) agent is punished. To illustrate, consider n �rms that

produce a homogenous product where the production process yields some damage such as pollution. Then,

the regulator imposes a punishment on the �rm with the highest production since this obviously causes the

greatest damage. In that case, the goal of each �rm is to maximize its pro�t by maximizing its production

but at the same time not producing more than all the other �rms. Another illustration would be a group

of cars speeding on a highway who wish to arrive at some �nal destination. The fastest car is the one most

likely to be caught and �ned, the goal of each driver would be to minimize his travel time but at the same

time not to be fastest.

Formally, we study a model with n agents, each of whom has a linear reward function which is a combi-

nation of his production and cost functions which increases in the agent�s e¤ort. Each agent has an e¤ort

constraint which restricts his ability to exert an e¤ort above his constraint. However, since the e¤ort of the

agents has a negative e¤ect on society the designer imposes a punishment such that the agent with the high-

est e¤ort gets a negative payo¤ according to his value for this punishment. The agents are not necessarily

symmetric and they may have asymmetric reward functions, asymmetric values of the punishment as well

as asymmetric e¤ort constraints.

We �rst analyze the equilibrium of this model when the agents are symmetric, namely, they have the same

reward function, the same value for the punishment, and the same e¤ort constraint. In this case, independent

of the number of agents, all of them use the same mixed strategy equilibrium where the minimal e¤ort (the

left point of the support of the agents�mixed strategy) of all the agents is positive while the maximal

e¤ort (the right point of the support of the agents�mixed strategy) is equal to their e¤ort constraint. In

equilibrium, the expected payo¤ of all the agents is the same and is positive.

We then study this model when the agents have asymmetric reward functions, where an agent will be

called stronger than his opponent if his marginal reward function is larger than that of his opponent. In the

two-agent case we show that both agents use a mixed strategy equilibrium and that both of them have a
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positive expected payo¤ where the stronger agent has a higher expected payo¤ than his opponent. When

there are n > 2 asymmetric agents, the strongest agent as well as one of the other agents, not necessarily the

second strongest agent, use a mixed strategies, while all the other agents use a pure strategy which is the

e¤ort that is equal to the minimal possible e¤ort of the agents with the mixed strategy, namely, the smallest

point of the support of their strategies. All the agents have positive expected payo¤s and these payo¤s are

�xed and do not depend on the identity of the agents who use the mixed strategy. An interesting point to

consider is that the agents�expected total e¤ort when they have asymmetric reward functions is higher than

when these agents are symmetric and have the same reward function as one of the asymmetric ones.

We then analyze the equilibrium in our model when the agents have asymmetric values for the punishment

imposed on the agent with the highest e¤ort. Similar to the case with asymmetric reward functions, in the

two-agent model both agents use a mixed strategy equilibrium and in the n-agent model, two of the agents

( one of them is the agent with the lowest value for the punishment and the other agent could be anyone

else) use mixed strategies. All the other agents use a pure strategy which is an e¤ort that is equal to the

minimal possible e¤ort of the two agents with the mixed strategies, namely the smallest point of the support

of their strategies. What is interesting here is that regardless of the asymmetry of the agents, they have the

same expected payo¤. Similar to the case with asymmetric reward functions, when agents have asymmetric

values for the punishments, their expected total e¤ort is higher than when they are symmetric and they will

have the same value for the punishment as one of the asymmetric agents.

Last, we study this model when agents have asymmetric e¤ort constraints. In equilibrium, as in the

previous cases, in the two-agent model both agents use mixed strategies and in the n-agent model, two

agents, those with the highest e¤ort constraints also use mixed strategies in which each of them chooses the

e¤ort that is equal to his e¤ort constraint with a positive probability. Each of the other agents chooses a

pure strategy that is equal to the minimum of his e¤ort constraint and the smallest point in the support

of the agents�mixed strategies. Similar to the case with asymmetric values for the punishments, regardless

of the asymmetry of the agents, all the agents that choose e¤orts below their e¤ort constraints either by a

mixed or a pure strategy have the same expected payo¤.

The equilibrium analysis of our model has features that are in common with the standard model of the
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all-pay auction under complete information in which each player submits a bid (e¤ort) for the prize and

the player who submits the highest bid receives the prize, but, independently of success, all players bear

the cost of their bids. In the economic literature, all-pay auctions are usually studied either under complete

information where each player�s value for the prize is common knowledge (see, for example, Baye, Kovenock

and de Vries 1993, 1996, Che and Gale 1998, Konrad 2006, Konrad and Kovenock 2009, Siegel 2009, Sela

2012, and Hart 2016), or under incomplete information where each player�s value for the prize is private

information to that player and only the distribution of the players�values is common knowledge (see, for

example, Amman and Leininger 1996, Krishna and Morgan 1997, Moldovanu and Sela 2001, 2006, Gavious et

al. 2003, Cohen et al. 2008, and Moldovanu et al. 2012). To elucidate this similarity between our model and

the all-pay auction, in Appendix A we provide an analysis of the two-player all-pay auction under complete

information and in our concluding remarks we compare the equilibrium in our model with the equilibrium

in the all-pay auction under complete information.

2 The model

Consider n agents, each of whom has both a production function �i(xi) = �ixi; �i > 1 (where xi is contestant

i�s e¤ort) and an e¤ort cost function c(xi) = xi; i = 1; 2; :::; n. The designer imposes a punishment on the

agent with the highest e¤ort. Let Pi; i = 1; 2; :::; n; be agent i�s value for this punishment. If we de�ne agent

i�s reward function as �i(xi) = �i(xi)� c(xi) = (�i � 1)xi = �ixi; i = 1; 2; :::; n; agent i�s expected payo¤ is

ui(xi) =

8>>>>>><>>>>>>:
�ixi � Pi if xi > maxj xj

�ixi � Pi
m if xi = maxj xj

�ixi if xi < maxj xj

where m � 2 is the number of agents who exert the highest e¤ort. In addition, agent i has an e¤ort constraint

of di such that xi � di; i = 1; 2; :::; n. Each agent chooses his e¤ort in order to maximize his expected payo¤

given the e¤orts of the other agents. Since no one wants to be �rst in this model we refer to it as the reverse

contest.
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3 The symmetric contest

We assume here that agents are symmetric, namely, they have the same reward function, �i = �; i = 1; :::; n;

the same value for the punishment in the case of winning, Pi = P , i = 1; :::; n; and the same e¤ort constraint

di = d; i = 1; :::; n.

3.1 The symmetric two-agent contest

Consider �rst that there are only two agents. Then the agents�mixed strategy equilibrium is given by

Proposition 1 In the reverse contest with two symmetric agents, if �d > P; there is a mixed strategy

equilibrium in which agents 1 and 2 randomize on the interval [d� P
� ; d] according to their e¤ort cumulative

distribution function F (x) which is given by

�PF (x) + �x = �P + �d

Thus, each agent�s equilibrium e¤ort is distributed according to the cumulative distribution function

F (x) =
�P + �(d� x)

�P , d� P
�
� x � d (1)

Proof. See Appendix B.

The expected payo¤ of each agent is

�i = �P + �d , i = 1; 2

The agents�expected total e¤ort is

TE = 2

Z d

d�P
�

xF 0(x)dx = 2

Z d

d�P
�

�

P
xdx = 2d� P

�
(2)

3.2 The n-agent symmetric contest

We consider now that there are n > 2 symmetric agents. Then, the agents�mixed strategy equilibrium is

given by
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Proposition 2 In the reverse contest with n symmetric agents, if �d > P; there is a mixed strategy equi-

librium in which agents 1,...,n randomize on the interval [d � P
� ; d] according to their e¤ort cumulative

distribution function F (x) which is given by

�PF (x)n�1 + �x = �P + �d

Thus, each agent�s equilibrium e¤ort is distributed according to the cumulative distribution function

F (x) =
n�1

r
�P + �(d� x)

�P , d� P
�
� x � d (3)

Proof. See Appendix B.

The expected payo¤ of each agent is

�i = �P + �d , i = 1; :::; n

The agents�expected total e¤ort is

TE = n

Z d

d�P
�

xF 0(x)dx = n

Z d

d�P
�

x
1

n� 1(
�P + �(d� x)

�P )
2�n
n�1

�

P
dx (4)

= nd� P
�
(n� 1)

4 Contests with asymmetric reward functions

We assume here that agents are asymmetric such that they have di¤erent reward functions. Without loss of

generality, �i � �i+1; i = 1; :::; n� 1:We also assume that agents have the same value for the punishment in

the case of winning, Pi = P , and the same e¤ort constraint di = d , i = 1; :::; n:

4.1 The two-agent contest

Consider �rst that there are only two agents. Then, the agents�mixed strategy equilibrium is given by

Proposition 3 In the reverse contest with two agents with asymmetric reward functions, if �1 > �2 and

�1d > P; there is a mixed strategy equilibrium in which agents 1 and 2 randomize on the interval [d� P
�1
; d]
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according to their e¤ort cumulative distribution functions F1(x), F2(x) which are given by

�PF2(x) + �1x = �P + �1d

�PF1(x) + �2x = ��2
�1
P + �2d

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>><>>:
��2
�1
P+�2(d�x)
�P , d� P

�1
� x < d

1 , x � d
(5)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =
�P + �1(d� x)

�P , d� P

�1
� x � d (6)

Proof. See Appendix B.

The agents�expected payo¤s are

�1 = �P + �1d

�2 = ��2
�1
P + �2d

Note that in contrast to the standard all-pay auction (see Appendix A), the expected payo¤s of both con-

testants are positive and we can see that

�1 � �2 = (�1 � �2)(d�
P

�1
) > 0

Thus, when �1 > �2, agent 1�s expected payo¤ is higher than that of agent 2. The agents�probabilities to

be punished are

p2 =

Z d

d� p
�1

Z x

d� p
�1

F 02(x)F
0
1(y)dydx

=

Z d

d� p
�1

Z x

d� p
�1

�2�1
P 2

dydx =
�2
2�1

and

p1 = 1� p2 =
2�1 � �2
2�1
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Thus, if �1 > �2, agent 1�s probability to be punished is higher than that of agent 2. Then, the agents�

expected total e¤ort is

TE =

Z d

d� P
�1

xF 02(x)dx+

Z d

d� P
�1

xF 01(x)dx+ d
�1 � �2
�1

(7)

=

Z d

d� P
�1

�1
P
xdx+

Z d

d� P
�1

�2
P
xdx+ d

�1 � �2
�1

= 2d� P �1 + �2
2�21

By comparing the expected total e¤ort in the symmetric (2) and asymmetric (7) contests with two agents,

the expected total e¤ort in the asymmetric contest with reward functions of �1x and �2x is higher than the

expected total e¤ort in the symmetric contest with a reward function of either �1x or �2x.

4.2 The n-agent contest

We now consider n agents with asymmetric reward functions. Assume �rst that �1 � �2 = :::: = �n: Then,

the agents�mixed strategy equilibrium is given by

Proposition 4 In the reverse contest with n agents where n�1 of them are symmetric such that �1 � �2 =

:::: = �n = �, if �1d > P; there is a mixed strategy equilibrium in which all agents randomize on the interval

[d� P
�1
; d] according to their e¤ort cumulative distribution functions F1(x), F (x) = Fi(x); i = 2; :::; n which

are given by

�PFn�1(x) + �1x = �P + �1d

�PF1(x)Fn�2(x) + �x = � �
�1
P + �d

Thus, the equilibrium e¤ort of agent i; i = 2; :::; n; is distributed according to the cumulative distribution

function

F (x) =
n�1

r
�P + �1(d� x)

�P , d� P

�1
� x � d (8)

and agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>><>>:
� �
�1
P+�(d�x)

�P (�P+�1(d�x)�P )
n�2
n�1

, d� P
�1
� x < d

1 , x � d
(9)

Proof. See Appendix B.
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The agents�expected payo¤s in this case are

�1 = �P + �1d

�2 = ::: = �n = �
�

�1
P + �d

Now, if we assume that �1 � �2 � ::: � �n, then the agents�hybrid equilibrium is given by

Proposition 5 In the reverse contest with n asymmetric agents such that �1 � �2 � ::: � �n; if �1d > P ,

there is a hybrid equilibrium in which agents 1; 2; randomize on the intervals [d � P
�1
; d] according to their

e¤ort cumulative distribution functions F1(x); F2(x) which are given by

�PF2(x) + �1x = �P + �1d

�PF1(x) + �2x = ��2
�1
P + �2d

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>><>>:
��2
�1
P+�2(d�x)
�P , d� P

�1
� x < d

1 , x � d
(10)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =
�P + �1(d� x)

�P , d� P

�1
� x � d (11)

The other agents choose a pure strategy of xi = d� P
�1
; i = 3; :::; n:1

Proof. See Appendix B.

The agents�expected payo¤s are given by

�1 = �P + �1d

�i = ��i
�1
P + �id , i = 2; 3; :::; n

Note that �i > �j implies that �i > �j .

The probabilities of agents 1 and 2 to be punished are the same as in the asymmetric two-agent contest

when only these agents compete against each other, and the probability of the other agents to be punished
1 In this contest, we have n�1 pro�les of a hybrid equilibrium in which a di¤erent player i = 2; :::; n chooses a mixed strategy

together with player 1 and all the others choose the pure strategy x = d� P
�1
:

9



is zero. The expected total e¤ort is

TE = 2d� P �1 + �2
2�21

+ (n� 2)(d� P

�1
) = nd� P (2n� 3)�1 + �2

2�21
(12)

As with two agents, by comparing the expected total e¤ort in the symmetric (4) and asymmetric (12)

contests with n agents, the expected total e¤ort in the asymmetric contest with reward functions of �ix,

i = 1; :::; n is higher than the expected total e¤ort in the symmetric contest with a reward function �ix for

all i = 1; 2; :::; n.

5 Contests with asymmetric punishments

We assume here that the agents are asymmetric such that they have di¤erent values for the punishment

imposed by the designer where Pi � Pi+1; i = 1; 2; :::; n � 1: We also assume that agents have the same

reward function, �i = �, and the same e¤ort constraint di = d for all i = 1; :::; n:

5.1 The two-agent contest

Consider �rst that there are only two agents. Then, the agents�mixed strategy equilibrium is given by

Proposition 6 In the reverse contest with two agents with asymmetric values for the punishment P1 < P2,

if �d > P1; there is a mixed strategy equilibrium in which agents 1 and 2 randomize on the interval [d� P1
� ; d]

according to their e¤ort cumulative distribution functions F1(x), F2(x) which are given by

�P1F2(x) + �x = �P1 + �d

�P2F1(x) + �x = �P1 + �d

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>><>>:
�P1+�(d�x)

�P2 , d� P1
� � x < d

1 , x � d
(13)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =
�P1 + �(d� x)

�P1
, d� P1

�
� x � d (14)
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Proof. See Appendix B.

The agents�expected payo¤s are

�1 = �2 = �P1 + �d

The probabilities of the agents to be punished are

p2 =

Z d

d�P1
�

Z x

d�P1
�

F 02(y)F
0
1(y)dydx

=

Z d

d�P1
�

Z x

d�P1
�

�2

P1P2
dydx =

P1
2P2

and

p1 = 1� p2 =
2P2 � P1
2P2

Thus, if P1 < P2, the probability of agent 1 to be punished is higher than that of agent 2. Then, the agents�

expected total e¤ort is

TE =

Z d

d�P1
�

xF 02(x)dx+

Z d

d�P1
�

xF 01(x)dx+ d
P2 � P1
P2

(15)

=

Z d

d�P1
�

�

P1
xdx+

Z d

d�P1
�

�

P2
xdx+ d

P2 � P1
P2

= 2d� P1(P1 + P2)
2�P2

By comparing the expected total e¤ort in the symmetric (2) and asymmetric (15) contests with two

agents, the expected total e¤ort in the asymmetric contest with values of punishments P1and P2 is higher

than the expected total e¤ort in the symmetric contest with a value of punishment P1 or P2.

5.2 The n-agent contest

Consider now that there are n asymmetric agents. Without loss of generality, Pi � Pi+1; i = 1; 2; :::; n� 1:

Then, the agents�hybrid equilibrium is given by

Proposition 7 In the reverse contest with n asymmetric agents where P1 � P2 � ::: � Pn , if �d > P1,

there is a hybrid equilibrium in which agents 1; 2; randomize on the intervals [d � P1
� ; d] according to their

e¤ort cumulative distribution functions F1(x); F2(x) which are given by

�P1F2(x) + �1x = �P1 + �d

�P2F1(x) + �2x = �P1 + �d
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Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>><>>:
�P1+�(d�x)

�P2 , d� P1
� � x < d

1 , x � d
(16)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =
�P1 + �1(d� x)

�P1
, d� P1

�
� x � d (17)

and all the other agents choose the pure strategy of xi = d� P1
� ; i = 3; :::; n:

Proof. See Appendix B.

Then the agents�expected payo¤s are

�i = �P1 + �1d , i = 1; 2; :::; n

and the probabilities of agents 1 and 2 to be punished are the same as in the two-agent contest when they

compete against each other. All the other agents have a probability of zero to be punished. Then, the agents�

expected total e¤ort is

TE = 2d� P1(P1 + P2)
2�P2

+ (n� 2)(d� P1
�
) = nd� (2n� 3)P1P2 + P

2
1

2�P2
(18)

As in the case with two agents, by comparing the expected total e¤ort in the symmetric (4) and asym-

metric (18) contests with n agents, the expected total e¤ort in the asymmetric contest with values of the

punishments Pi, i = 1; :::; n is higher than the expected total e¤ort in the symmetric contest with a value of

the punishment Pi, for all i = 1; 2; :::; n:

6 Contests with asymmetric e¤ort constraints

We assume here that agents have asymmetric e¤ort constraints where di � di+1; i = 1; 2; :::; n � 1: We also

assume that agents have the same value of the punishment Pi = P , and the same reward function �i = �

for all i = 1; :::; n:

6.1 The two-agent contest

Consider �rst that there are only two agents. Then, the agents�mixed strategy equilibrium is given by
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Proposition 8 In the reverse contest with two asymmetric agents where d1 > d2 , if �d1 > P and P >

�(d1�d2); there is a mixed strategy equilibrium in which agent i; i = 1; 2 randomizes on the interval [d1�P
� ; di]

according to his e¤ort cumulative distribution function Fi(x); i = 1; 2; which is given by

�PF2(x) + �x = �P + �d1

�PF1(x) + �x = �P + �d1

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>>>>>><>>>>>>:

�P+�(d1�x)
�P , x � d2

�P+�(d1�d2)
�P , d2 < x < d1

1 , x � d1

(19)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =

8>><>>:
�P+�(d1�x)

�P x < d2

1 x � d2
(20)

Proof. See Appendix B.

Then the agents�expected payo¤s are

�1 = �2 = �P + �d1

The probabilities of the agents to be punished are

p1 =

Z d2

d1�P
�

Z x

d1�P
�

F 02(y)F
0
1(y)dydx+

�(d1 � d2)
P

=

Z d2

d1�P
�

Z x

d1�P
�

�2

P 2
dydx+

�(d1 � d2)
P

=
1

2
+
�2(d1 � d2)2

2P 2

and p2 = 1� p1: Note that since we assume that P > �(d1 � d2) then p1 is necessarily smaller than 1. The

agents�expected total e¤ort is

TE =

Z d2

d1�P
�

xF 02(x)dx+

Z d2

d1�P
�

xF 01(x)dx+
�(d1 � d2)

P
(d1 + d2) (21)

= 2

Z d2

d1�P
�

�

P
xdx+

�(d1 � d2)
P

(d1 + d2) = 2d2 �
P

�

By comparing the expected total e¤ort in the symmetric (2) and asymmetric (21) contests with two agents,

the expected total e¤ort in the asymmetric contest with e¤ort constraints d1 and d2 is lower than the expected
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total e¤ort in the symmetric contest with an e¤ort constraint of d1 and is the same as the expected total

e¤ort in the symmetric contest with an e¤ort constraint of d2.

6.2 The n-agent contest

Consider now that there are n asymmetric agents with e¤ort constraints that satisfy di � di+1; i = 1; 2; :::; n�

1: Then, the agents�hybrid equilibrium is given by

Proposition 9 In the reverse contest with n asymmetric agents where d1 � d2 � ::: � dn , if �d1 > P and

P > �(d1�dn), there is a hybrid equilibrium in which agent i; i = 1; 2 randomizes on the interval [d1� P
� ; di]

according to his e¤ort cumulative distribution function Fi(x); i = 1; 2; which is given by

�PF2(x) + �x = �P + �d1

�PF1(x) + �x = �P + �d1

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>>>>>><>>>>>>:

�P+�(d1�x)
�P , x � d2

�P+�(d1�d2)
�P , d2 < x < d1

1 , x � d1

(22)

agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =

8>><>>:
�P+�(d1�x)

�P , x < d2

1 , x � d2
(23)

and all the other agents choose the pure strategy of xi = d1 � P
� ; i = 3; :::; n:

Proof. See Appendix B.

Then the agents�expected payo¤s are given by

�i = �P + �d1 , i = 1; 2; :::; n

and the probabilities of agents 1 and 2 to be punished are the same as in the two-agent contest. All the

other agents have a probability of zero to be punished. The agents�expected total e¤ort is

TE = 2d2 �
P

�
+ (n� 2)(d1 �

P

�
) = 2d2 + (n� 2)d1 � (n� 1)

P

�
(24)
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As in the case with two agents, by comparing the expected total e¤ort in the symmetric (4) and asym-

metric (24) contests with n agents, the expected total e¤ort in the asymmetric contest with e¤ort constraints

di, i = 1; :::; n is lower than the expected total e¤ort in the symmetric contest with an e¤ort constraint of d1

and is the same as the expected total e¤ort in the symmetric contest with an e¤ort constraint of d2:

Remark 1 If there exists k < n such that P > �(d1 � di); i = 3; :::; k and P < �(d1 � di); i = k + 1; :::; n

then there is an equilibrium in which agents 1 and 2 use the mixed strategies given by (22) and (23); agent

i; i = 3; :::; k chooses xi = d1 � P
� ; and agent j; j = k + 1; ::::; n chooses xj = dj :

Then the agents�expected payo¤s are given by

�i = �P + �d1 , i = 1; :::; k

�j = �dj , j = k + 1; :::; n

The agents�expected total e¤ort is then

TE = 2d2 + kd1 � (k + 1)
P

�
(25)

7 Concluding remarks

The equilibrium in our model has a structure that is similar to the equilibrium of the all-pay auction under

complete information (see Appendix A). However, there are also prominent di¤erences as follows:

� The smallest point of the support of the players�mixed strategies in the all-pay auction is zero while

in our model it is larger than zero.

� In the all-pay auction with two asymmetric players one of the players chooses an e¤ort with a positive

probability that is equal to the smallest point of the support of the players�mixed strategies, while in

our model one of the players chooses an e¤ort with a positive probability that is equal to the largest

point of the support of the players�mixed strategies.

� In the symmetric two-player all-pay auction the expected payo¤ of all the players is zero, while in our

model all the players have positive expected payo¤s.
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� In the asymmetric two-player all-pay auction only one player has a positive expected payo¤ and in our

model both players have positive expected payo¤s.

� In the symmetric all-pay auction with n players all the players have an expected payo¤ of zero, while

in our model all the players have a positive expected payo¤.

� In the asymmetric all-pay auction with n players if the players have di¤erent values only one player

has a positive expected payo¤, while in our model all the players who use mixed strategies as well as

those who use a pure strategy have positive expected payo¤s

� In the asymmetric all-pay auction the players�expected payo¤s are not the same, while in our model

with asymmetric values for the punishment as well as with asymmetric e¤ort constraints, the players�

expected payo¤s are the same.

� In the all-pay auction the expected total e¤ort in the symmetric model is higher than in the asymmetric

one, while in our model the players�expected e¤ort in the asymmetric model might be higher than in

the symmetric one.

The mixed-strategy equilibrium as well as the hybrid equilibrium in our model seem more plusible than

the mixed strategy equilibrium in the all-pay auction. This is because in the asymmetric all-pay auction

the incentive of all the players except the one who has an expected payo¤ larger than zero to participate in

the contest is not clear, while in our model all the players, whether symmetric or asymmetric, have positive

expected payo¤s and therefore they all have an incentive to participate.

8 Appendix A

Consider the standard all-pay auction with two players, 1 and 2. Player i�s reward is vi, where v1 � v2; and

his expected utility is ui = vi�xi if xi > xj . Otherwise ui = �xi, where xi is the e¤ort of player i. The goal

of each contestant is to maximize his expected payo¤. According to Hillman and Riley (1989) and Baye,

Kovenock and de Vries (1996), there is always a unique mixed strategy equilibrium in which players 1 and 2

randomize on the interval [0; v2] according to their e¤ort cumulative distribution functions, which are given
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by

v1F2(x)� x = v1 � v2

v2F1(x)� x = 0

Thus, player 1�s equilibrium e¤ort is uniformly distributed; that is

F1(x) =
x

v2

while player 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =
v1 � v2 + x

v1

The players�expected payo¤s are

�1 = v1 � v2

�2 = 0

and their probabilities of winning are

p1 = 1� v2
2v1

p2 =
v2
2v1

The players�expected total e¤ort is

TE =
v2
2
(1 +

v2
v1
)

9 Appendix B

9.1 Proof of Proposition 1

The function F (x) given by (1) is well-de�ned, strictly increasing on [d�P
� ; d], continuous, satis�es F (d�

P
� ) =

0 and F (d) = 1. Thus, F (x) is a cumulative distribution function of a continuous probability distribution

supported on
�
d� P

� ; d
�
. In order to see that the above strategies are an equilibrium, note that when agent

2 uses the mixed strategy F (x), agent 1�s expected payo¤ is �1 = �P + �d for any e¤ort x 2 [d � P
� ; d].
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Since it can be easily shown that for agent 1, e¤orts below d� P
� would lead to a lower expected payo¤ than

�P + �d, and since e¤orts above d are infeasible, any e¤ort in [d� P
� ; d] is a best response of agent 1 when

agent 2 uses F (x): By symmetry, any e¤ort in [d � P
� ; d] is a best response of agent 2 when agent 1 uses

F (x): Hence, F (x) is a symmetric mixed strategy equilibrium.

9.2 Proof of Proposition 2

The function F (x) given by (3) is well-de�ned, strictly increasing on [d�P
� ; d], continuous, satis�es F (d�

P
� ) =

0 and F (d) = 1. Thus, F (x) is a cumulative distribution function of a continuous probability distribution

supported on
�
d� P

� ; d
�
. In order to see that the above strategies are an equilibrium, note that when agents

2; 3; :::; n use the mixed strategy F (x), agent 1�s expected payo¤ is �1 = �P +�d for any e¤ort x 2 [d� P
� ; d].

Since it can be easily shown that for agent 1, e¤orts below d� P
� would lead to a lower expected payo¤ than

�P + �d, and since e¤orts above d are infeasible, any e¤ort in [d� P
� ; d] is a best response of agent 1 when

all the other agents use F (x): By symmetry, any e¤ort in [d� P
� ; d] is a best response of agent i; i = 2; :::; n

when all the other agents use F (x): Hence, F (x) is a symmetric mixed strategy equilibrium.

9.3 Proof of Proposition 3

The functions Fi(x); i = 1; 2 given by (5) and (6) are well-de�ned, strictly increasing on [d� P
�1
; d], continuous,

satisfy F1(d � P
� ) = F2(d � P

� ) = 0, and F2(d) = 1; F1(d) = 1, where agent 1 chooses the e¤ort that is

equal to d with a probability of �1��2�1
> 0. Thus, Fi(x); i = 1; 2 are cumulative distribution functions

of continuous probability distributions supported on
h
d� P

�1
; d
i
. In order to see that the above strategies

are an equilibrium, note that when agent 2 uses the mixed strategy F2(x), agent 1�s expected payo¤ is

�1 = �P + �1d for any e¤ort x 2 [d � P
�1
; d]. Since it can be easily shown that for agent 1, e¤orts below

d � P
�1
would lead to a lower expected payo¤ than �P + �1d, and e¤orts above d are infeasible, any e¤ort

in [d� P
�1
; d] is a best response of agent 1 when agent 2 uses F2(x): Similarly, when agent 1 uses the mixed

strategy F1(x), agent 2�s expected payo¤ is �2 = ��2
�1
P + �2d for any e¤ort x 2 [d� P

�1
; d). Since it can be

easily shown that for agent 2, e¤orts below d � P
�1
as well as an e¤ort that is equal to d would result in a

lower expected payo¤, and e¤orts above d are infeasible, any e¤ort in [d� P
�1
; d) is a best response of agent
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2 when agent 1 uses F1(x): Hence, the pair (F1(x); F2(x)) is a mixed strategy equilibrium.

9.4 Proof of Proposition 4

The functions F1(x); F (x), given by (9) and (8) are well-de�ned, strictly increasing on [d� P
�1
; d], continuous,

satisfy F (d � P
�1
) = F1(d � P

�1
) = 0, and F (d) = 1; F1(d) = 1, where agent 1 chooses the e¤ort that

is equal to d with a probability of �1���1
> 0. Thus, F (x); F1(x) are cumulative distribution functions of

continuous probability distributions supported on
h
d� P

�1
; d
i
. In order to see that the above strategies are

an equilibrium, note that when agents 2; :::; n use the mixed strategy F (x), agent 1�s expected payo¤ is

�1 = �P + �1d for any e¤ort x 2 [d � P
�1
; d]. Since it can be easily shown that for agent 1, e¤orts below

d � P
�1
would lead to a lower expected payo¤ than �P + �1d, and e¤orts above d are infeasible, any e¤ort

in [d� P
�1
; d] is a best response of agent 1 when all the other agents use F (x): Similarly, when agent 1 uses

the mixed strategy F1(x), and all the other n� 2 agents, i = 2; :::; n and i 6= j; use the mixed strategy F (x);

agent j�s expected payo¤ is �j = �P + �d for any e¤ort x 2 [d � P
�1
; d). Since it can be easily shown that

for agent j,j = 2; 3; :::; n e¤orts below d � P
�1
as well as an e¤ort that is equal to d would result in a lower

expected payo¤, and e¤orts above d are infeasible, any e¤ort in [d� P
�1
; d) is a best response of agent j when

agent 1 uses F1(x) and all the other agents i = 2; :::; n and i 6= j use F (x): Hence, (F1(x); F (x); :::; F (x)) is

a mixed strategy equilibrium.

9.5 Proof of Proposition 5

The functions Fi(x); i = 1; 2, given by (10) and (11) are well-de�ned, strictly increasing on [d � P
�1
; d],

continuous, satisfy F1(d � P
� ) = F2(d � P

� ) = 0, and F2(d) = 1; F1(d) = 1, where agent 1 chooses the

e¤ort that is equal to d with a probability of �1��2�1
> 0. Thus, Fi(x); i = 1; 2 are cumulative distribution

functions of continuous probability distributions supported on
h
d� P

�1
; d
i
. In order to see that the above

strategies with xi = d� P
�1
, i = 3; :::; n; are an equilibrium, note that when agent 2 uses the mixed strategy

F2(x) and all the other agents choose the pure strategy xi = d � P
�1
, i = 3; :::; n; agent 1�s expected payo¤

is �1 = �P + �1d for any e¤ort x 2 [d� P
�1
; d]. Since it can be easily shown that for agent 1, e¤orts below

d � P
�1
would lead to a lower expected payo¤ than �P + �1d and e¤orts above d are infeasible, any e¤ort
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in [d� P
�1
; d] is a best response of agent 1 when agent 2 uses F2(x) and all the other agents choose the pure

strategy xi = d � P
�1
; i = 3; :::; n: Similarly, when agent 1 uses the mixed strategy F1(x), and all the other

agents choose the pure strategy xi = d � P
�1
; i = 3; :::; n; agent 2�s expected payo¤ is �2 = ��2

�1
P + �2d

for any e¤ort x 2 [d � P
�1
; d). Since it can be easily shown that for agent 2, e¤orts below d � P

�1
and an

e¤ort that is equal to d would result in a lower expected payo¤, and e¤orts above d are infeasible, any

e¤ort in [d � P
�1
; d) is a best response of agent 2 when agent 1 uses F1(x) and all the other agents choose

the pure strategy xi = d � P
�1
; i = 3; :::; n: In addition, for every agent i; i = 3; :::; n; the expected payo¤

is �i = � �i
�1
P + �2d , i = 3; :::; n. It can be shown that e¤orts below and above d � P

�1
would result in a

lower expected payo¤, and therefore xi = d � P
�1
is a best response for agent i when agents 1 and 2 use

the mixed strategies F1(x), F2(x) and all the other agents choose the same strategy as agent i. Hence, the

mixed strategies (F1(x); F2(x)) with the pure strategies xi = d� P
�1
; i = 3; :::; n are an hybrid equilibrium.

9.6 Proof of Proposition 6

The functions Fi(x); i = 1; 2, given by (13) and (14), are well-de�ned, strictly increasing on [d � P1
� ; d],

continuous, satisfy F1(d � P1
� ) = F2(d � P1

� ) = 0, and F2(d) = 1; F1(d) = 1, where agent 1 chooses the

e¤ort that is equal to d with a probability of P2�P1P2
> 0. Thus, Fi(x); i = 1; 2 are cumulative distribution

functions of continuous probability distributions supported on
�
d� P1

� ; d
�
. In order to see that the above

strategies are an equilibrium, note that when agent 2 uses the mixed strategy F2(x), agent 1�s expected

payo¤ is �1 = �P1 + �d for any e¤ort x 2 [d� P1
� ; d]. Since it can be easily shown that for agent 1, e¤orts

below d � P1
� would lead to a lower expected payo¤ than �P1 + �d and e¤orts above d are infeasible, any

e¤ort in [d� P1
� ; d] is a best response of agent 1 when agent 2 uses F2(x): Similarly, when agent 1 uses the

mixed strategy F1(x), agent 2�s expected payo¤ is �2 = �P1 +�d for any e¤ort x 2 [d� P1
� ; d). Since it can

be easily shown that for agent 2, e¤orts below d� P1
� as well as an e¤ort that is equal to d would result in a

lower expected payo¤, and e¤orts above d are infeasible, any e¤ort in [d� P1
� ; d) is a best response of agent

2 when agent 1 uses F1(x): Hence, the pair (F1(x); F2(x)) is a mixed strategy equilibrium.

20



9.7 Proof of Proposition 7

The functions Fi(x); i = 1; 2, given by (16) and (17), are well de�ned, strictly increasing on [d � P1
� ; d],

continuous, satisfy F1(d � P1
� ) = F2(d � P1

� ) = 0, and F2(d) = 1; F1(d) = 1, where agent 1 chooses the

e¤ort that is equal to d with a probability of P2�P1P2
> 0. Thus, Fi(x); i = 1; 2 are cumulative distribution

functions of continuous probability distributions supported on
�
d� P1

� ; d
�
. In order to see that the above

strategies with xi = d� P1
� , i = 3; :::; n; are an equilibrium, note that when agent 2 uses the mixed strategy

F2(x) and all the other agent choose the pure strategy xi = d � P1
� , i = 3; :::; n; agent 1�s expected payo¤

is �1 = �P1 + �d for any e¤ort x 2 [d� P1
� ; d]. Since it can be easily shown that for agent 1, e¤orts below

d� P1
� would lead to a lower expected payo¤ than �P1 + �d and e¤orts above d are infeasible, any e¤ort in

[d � P1
� ; d] is a best response of agent 1 when agent 2 uses F2(x) and all the other agents choose the pure

strategy xi = d � P1
� ; i = 3; :::; n: Similarly, when agent 1 uses the mixed strategy F1(x), and all the other

agents choose the pure strategy xi = d � P1
� ; i = 3; :::; n; agent 2�s expected payo¤ is �2 = �P1 + �d for

any e¤ort x 2 [d � P1
� ; d). Since it can be easily shown that for agent 2, e¤orts below d � P1

� as well as

an e¤ort that is equal to d would result in a lower expected payo¤, and e¤orts above d are infeasible, any

e¤ort in [d � P1
� ; d) is a best response of agent 2 when agent 1 uses F1(x) and all the other agents choose

the pure strategy xi = d � P1
� ; i = 3; :::; n. In addition, for every agent i; i = 3; :::; n; the expected payo¤

is �i = �P1 + �d. It can be shown that e¤orts below and above d � P1
� would result in a lower expected

payo¤ and therefore xi = d� P1
� is a best response for agent i when agents 1 and 2 use the mixed strategies

F1(x), F2(x) and all the other agents choose the same strategy as agent i. Hence, the mixed strategies

(F1(x); F2(x)) with the pure strategies xi = d� P1
� ; i = 3; :::; n are a hybrid equilibrium.

9.8 Proof of Proposition 8

The functions Fi(x); i = 1; 2, given by (19) and (20), are well-de�ned, strictly increasing on [d1 � P
� ; d2],

continuous, satisfy F1(d1 � P
� ) = F2(d1 � P

� ) = 0. Agent 2�s mixed strategy satis�es F2(d2) = 1, where

agent 2 chooses the e¤ort that is equal to d2 with a probability of
�(d1�d2)

P > 0. Agent 1�s mixed strategy

satis�es F1(d2) < F1(d1) = 1, where agent 1 chooses the e¤ort that is equal to d1 with a probability of

�(d1�d2)
P > 0. Thus, F1(x) is a cumulative distribution function of a continuous probability distribution
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supported on
�
d1 � P

� ; d1
�
; and F2(x) is a cumulative distribution function of a continuous probability

distribution supported on
�
d1 � P

� ; d2
�
. In order to see that the above strategies are an equilibrium, note

that when agent 2 uses the mixed strategy F2(x), agent 1�s expected payo¤ is �1 = �P + �d1 for any e¤ort

x 2 [d1 � P
� ; d2] [ fd1g. Since it can be easily shown that for agent 1, e¤orts below d1 �

P
� and between d2

and d1would lead to a lower expected payo¤ than �P + �d1; and e¤orts above d1 are infeasible, any e¤ort

in [d1 � P
� ; d2] [ fd1g is a best response of agent 1 when agent 2 uses F2(x): Similarly, when agent 1 uses

the mixed strategy F1(x), agent 2�s expected payo¤ is �2 = �P + �d1 for any e¤ort x 2 [d1 � P
� ; d2]. Since

it can be easily shown that for agent 2, e¤orts below d1 � P
� would result in a lower expected payo¤, and

e¤orts above d2 are infeasible, any e¤ort in [d1� P
� ; d2] is a best response of agent 2 when agent 1 uses F1(x):

Hence, the pair (F1(x); F2(x)) is a mixed strategy equilibrium.

9.9 Proof of Proposition 9

The functions Fi(x); i = 1; 2, given by (22) and (23) are well-de�ned, strictly increasing on [d1 � P
� ; d2],

continuous, and satisfy F1(d1 � P
� ) = F2(d1 �

P
� ) = 0. Agent 2�s mixed strategy satis�es F2(d2) = 1, where

agent 2 chooses the e¤ort that is equal to d2 with a probability of
�(d1�d2)

P > 0. Agent 1�s mixed strategy

satis�es F1(d2) < F1(d1) = 1, where agent 1 chooses the e¤ort that is equal to d1 with a probability of

�(d1�d2)
P > 0.

Thus, Fi(x); i = 1; 2; is a cumulative distribution function of continuous probability distributions sup-

ported on
�
d1 � P

� ; di
�
. In order to see that the above strategies with xi = d1� P

� ; i = 3; :::; n; are an equilib-

rium, note that when agent 2 uses the mixed strategy F2(x) and all the other agents choose the pure strategy

xi = d1 � P
� ,i = 3; :::; n, agent 1�s expected payo¤ is �1 = �P + �d1 for any e¤ort x 2 [d1 �

P
� ; d2] [ fd1g.

Since it can be easily shown that for agent 1, e¤orts below d1 � P
� and between d2 and d1would lead to a

lower expected payo¤ than �P + �d1 and e¤orts above d1 are infeasible, any e¤ort in [d1 � P
� ; d2] [ fd1g

is a best response of agent 1 when agent 2 uses F2(x) and all the other agent choose the pure strategy

xi = d1 � P
� ; i = 3; :::; n: Similarly, when agent 1 uses the mixed strategy F1(x) and all the other agents

choose the pure strategy xi = d1 � P
� ,i = 3; :::; n, agent 2�s expected payo¤ is �2 = �P + �d1 for any e¤ort

x 2 [d1 � P
� ; d2]. Since it can be easily shown that for agent 2, e¤orts below d1 �

P
� would result in a lower

22



expected payo¤ and e¤orts above d2 are infeasible, any e¤ort in [d1 � P
� ; d2] is a best response of agent 2

when agent 1 uses F1(x) and all the other agent choose the pure strategy xi = d1 � P
� ; i; i = 3; :::; n: Last,

for every agent i; i = 3; :::; n; the expected payo¤ is �i = �P + �d1: It can be shown that e¤orts below and

above d1� P
� would result in a lower expected payo¤ and therefore xi = d1�

P
� is a best response for agent i

when agents 1 and 2 use the mixed strategies F1(x), F2(x) and all the other agents choose the same strategy

as agent i. Hence, the mixed strategies (F1(x); F2(x)) with the pure strategies xi = d1 � P
� ; i = 3; :::; n are a

hybrid equilibrium.
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